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Abstract—Craniofacial superimposition (CS) is a forensic pro-
cess where photographs or video shots of a missing person are com-
pared with the skull that is found. By projecting both photographs
on top of each other (or, even better, matching a scanned 3-D skull
model against the face photo/video shot), the forensic anthropolo-
gist can try to establish whether it is the same person. The whole
process is influenced by inherent uncertainty, mainly because two
objects of different nature (a skull and a face) are involved. In
this paper, we extend our previous evolutionary-algorithm-based
method to automatically superimpose the 3-D skull model and
the 2-D face photo with the aim to overcome the limitations that
are associated with the different sources of uncertainty, which are
present in the problem. Two different approaches to handle the
imprecision will be proposed: weighted and fuzzy-set-theory-based
landmarks. The performance of the new proposal is analyzed, con-
sidering five skull–face overlay problem instances that correspond
to three real-world cases solved by the Physical Anthropology Lab-
oratory, University of Granada, Granada, Spain. The experimental
study that is developed shows how the fuzzy-set-based approach
clearly outperforms the previous crisp solution. Finally, the pro-
posed method is validated by the comparison of its outcomes with
respect to those manually achieved by the forensic experts in nine
skull–face overlay problem instances.

Index Terms—Covariance matrix adaptation evolution strategy,
craniofacial superimposition (CS), evolutionary algorithms, foren-
sic identification, fuzzy distances, fuzzy landmarks, genetic fuzzy
systems, skull–face overlay (SFO).

I. INTRODUCTION

ONE of the most prominent disciplines in forensic medicine
is human identification. When this task is done studying

skeleton remains, we refer to the area of forensic anthropol-
ogy [1]. Over the past few decades, anthropologists have fo-
cused their attention on improving those techniques that allow a
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Fig. 1. Acquisition of a skull 3-D partial view by the use of the Konica-Minolta
laser range scanner of the Physical Anthropology Laboratory at the University
of Granada.

more accurate identification. Hence, forensic identification has
become a very active research area.

Before making a decision on the identification, there is a need
to follow different procedures that let the forensic experts as-
sign a sex, age, human group, and height to the subject from
the study of the bones that are found. Once the sample of can-
didates for identification is constrained by these preliminary
studies, a specific identification technique is applied. Among
those available in the discipline, craniofacial superimposition
(CS) [2]–[4] is a forensic process in which photographs or video
shots of a missing person are compared with the skull that is
found. By projecting both photographs on top of each other
(or, even better, matching a scanned 3-D skull model against the
face photo/series of video shots), the forensic anthropologist can
try to establish whether is it the same person. This skull–face
overlay (SFO) process is usually done by some corresponding
anthropometrical landmarks matching on the skull and the face.

The SFO is known to be one of the most time-consuming tasks
for the forensic experts [5]. (It takes up to 24 h in many real-
world situations.) In addition, there is no systematic methodol-
ogy for CS, but every expert usually applies a particular process.
Therefore, there is a strong interest in designing automatic meth-
ods to support the forensic anthropologist to put it into effect [6].

In particular, the design of computer-aided CS methods has
experienced a boom over the past 20 years [7]. The most recent
ones consider the use of laser range scanners to achieve a digital
model of the human skull that is found (see Fig. 1) by means of
a manual or automatic 3-D reconstruction procedure [8], [9], as
is the case in the current contribution.

There are other works on the area of 3-D face processing [10],
[11], which could seem to have some relation with CS. Specif-
ically, the face modeling topic, where 3-D-face-processing
methods deal with the very complex task to properly turn a 3-D
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object (the subject face) into a 2-D image. To obtain a skull 3-D
model is feasible—as well as very useful to improve the identi-
fication process—due to the availability of the physical object in
the forensic anthropology laboratory. Nevertheless, the existing
powerful methods in 3-D face modeling, such as [12], cannot be
applied on this framework since CS deals with the identification
of deceased people. Hence, it is usually difficult for the forensic
anthropologist to get significant data (i.e., photographs) under
real conditions to apply the latter techniques.

The SFO process is influenced by inherent uncertainty since
two objects of different nature are involved (a skull and a
face) [13]. In this paper, we aim to overcome most of the lim-
itations associated with the different sources of uncertainty in
the problem. In particular, the difficult task to invariantly locate
anthropometric landmarks, the precise location of cephalomet-
ric landmarks in digital photographs with a poor quality, and
the inability to locate a large set of (noncoplanar) landmarks
due to occlusions will be considered. To do so, we have incor-
porated two different approaches to handle the imprecision in
landmark location to our previous evolutionary-based SFO pro-
cedure [14]: weighted and fuzzy-set theory-based landmarks.
Specifically, fuzzy sets have largely demonstrated their capabil-
ity to deal with vagueness and imprecise information [15], and
they have been successfully hybridized with evolutionary algo-
rithms over the last two decades that results in the wide genetic
fuzzy systems research area [16].

The novel proposal is tested on five SFO problem instances
that are derived from three real-world identification cases that
are solved by the Physical Anthropology Laboratory, Univer-
sity of Granada, Granada, Spain, showing an outstanding per-
formance. The current research constitutes an innovative appli-
cation of fuzzy set theory, such as the following: 1) To the best
of our knowledge, it is the first time that it has been used for
the CS forensic identification technique, and 2) it outperforms
the existing crisp solution, which allows us to properly design
an automatic, quick, and accurate SFO procedure to support the
forensic anthropologist in the CS task.

The paper is organized as follows. In Section II, we describe
the SFO problem and our previous evolutionary-algorithm-
based method to deal with it. Then, we study, in detail, the
sources of uncertainty that is associated with the SFO task in
Sections III-A and B, and introduce our proposal to deal with
them in Section III-C. In Section IV, we test the new proposal
on five problem instances, benchmarking it with the previous
crisp-based one under the supervision of the forensic experts.
Then, in Section V, we validate our fuzzy-evolutionary-based
approach against forensic anthropologist performance in nine
SFO problem instances. Finally, we present some concluding
remarks and future work in Section VI.

II. SKULL–FACE OVERLAY IN

CRANIOFACIAL SUPERIMPOSITION

The success of the SFO process requires to position the skull
in the same pose of the face as seen in the given photograph. The
orientation process is a very challenging and time-consuming
part of the CS technique [5].

Fig. 2. Main craniometric landmarks: lateral (left) and frontal (right) views.

