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Abstract In the last decade, image registration has proven to be a very active re-
search area when tackling computer vision problems, especially in medical applica-
tions. In general, image registration methods aim to find a transformation between
two images taken under different conditions. Point matching is an image registration
approach based on searching for the right pairing of points between the two images,
which involves a combinatorial optimization problem. From this matching, the regis-
tration transformation can be inferred by means of numerical methods.

In this paper, we tackle the medical image registration problem by means of
a recent hybrid metaheuristic composed of two well-known optimization methods:
GRASP and path relinking. Several designs based on this new hybrid approach have
been tested. Our experimentation with real-world problems shows the combination of
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GRASP and evolutionary path relinking performs well when compared to previous
state-of-the-art image registration approaches adopting both the point matching and
transformation parameter approaches.

Keywords Metaheuristics · GRASP · Path relinking · Scatter search · Computer
vision · Medical image registration

1 Introduction

There are many applications in digital image processing that require the proper align-
ment of different images (Goshtasby 2005). These problems arise from rather dif-
ferent domains (Dasgupta and Banerjee 2005; Kim et al. 2001; Wang 2005). For
example, in remote sensing, it is important to establish correspondence between the
images acquired from different viewpoints in order to achieve a global cartography
from partial views. In medical imaging, it is helpful to determine a correct matching
between the images provided by different kinds of sensors which are able to highlight
different characteristics of the human anatomy such as bones, organs, or lesions.

In the last decade, image registration (IR) has become a fundamental task in
computer vision commonly used to establish correspondences (or transformations)
among two or more images in order to achieve their proper alignment (Brown 1992