Fig. 3. Main facial landmarks: lateral (left) and frontal (right) views.

Most of the existing SFO methods are guided by a number
of anthropometrical landmarks that are located in both the skull
and the photograph of the missing person (see Figs. 2 and 3,
respectively). The selected landmarks are placed in those parts,
where the thickness of the soft tissue is small. The goal is to ease
their location when the anthropologist must deal with changes
in age, weight, and facial expressions.

Once these landmarks are available, the SFO procedure is
based on searching for the skull orientation leading to the best
matching of the two sets of landmarks.

In view of the task to be performed, the relation of the desired
procedure with the image registration (IR) problem in computer
vision [17] can be clearly identified. Following a 3-D–2-D IR
approach, we aim to properly align the 3-D skull model and
the 2-D face photograph in a common coordinate frame. The
required perspective transformation that is to be applied on the
skull was modeled in [14] as a set of geometric operations
involving 12 parameters/unknowns, which are encoded in a real-
coded vector to represent a superimposition solution.

Formally, the SFO can be formulated as follows. Given two
sets of 2-D facial and 3-D cranial landmarks F and C, respec-
tively, both comprising N landmarks:

F =

⎡
⎢⎢⎣

xf1 yf1 1 1
xf2 yf2 1 1

...
...

...
...

xfN
yfN

1 1

⎤
⎥⎥⎦ , C =

⎡
⎢⎢⎣

xc1 yc1 zc1 1
xc2 yc2 zc2 1

...
...

...
...

xcN
ycN

zcN
1

⎤
⎥⎥⎦

the overlay procedure aims to solve the following system of
equations with the following 12 unknowns: a rotation repre-
sented by an axis (dx, dy , dz ) and angle θ, a center of mass
(rx, ry , rz ), a translation vector (tx , ty , tz ), a uniform scaling
s, and a 3-D–2-D projection function that is given by a field
of view φ. These 12 parameters determine the geometric trans-
formation f , which projects every cranial landmark cli in the
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skull 3-D model onto its corresponding facial landmark fli in
the photograph as follows:

F = f(C) = C · (A ·D1 ·D2 ·Rθ ·D−1
2 ·D−1

1 ·A−1) ·S ·T ·P
(1)

where R = (A ·D1 ·D2 ·Rθ ·D−1
2 ·D−1

1 ·A−1) represents a ro-
tation matrix to orient the skull in the same pose of the photo-
graph. Such a rotation involves a number of geometric transfor-
mations (A ·D1 ·D2 ·Rθ ) that aim to do the following.

1) Translate the skull to align the origin of coordinates with
the rotation axis A.

2) Reorient the skull so that the rotation axis coincides with
one of the Cartesian axes D1 and D2 .

3) Perform the rotation given by Rθ .
4) Use the inverse rotation matrices in reverse order in order

to leave the rotation axis in its original orientation, i.e.,
D−1

2 , D−1
1 , and A−1 .

5) Apply the inverse translation matrix to leave the rotated
skull in its original location.

S, T , and P are uniform scaling, translation, and perspective
projection matrices, respectively. See [18] for a detailed descrip-
tion of the matrices in (1) and their relation with the 12 unknowns
of the problem, as well as see [14] for a deeper explanation.

Different definitions of the fitness function were studied, and
the one that achieves the best results was the mean error ME1

ME =
∑N

i=1 ‖f(cli) − fli‖
N

(2)

where ‖ ·‖ is the 2-D Euclidean distance, N is the number of
considered landmarks (provided by the forensic experts), cli

corresponds to every 3-D craniometric landmark, fli refers to
every 2-D facial landmark, f is the function that defines the
geometric 3-D–2-D projective transformation, and f(cli) rep-
resents the projected skull 3-D landmark cli in the image/photo
plane.

Solving the SFO problem in the latter fashion results in a re-
ally complex optimization task, with a highly multimodal land-
scape, and forensic experts demand very robust and accurate
results. This complex landscape led us to tackle the problem
considering robust evolutionary algorithms to search for the op-
timal values of the 12 registration transformation parameters.
In [14], CMA-ES [19] and different real-coded genetic algo-
rithms [20] were applied, achieving very promising results in
some problem instances in a short run time.

III. ANALYSIS OF THE SKULL–FACE OVERLAY UNCERTAINTY

AND ITS MODELING USING FUZZY SETS

The whole CS process is influenced by the uncertainty. In
particular, the SFO is affected by two sources of uncertainty of
different nature. On the one hand, there is an inherent uncertainty
that is associated with the two different kinds of objects that are
involved in the process, i.e., a skull and a face. On the other hand,
there is also an uncertainty that is associated with the 3-D–2-D
overlay process that tries to superimpose a 3-D model over a

1The mean-square error is not used because of its negative effect when image
ranges are normalized in [0, [1].

Fig. 4. Correspondences between facial and craniometric landmarks: lateral
(left) and frontal (right) views.

2-D image. In Sections III-A and B, both sources of uncertainty
are studied in detail. Finally, in Section III-C, two imprecise
approaches are presented to overcome most of the limitations
that are associated with the latter sources of uncertainty.

A. Uncertainty Inherently Associated With
the Objects Under Study

We have identified two inherent sources of uncertainty re-
garding the handled objects (i.e., a skull and a face) and their
relationship. On the one hand, the landmark location uncertainty
is related to the extremely difficult task to locate the points in an
invariable place since the definition of any anthropometric land-
mark is imprecise in its own. As an example, the Ectocanthion
is defined as the point at the outer commissure of the palpebral
fissure just medial to the malar tubercle to which the lateral
palpebral ligaments are attached. Indeed, every forensic anthro-
pologist is prone to locate the landmarks in a slightly different
position [21], regardless of the means that are used to represent
the involved objects (a skull and a face), i.e., 3-D model, 2-D
photo, video shot, etc. The left images of Fig. 5 show some
examples of this situation.

On the other hand, the landmark matching uncertainty refers
to the imprecision that is involved in the matching of two sets of
landmarks corresponding to two different objects: a face and a
skull. As shown in Fig. 4, there is a clear partial matching situa-
tion. The correspondence between facial and cranial anthropo-
metric landmarks is not always symmetrical and perpendicular;
some landmarks are located in a higher position in the alive per-
son face than in the skull, and some others do not have a directly
related landmark in the other set [3]. Besides, the facial soft tis-
sue depth varies for each cephalometric landmark, as well as for
different person groups (based on age, race, and gender). Many
works have been done in order to study distances between each
pair of anthropometric landmarks for different groups of study.
See [22] and [23] for a deep review. In addition, in the case of
SFO, considerations of how these distances are affected by the
pose of the face in the image have to be taken into account as
well.
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B. Uncertainty Associated With the 3-D-Skull-Model–2-D-
Face-Photo Overlay Process

The uncertainty associated with the 3-D-skull–2-D-face over-
lay is not inherent to the object themselves but to our approach,
where we try to overlay a 3-D model and a 2-D image. As done in
Section III-A, we can also distinguish between landmark match-
ing and landmark location uncertainty. However, the nature of
these two sources of uncertainty is different in the current case.

On the one hand, the landmark location uncertainty refers to
the difficulty to locate landmarks with the accuracy required for
the automatic overlay of a 3-D skull model and a 2-D face photo.
The ambiguity may arise from reasons such as variation in shade
distribution depending on light condition during photographing,
unsuitable camera focusing, poor image quality, face pose in the
photograph, partial or whole landmark occlusion, etc.

Of course, the location uncertainty may affect any of the
landmarks involved in the SFO process, regardless if they be-
long to the face photograph or the skull model. Nevertheless,
it has a stronger influence on the cephalometric (i.e., facial)
ones because of the typical high resolution of the 3-D skull
models carrying the craniometric landmarks. In addition, 3-D
models do not suffer from occlusions which are originated by
the projection as 2-D photographs do.

Forensic experts are prone to locate only those landmarks,
which can be unquestionably identified in the skull and in the
face. Different reasons, such as the pose of the missing per-
son, the quality of the image, or partial occlusions of landmark
regions, make this task especially difficult for the case of the
face photographs. Therefore, forensic anthropologists are usu-
ally only able to locate a reduced set of all the available cephalo-
metric landmarks.

On the other hand, the matching uncertainty refers to the nega-
tive influence of a small number of landmarks with an unsuitable
spatial distribution in the quality of the SFO results. This effect
happens when the landmarks guiding the optimization method
are coplanar or near-coplanar.

Landmark coplanarity is a common problem in many 3-D–
2-D overlay processes in computer vision. In particular, in our
3-D-skull–2-D-face overlay procedure, it becomes a very usual
situation for two main reasons: 1) Most of the facial landmarks
are located in the same plane (see the profile image in Fig. 3), and
2) forensic experts usually prefer those case studies in which the
pose of the face is frontal or near-frontal because they can both
analyze the symmetries of the face easily and select a higher
number of landmarks. Hence, the forensic anthropologists can
unquestionably identify landmarks in the face photo that are
likely to be coplanar, while the remaining usually unidentified
landmarks are those located in different planes.

This landmark coplanarity makes the equation system (the
objective function of the IR procedure) undetermined (or near-
undetermined), i.e., there is an uncertainty (there is not enough
information or it is imprecise) regarding which of the possible
solutions is the best. As a consequence, it is not possible to
numerically distinguish among the different resulting (after a
search process) sets of projection parameters, which originate
different SFO results.

Fig. 5. Examples of precise landmark location (each red spot) by different
forensic anthropologists (left) and imprecise ones (right). Labiale superius (up-
per images) and right Ectocanthion (lower images) landmarks.

In [24], we experimentally demonstrated the strong negative
impact of coplanar landmarks in the quality of the SFO results
that are derived by our automatic procedure. Having a reason-
able number of anthropometrical landmarks that are located in
different planes becomes a real need for the good performance
of the method.

C. Imprecise Approach to Jointly Tackle Landmark Location
and Coplanarity in Automatic Skull–Face Overlay

In this section, we will propose a framework and two different
models to deal with the analyzed SFO uncertainty sources. Our
approach will be based on to allow the forensic anthropologist to
perform an imprecise location of cephalometric landmarks. By
the usage of imprecise landmarks, (s)he can locate the landmark
as a region instead of as a crisp point as usual. The size of
the region that is defined by the forensic expert will become a
measure of the landmark uncertainty (the broader the region is,
the higher the uncertainty is in the location of that landmark). Of
course, (s)he can both define crisp and imprecise cephalometric
landmarks in a face photo, thus keeping the chance to properly
locate the unquestionably identified ones.

Notice that, by marking landmarks in an imprecise way, we
will manage to solve the problems that are related to three
of the four uncertainty sources that are analyzed at the same
time. First, the inherent uncertainty of the landmark location
in the missing person photograph (see the first part of Sec-
tion III-A) can be properly tackled, as shown in Fig. 5. The
same way, the forensic experts would be able to deal with the
location of landmarks whose position cannot be determined ac-
curately due to the photograph conditions (see the first part of
Section III-B) with the proper level of confidence (using im-
precise regions of different sizes). As a consequence, we will
allow them to increase the number of selected landmarks. As
explained, those additional landmarks are essential to the copla-
narity problem in the automatic deal with search of the best
SFO (see the second part of Section III-B). Only the landmark
matching uncertainty (see the second part of Section III-A)
will be left for future works.
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Fig. 6. Example of weighted landmarks.

The imprecise landmark location approach is implemented
through two alternative models of imprecise landmarks:
weighted and fuzzy ones. The following is devoted to intro-
duce them.

1) Weighted Landmarks: Based on the work by Sinha [25],
we consider modeling the cephalometric landmarks as rectan-
gular zones. We will refer to these rectangular zones as weighted
landmarks because they contribute to the optimization process
depending on their size.2 Every weighted landmark is given by
a rectangular array of pixels defined by diagonally opposite cor-
ners (x1 , y1) and (x2 , y2) (say x2 > x1 and y2 > y1). Hence, a
bigger rectangle means a higher uncertainty associated with the
landmark (see Fig. 6).

Sinha introduced the latter concept to provide more robust-
ness and tolerance to a neural network that is designed to match
2-D facial images. In that work, crisp points were substituted
by rectangles to avoid human error due to image ambiguity.
Each rectangular landmark was then temporarily “defuzzied”
by taking the centroid as a crisp target feature. Those crisp fea-
tures were used to learn the preliminary weights of the neural
network. Then, there was a later stage, where the rectangle land-
marks were adapted (reduced), considering the neural-network
responses.

In contrast to Sinha’s work, we will consider these rectangu-
lar zones to allow the forensic anthropologist to locate the facial
landmarks in an imprecise way, and we will not adapt their
size during the optimization stage. Hence, they will be inter-
nally used by our evolutionary-algorithm-based SFO procedure
to avoid local minima by prioritizing some landmarks (more
precisely located) rather than others (imprecisely located). Pro-
ceeding that way, we establish an order of importance between
the different landmarks that are selected by the forensic expert.
While those showing a lower uncertainty have a higher influence
to guide the search, those which are less precisely located are
also considered, although to a lower degree. Therefore, we have
modified the previous definition of the fitness function [see (2)]
as follows:

WeightedME =
∑N

i=1

√
[ui(x′

cli
− xf li )]2 + [vi(y′

cli
− yf li )]2

N
(3)

where x′
cli and y′

cli are, respectively, the coordinates of the
transformed 3-D craniometric landmark cli in the projection
plane; xf li and yf li are the coordinates of the centroid of the
weighted landmark of every 2-D cephalometric landmark; and
N is the number of considered landmarks. The terms ui and

2Despite Sinha naming them fuzzy landmarks, we found that terminology
incorrect since they are not based on fuzzy set theory at all.

vi are used to represent the uncertainty around each landmark.
Their value depends on the size of the rectangular zone, such
that [25]

ui =
1

1 + |x2 − x1 |
, vi =

1
1 + |y2 − y1 |

.

In this formulation, (x2 − x1) and (y2 − y1) are, respectively,
the measures of X- and Y-axis uncertainty. According to it, when
the rectangle that define the weighted landmark is bigger (i.e., it
shows a lower value of ui and/or vi), the corresponding weight
in the fitness function (i.e., the landmark influence to guide
the search) will be lower. Thus, a more imprecise location of a
landmark implies a less important landmark for the optimization
procedure, as desired.

2) Fuzzy Landmarks: We think that the weighted landmarks
approach is a too simple way to represent the uncertainty under-
lying the SFO since all the possible crisp points in the rectangle
are equally likely to be the actual location of the landmark,
which is not so realistic. Besides, in the weighted approach,
the Euclidean distances between craniometric and cephalomet-
ric landmarks are computed by the use of the centroid of the
rectangles that are associated with the latter ones. Thus, once
the centroids of the imprecise cephalometric landmarks are con-
sidered, the problem of computing distances between a set of
imprecise landmarks and a set of crisp ones becomes the prob-
lem of measuring a set of Euclidean distances between different
pairs of crisp landmarks.

In summary, this first approach to model the location uncer-
tainty does not take into account the inherent uncertainty that
is involved when we are measuring distances between impre-
cise and crisp points. In this section, we will introduce a new
imprecise landmark approach, which will tackle better the real
conditions of our work environment. It is based on allowing the
forensic experts to locate the cephalometric landmarks using
ellipses and on considering fuzzy sets to model the uncertainty
that is related to them. Besides, we will also consider fuzzy dis-
tances to model the distance between each pair of craniometric
and cephalometric landmarks.

Following the idea of fuzzy plane geometry in [26] and of
metric spaces in [27], we will define a fuzzy landmark as a fuzzy
convex set of points having a nonempty core and a bounded sup-
port. That is, all its α-levels are nonempty bounded and convex
sets. In our case, since we are dealing with 2-D photographs
with an x × y resolution, we can define the fuzzy landmarks as
2-D masks that are represented as a matrix M with mx × my

points (i.e., a discrete fuzzy set of pixels). Each fuzzy landmark
will have a different size, depending on the imprecision on its
localization, but at least one pixel (i.e., crisp point that is related
to a matrix cell) will have membership with degree 1.

These masks are easily built starting from two triangular fuzzy
sets Ṽ and H̃ . They model the approximate vertical and hor-
izontal position of the ellipse representing the location of the
landmark. Thus, they become 2-D fuzzy sets, where each trian-
gular fuzzy set Ã is defined by its center c and its offsets l and
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Fig. 7. Example of fuzzy location of cephalometric landmarks (left) and rep-
resentation of an imprecise landmark using fuzzy sets (right).

r as follows:

Ã(x) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 − |x − c|
c − l

, if l ≤ x ≤ c

1 − |x − c|
r − c

, if c < x ≤ r

0, otherwise

and the membership functions of the fuzzy landmarks F̃ are
calculated using the product t-norm by

μ
F̃

(i, j) = μ
Ṽ

(i) ·μ
H̃

(j).

An example of these fuzzy cephalometric landmarks is given
in Fig. 7, where the corresponding membership values of the
pixels of one of those landmarks are depicted on the right.

Now, we can calculate the distance between a point (which
will be the pixel that constitutes the projection of a 3-D cranio-
metric landmark on the 2-D face photo) and a fuzzy landmark
(the discrete fuzzy set of pixels that represent the imprecise
position of the cephalometric landmark). To facilitate the com-
prehension of our fuzzy distance formulation to the reader, we
will first review some required basic concepts from classical and
fuzzy sets theory [15] as follows:

Distance between a point and a set of points: Given a point x
of R

n and a nonempty subset A of R
n , we can define a distance

d : R
n × P(Rn ) → R

+ by

d(x,A) = inf{‖x − a‖; a ∈ A}

for a certain norm ‖.‖ on R
n . Thus, d(x,A) ≥ 0, and d(x,A) =

0 ⇒ x ∈ A.
Distance between a point and a fuzzy set of points: Now, we

can define the distance between a point x of R
n an a fuzzy set

of points Ã : R
n → [0, 1] by

d∗(x, Ã) =
∫ 1

0
d(x, Ãα )dα

Fig. 8. Distance between a crisp point and a fuzzy point.

where Ãα is the α-level set (α-cut) of Ã, α ∈ [0, 1].
Lemma 3.1: The distance from the point x to the fuzzy set Ã

is lesser or equal to the distance to the core of Ã and greater or
equal to the distance to the support of Ã0 . That is

d(x, Ã1) ≤ d∗(x, Ã) ≤ d(x, Ã0).

The proof is straightforward.
If we denote the distance from point x to the α-level set F̃αi

as di = d(x, F̃αi
), then the distance from the point to the fuzzy

landmark F̃ can be expressed by

d∗(x, F̃ ) =
∑m

i=1 di ·αi∑m
i=1 αi

.

In the example of Fig. 8, taking {α1 = 0.1, α2 = 0.3, α3 =
0.5, α4 = 0.7, α5 = 1} and assuming {d1 = 4.5, d2 = 5.4,
d3 = 6.3, d4 = 7.3, d5 = 9}, we calculate the distance as

d∗(x, F̃ ) =
d1 ·α1 + · · · + d5 ·α5

α1 + · · · + α5
=

19.33
2.6

= 7.43.

Note that the implemented distance between a point and a fuzzy
set of points is quite similar to that defined in [28]. In fact, it
has been already used in other image-processing applications
in [29].

Therefore, we have modified the previous definition of our
evolutionary-algorithm-based SFO technique’s fitness function
as follows:

fuzzy ME =
∑N

i=1 d∗(f(cli), F̃ i)
N

(4)

where N is the number of considered landmarks; cli corre-
sponds to every 3-D craniometric landmark; f is the function
that defines the geometric 3-D–2-D transformation; f(cli) rep-
resents the position of the transformed skull 3-D landmark cli in
the projection plane, that is to say, a crisp point; F̃ i represents
the fuzzy set of points of each 2-D cephalometric landmark;
and finally, d∗(f(Ci), F̃ i) is the distance between a point and a
fuzzy set of points.

IV. EXPERIMENTS

Our experimental study will involve five different SFO prob-
lem instances corresponding to three real-world cases previously
addressed by the staff of the Physical Anthropology Laboratory
in collaboration with the Spanish Scientific Police. They were
selected as the most representative among the available cases of
the study due to their specific characteristics: poor quality face
photograph and/or coplanar/nearcoplanar-corresponding land-
mark sets.
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All those identification cases were positively solved following
a computer-supported but manual approach for the SFO. We will
consider the available 2-D photographs of the missing people
and their respective 3-D skull models that are acquired at the
laboratory by the use of its Konica-Minolta 3-D Laserscanner
VI-910.

The experiments that are developed in this section are devoted
to study the performance of the proposed approaches to model
the imprecise location of cephalometric landmarks within our
SFO method in comparison with the classical crisp location
method. With this aim, we first show the considered parameter
setting. Then, we introduce each of the five selected real-world
SFO problems to be tackled together with the obtained results
and their analysis.

A. Experimental Design

For all the experiments, we used CMA-ES3 as the evolution-
ary algorithm in the SFO procedure [14] that is guided by the
corresponding objective functions, (2) for crisp landmarks, (3)
for weighted landmarks, and (4) for fuzzy ones. Thirty indepen-
dent runs were performed for each case with the following set
of parameters:

initial θ (mutation distribution variance) = 0.1

λ (population size, offspring number) = 100

μ (number of parents/points for recombination) = 15.

Each run involves the development of 500 000 evaluations.
The restart operator [30], which does not increase the population
size, is used every 25 000 evaluations to avoid the convergence
of the algorithm to local minima. The rest of the parameters are
the default ones, which are reported in [31].

Two different types of landmark sets were provided by the
forensic experts for each available subject photograph in each
case study. The first type is the one that is classically used in
the manual overlay process, i.e., those the forensic anthropolo-
gist is able to precisely locate in a unquestionable single pixel.
We named them crisp landmarks. The second one is a set of
imprecise landmarks, that is to say, a region for each landmark,
where the precise location of the landmark is to be contained.
As said, in this second set, the forensic expert could place more
landmarks than in the other, due to the possibility of drawing
bigger (in size) square- or ellipse-shaped areas of different sizes
that are associated with weighted regions or fuzzy sets of points.

We compare the results of the CMA-ES-based SFO method
by the use of a crisp set of landmarks with those reached
by the use of imprecise locations of cephalometric landmarks
(weighted and fuzzy landmarks). In order to perform a signif-
icant and fair comparison between the crisp and the imprecise
approaches, we considered the following experimental design
concerning the number of landmarks: Two different sets of each
kind of imprecise landmarks (weighted and fuzzy) are used, one

3An experimental study using different evolutionary approaches to solve the
SFO problem was carried out in [14], where CMA-ES is demonstrated to be the
most accurate and robust approach. Hence, that study is out of the scope of the
current contribution.

Fig. 9. Example of the ADE procedure. From left to right, original photographs
(top) and projected skull (bottom), intermediate images with the head boundary
(top) and binary skull (bottom), and final XOR image (rightmost) with the
corresponding ADE value below the image.

with the same cardinal number (and, of course, the same specific
landmarks) as the crisp set and another that includes the addi-
tional landmarks identified thanks to the use of the imprecise
location approach.

We should note that, as in any SFO process, the evaluation of
the quality of the outcomes that are obtained by each considered
approach involves a subjective task. To do so, an experienced
forensic anthropologist must analyze the obtained skull–face
superimpositions to determine their accuracy from a qualitative
viewpoint. For this assessment, we collaborate with the foren-
sic experts from the Physical Anthropology Laboratory, which
originally solved the tackled cases.

Nevertheless, we would also like to have a quantitative mea-
sure allowing us to benchmark the achieved outcomes. Unfor-
tunately, the ME values that are obtained by each approach are
not significant to perform a comparison because of the different
objective functions that are to be minimized and the different
number of landmarks to be considered. Besides, if we analyze
the results that are presented in Table II (see Section IV-E)
and the visual representations of the corresponding SFOs that
are collected in Figs. 11, 13, and 15, then using an imprecise
landmark set can lead to a higher ME value, even when the
final overlay shows to be more accurate for the forensic ex-
pert. Despite that, we will report the ME numerical results as
complementary information.

Because of the latter reasons, we adopted an alternative,
specifically designed image-processing scheme to evaluate the
performance of every SFO approach. First, the forensic experts
approximately extracted the head boundary of the missing per-
son in the photograph. (They did so for all the cases of the study.)
Next, we obtained a binary image of both the head boundary
and the projected skull. Then, the XOR logic operator was ap-
plied considering both images. Finally, the error was computed
as a percentage of the head boundary that is not covered by
the area of the projected skull. Fig. 9 shows an example of the
application of this evaluation procedure, which is named “area
deviation error (ADE).” Notice that this quantitative measure is
so generic that can help in other forensic identification studies
by CS, as will be shown in Section V.

In our opinion, this is definitely a more appropriate error
estimator for the SFO problem since it is more in concordance
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Fig. 10. Case study 1: photograph of the missing person with two different
sets of 7 crisp (left) and 15 fuzzy (right) landmarks.

Fig. 11. Case study 1. Best SFO results. In the first row, from left to right,
results by the use of seven crisp, seven weighted, and seven fuzzy landmarks.
In the second row, from left to right, results by the use of 15 weighted and 15
fuzzy landmarks.

with the visual results that are achieved than the ME. Even so,
it fails to measure how inner parts of the skull (set of teeth, eye
cavity, and so on) fit to the corresponding ones in the face. In
addition, it is based on an imprecise extraction of the boundary
of the head since it is done by the use of the provided missing
people face photographs, where, in most of the cases, there is
hair occluding in some parts of the head boundary. Nevertheless,
regardless the latter drawbacks, it can successfully provide us
with a fair numerical index to compare the obtained SFOs in
an objective way, which properly complements the qualitative
forensic anthropologists’ assessment.

B. Case Study 1

The first case of the study happened in Málaga, Spain. The
facial photograph of this missing lady was provided by the
family and the final identification done by CS has been con-
firmed. The forensic experts manually selected a set of seven
2-D cephalometric landmarks on the face that is present in the
photo, following a crisp approach, and 15 weighted and fuzzy
landmarks, following an imprecise approach (see Fig. 10).

Regarding visual results, Fig. 11 presents the best SFO re-
sults corresponding to the crisp, the weighted, and the fuzzy
approaches to allow for a visual comparison. The fact that the

overlays that are achieved are much more accurate when using a
larger number of imprecise landmarks can be clearly identified.
Between the two imprecise location approaches, the fuzzy one
achieves the best overlay, as confirmed by the forensic anthro-
pologists and as can be clearly recognized even by a nonexpert
reader.

These conclusions regarding the SFO visual results are also
supported by the ADE, which are presented in Table I. The
best results were achieved following an imprecise location ap-
proach with the larger number of landmarks (15), using either
fuzzy landmarks (13.32%) or weighted ones (15.32%). They
both clearly outperform the results that are achieved by the use
of a crisp set of landmarks (58.18%). Notice that, considering
the same number of landmarks (7), there is also an improvement
when they are imprecise (35.30% and 37.53% for weighted and
fuzzy landmarks, respectively). Both the usual visual results
and these ADE differences directly justify the need of an im-
precise location because of the inherent imprecise definition of
the anthropometric landmarks. They clearly show the perfor-
mance advantage of the usage of the imprecise landmarks and,
especially, the fuzzy ones.

C. Case Study 2

The second real-world case that is considered corresponds to
a Moroccan woman whose corpse was found in the South of
Spain. There is a single available photograph that corresponds
to that one in the alleged passport. Notice that passport pho-
tographs usually include an undulating watermark that makes
the accurate location of cephalometric landmarks even more
difficult. Therefore, the use of imprecise landmarks can help
the forensic expert in the recognition of a higher number of
facial reference points in this low-quality photograph. In par-
ticular, the selection of noncoplanar landmarks is, thus, eased.
In this case of the study, the forensic experts identified six and
16 cephalometric landmarks following a crisp and a imprecise
approach, respectively (see Fig. 12).

In Fig. 13, it can be clearly seen how the two overlays that
are associated with the two imprecise approaches with the large
landmark sets show the best quality, with the fuzzy approach be-
ing slightly better. The ADE values given in Table I corroborate
the best performance of the imprecise location approach (and,
specifically, of the fuzzy one) in comparison with the precise
one, achieving much better values (11.92% against 32.63%).

D. Case Study 3

The third case of the study happened in Cádiz, Spain. The
three different photographs that are shown in Fig. 14 are avail-
able. They were provided by the relatives, which acquired them
at different moments and in different poses and conditions.
Hence, this case study consists of three distinct SFO problem
instances. Notice that these three images have a frontal or near-
frontal pose of the face, and/or the corresponding craniometric
set of landmarks are coplanar or near-coplanar.

The forensic experts were able to locate nine, 11, and 12
landmarks following a crisp (precise) approach and 14, 16, and
15 using imprecise landmarks for poses 1, 2, and 3, respectively
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TABLE I
AREA-DEVIATION-ERROR VALUES IN THE BEST SKULL–FACE OVERLAY ESTIMATIONS OF EVERY APPROACH

Fig. 12. Case study 2: photograph of the missing person with two different
sets of six crisp (left) and 16 fuzzy (right) landmarks.

Fig. 13. Case study 2. Best SFO results. In the first row, from left to right,
results by the use of six crisp, six weighted, and six fuzzy landmarks. In the
second row, from left to right, results by the use of 16 weighted and 16 fuzzy
landmarks.

(see Fig. 14). As in the other cases, these additional landmarks
will play an essential role in order to tackle the coplanarity prob-
lem. A clear example is the landmark on the top of the head,
named vertex, which is never used by the forensic anthropolo-
gists because it is normally occluded by hair (and, thus, they are
not able to precisely locate it), although it is very useful for the
automatic overlay process since it lies in a complete different
plane.

The following is devoted to present and analyze the experi-
mental results that are obtained for each of the three cases.

1) Pose 1: The SFO results (see Fig. 15, left column) show
again the best performance that is achieved when an imprecise
location approach is followed. By the use of the large imprecise
landmark sets, the obtained overlays are more accurate, espe-
cially in the fuzzy approach, as confirmed by the forensic an-

Fig. 14. Case study 3 (left to right): photographs of the missing person cor-
responding to poses 1, 2, and 3. Pictures in the top row show the used crisp
landmarks sets, which are composed of nine, 11, and 12 crisp landmarks, re-
spectively. Pictures in the bottom row show the used imprecise landmarks sets,
which are composed of 14, 16, and 15 landmarks, respectively.

thropologists. In Table I, the ADE values for all the approaches
corroborating the latter two conclusions are given. The best
performance (27.97%) is again achieved by the use of fuzzy
landmarks.

2) Pose 2: Once again, the bad performance that is obtained
by the use of a small set of crisp landmarks is easily identi-
fied, with ADE values that range from 41.54% to 42.84% (see
Table I). These values are clearly outperformed when an im-
precise location approach is properly followed (21.27% and
27.88%), as seen in the corresponding overlays’ quality (see
Fig. 15, center column).

3) Pose 3: As in the previous cases, the overlays that are
achieved (see Fig. 15, right column) are much more accurate
when using the large imprecise landmark sets. Among the im-
precise location approaches, the fuzzy one achieves the best
overlay one more time. These conclusions are also supported
by the ADE values, which are presented in Table I. The best
results were achieved following an imprecise location approach
with the large number of landmarks (15), using fuzzy landmarks
(18.94%) or weighted ones (23.82%). They both clearly outper-
form the results achieved by the use of a crisp set of landmarks
(53.85%). Notice that the consideration of the same number of
landmarks, even of an imprecise nature, is not enough to derive
a good performance due to the coplanarity problem.
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Fig. 15. Case study 3. In columns 1–3, best SFO results that correspond to
poses 1, 2, and 3, respectively, are shown. In the first row, results by the use
a crisp set of landmarks (nine, 11, and 12 landmarks, respectively) are shown.
In the second and third rows, results by the use of the same set of landmarks
but following a weighted and a fuzzy approach, respectively, are shown. In the
fourth row, results by the use of a larger set of weighted landmarks (14, 16, and
15 landmarks, respectively) are shown. In the fifth row, results by the use of the
latter set of landmarks but considering a fuzzy approach are shown.

E. Mean-Error Analysis

Table II presents the ME values for the obtained SFOs in
the previous five cases, distinguishing between crisp, weighted,
and fuzzy locations. The minimum (m), maximum (M), mean
(�), and standard deviation (σ) values of the 30 runs that are
performed are shown for each case. We should recall that results
are not fully comparable since the overlay processes by the use
of weighted and fuzzy landmarks do not minimize the ME but
a different function [see (3) and (4)].

Conclusions are quite similar for all the cases. As was ex-
pected, ME values are higher when more landmarks are taken

TABLE II
SKULL–FACE-OVERLAY RESULTS OF CASE STUDIES 1, 2, AND 3

CORRESPONDING TO POSES 1, 2, AND 3

into account (imprecise location) since we are minimizing dis-
tances among a bigger number of corresponding landmarks but
calculating the ME over the same smaller set of landmarks.

Finally, from the observation of the resulting mean (in gen-
eral, quite similar to the minimum value) and standard deviation
values (close to 0 for all the cases), corresponding to 30 different
runs, the strong robustness of the method is demonstrated.

V. GLOBAL VALIDATION

Once we have presented our proposal and analyzed its per-
formance, we will validate its applicability for daily work on a
forensic anthropology laboratory. Since we are dealing with a
real-world application, we aim to compare our results with those
manually achieved by the forensic experts in a time-consuming
trial-and-error SFO procedure. This study comprises the previ-
ous five SFO problems in Section IV and four new SFO prob-
lems that correspond to a new pose of case study 3, and two
additional real identification cases of two missing persons in
Granada: case study 4 (one photograph) and case study 5 (two
photographs).

On the one hand, Fig. 16 depicts the best manual outcomes
that are achieved by the forensic experts of the Physical Anthro-
pology Laboratory, as well as the corresponding best superim-
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Fig. 16. Best superimposition that is obtained by the forensic experts (first row) and the manual ones that are achieved by our automatic fuzzy-evolutionary
method (second row). From left to right, case studies 1, 2, and 3 (poses 1–3).

Fig. 17. Face photographs of the missing people (first column), together with
the manual superimposition that is obtained by the forensic experts (second
column) and the best ones that are achieved by our automatic fuzzy-evolutionary
method (third column). From top to bottom. Case studies 3 (pose 4), 4, and 5
(pose 1 and 2).

positions that are achieved by our automatic fuzzy-evolutionary
method for the already seen SFO problems. On the other hand,
Fig. 17 consists of three columns: the first one presents the pho-
tographs of the missing persons of the four new SFO problems,
the second one depicts the best manual outcomes that are per-

formed by the forensic experts, and the third one shows the best
overlays that are achieved by our automatic method. Our com-
parison will rely on two different evaluation procedures: a visual
analysis (which is developed by the forensic anthropologists)
and a numerical analysis (which is based on the ADE).

Regarding the visual assessment, our approach generally
achieves a better fit of the top of the head. When we provided
the forensic experts with our superimpositions, they recognized
the defects of their own overlays, which were due to the limita-
tions of the commercial software that is used to project the 3-D
skull into a 2-D image. Instead, our method properly models the
perspective transformation.

The group of photographs with a lateral pose [case studies 1
and 3 (poses 2 and 3), and 5 (pose 1)] represents a particularly
difficult set of SFO problems for the forensic anthropologists.
They had to deal with significant perspective deformations caus-
ing a lower confidence on the extracted landmarks (as already
mentioned in Section III). In general, they were able to fit the
frontal axis (see the proper alignment of the jaw and the eye
caves). Nevertheless, the skulls are clearly downsized, and they
do not match the top and lateral parts of the face properly. This
is again a consequence of the shortcomings of the commer-
cial software that is used. Therefore, experts made a positive
identification decision for those cases based on just the frontal
poses.

On the contrary, our approach performs better in this kind of
scenarios. Not only the frontal axis but also the outer parts of
the face (the forehead and the right or left cheek) are properly
overlayed, thanks to the said better handling of the perspective
projection that is provided by our automatic method. Actually,
the forensic experts were positively impressed by the quality of
those superimpositions.

Finally, the automatic overlays in case studies 3 (pose 2) and
5 (pose 2) (see Figs. 16 and 17, respectively) demonstrate some
difficulties of the fuzzy-evolutionary-based SFO method when
dealing with some frontal images. Automatic results are worse
on both sides of the face since the projected skull is too narrow.
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TABLE III
AREA DEVIATION ERROR OF THE BEST SKULL–FACE OVERLAYS MANUALLY OBTAINED BY THE FORENSIC EXPERTS AND THE AUTOMATIC

ONES ACHIEVED BY OUR AUTOMATIC FUZZY-EVOLUTIONARY METHOD

We think that these problems can be solved once the matching
uncertainty is considered. Nevertheless, the superimpositions
that are achieved by the forensic experts in these complex prob-
lems also need important improvements. They fit the chin better
than the automatic method, but they are not able to properly
match both sides of the jaw. In addition, they have problems
with the perspective again to properly project the skull in the
area covered by hair.

On the other hand, in Table III, the ADE values for all the
considered case studies are given, distinguishing between the
overlays that are manually achieved by the forensic experts
and those that are automatically obtained by the use of our
fuzzy-evolutionary-based approach. The first issue that the re-
sults show up is the lower ADE values of the automatic approach
for all the case studies. Moreover, most of the these values are
approximately half of the corresponding manual ones. In addi-
tion, they are really small, i.e., usually below 20%, and some of
them are especially good, like those in case studies 2 (11.96%)
and 4 (4.73%). All these errors are closely related with the visual
assessments that are shown in Figs. 16 and 17.

As said, the ADE provides a measure of the SFO quality
focused on the outer skull contour. Therefore, we can conclude
that manual overlays are worse according to this characteristic.

In summary, in view of both the visual inspection and the
ADE values of the obtained overlays, our automatic fuzzy-
evolutionary method is competitive with the manual results by
the forensic anthropologists.

VI. CONCLUDING REMARKS AND FUTURE WORKS

In this paper, we have identified and studied the sources of
uncertainty that are related with the SFO process and procedure
used in forensic identification by CS. We have distinguished
between the uncertainty inherent to the objects under study and
that associated with the overlay process.

Two different approaches, weighted and fuzzy landmarks,
have been proposed to deal jointly with the imprecise landmark
location and the coplanarity problem. Summarizing the results,
it is clear that a larger number of imprecise landmarks results
in more accurate overlays. Hence, the imprecise location of
landmarks is a promising approach to improve the performance
of any SFO method.

After looking at the two error measures that are used in the
developed experimental study and comparing them with the
achieved visual results, we can conclude that the ADE provides a
more reliable error indicator. By the use of this error function as a
reference measure, the fuzzy landmark approach is clearly better
than the weighted one as a way to model the imprecise location
of cephalometric landmarks. This assumption was supported by
the forensic team of the Physical Anthropology Laboratory.

Based on nine complex real-world identification cases, we can
recognize that all the overlays that are achieved by our technique
are competitive with the manual ones that are performed by the
forensic experts and they are better in some cases. Besides,
our automatic method properly manages to get a good overall
alignment of the skull and the face objects according to the
ADE.

Despite the new proposed method that is based on the use
of imprecise landmarks provides very accurate results and still
behaves robustly, we should note that it implies more computa-
tional operations with the consequent increment in the run time
required. From 20 s/run using crisp landmarks, the CMA-ES-
based SFO method increases its run time to 2–4 min when using
fuzzy landmarks. However, it is still a significantly short time
if we compare it with the usual time needed by the forensic an-
thropologists to perform a manual superimposition (up to 24 h
in many cases).

We consider some extensions of our proposal that will be
developed as future works. First, we aim to tackle a higher
number of real-world identification cases provided and solved
by the Physical Anthropology Laboratory. Our results will thus
be validated through a more extensive study once legal issues
allow us to do so.

We also plan to make an online survey among different foren-
sic experts, asking them to locate the cephalometric landmarks
over a set of photographs. We aim to study some aspects, such
as the variations in the locations of the same landmarks, how the
location procedure is affected by the quality of the image, what
landmarks are more difficult to be located, and how the pose
of the face in the photograph influences the location procedure.
This survey will also be helpful to define the most appropriate
shapes and sizes for the fuzzy landmarks in several face pho-
tographs corresponding to solve real-world identification cases.

Finally, we are planning to tackle the inherent matching uncer-
tainty regarding each pair of cephalometric–craniometric land-
marks (see the second part of Section III-A). With the support of
the forensic anthropologists collaborating with us and starting
from Stephan and Simpson’s works [22], [23], we aim to deal
with this partial matching situation by the usage of fuzzy sets
and fuzzy distance measures.
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[7] S. Damas, O. Cordón, O. Ibáñez, J. Santamarı́a, I. Alemán, F. Navarro,
and M. Botella, “Forensic identification by computer-aided craniofacial
superimposition: A survey,” ACM Comput. Surv., 2011, to be published.

[8] J. Santamarı́a, O. Cordón, S. Damas, I. Alemán, and M. Botella, “A
scatter search-based technique for pair-wise 3D range image registration
in forensic anthropology,” Soft Comput., vol. 11, no. 9, pp. 819–828,
2007.

[9] J. Santamarı́a, O. Cordón, S. Damas, J. M. Garcı́a-Torres, and A. Quirin,
“Performance evaluation of memetic approaches in 3D reconstruction of
forensic objects,” Soft Comput., vol. 13, no. 8–9, pp. 883–904, 2009.

[10] W. Zhen and T. Huang, 3D Face Processing Modeling, Analysis and
Synthesis. New York: Springer-Verlag, 2004.

[11] W. Zhao and R. Chellapa, Eds., Face Processing: Advanced Modeling
and Methods. Amsterdam, The Netherlands: Elsevier, 2005.

[12] Y. Shan, Z. Liu, and Z. Z., “Model-based bundle adjustment with applica-
tion to face modeling,” in Proc. IEEE Int. Conf. Comput. Vis., Vancouver,
BC, Canada, 2001, pp. 644–651.
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narity problem in 3D camera calibration by means of fuzzy landmarks:
A performance study in forensic craniofacial superimposition,” in Proc.
IEEE Int. Conf. Comput. Vis., Kyoto, Japan, 2009, pp. 1686–1693.

[25] P. Sinha, “A symmetry perceiving adaptive neural network and facial
image recognition,” Forensic Sci. Int., vol. 98, no. 1–2, pp. 67–89, Nov.
1998.

[26] “Fuzzy plane geometry—Part I: Points and lines,” Fuzzy Sets Syst., vol.
86, no. 2, pp. 179–187, 1997.

[27] P. Diamond and P. Kloeden, “Metric topology of fuzzy numbers and fuzzy
analysis,” in Fundamentals of Fuzzy Sets (The Handbooks of Fuzzy Sets
Series), D. Dubois and H. Prade, Eds. Norwell, MA: Kluwer, 2000, ch. 11,
pp. 583–637.

[28] D. Dubois and H. Prade, “On distance between fuzzy points and their use
for plausible reasoning,” in Proc. Int. Conf. Syst., Man Cybern., 1983,
pp. 300–303.

[29] I. Bloch, “On fuzzy distances and their use in image processing under
imprecision,” Pattern Recog., vol. 32, pp. 1873–1895, 1999.

[30] A. Auger and N. Hansen, “A restart CMA evolution strategy with in-
creasing population size,” in Proc. IEEE Congr. Evol. Comput., 2005,
pp. 1769–1776.

[31] N. Hansen and A. Ostermeier, “Adapting arbitrary normal mutation dis-
tributions in evolution strategies: The covariance matrix adaptation,” in
Proc. IEEE Int. Conf. Evol. Comput., Piscataway, NJ, 1996, pp. 312–317.
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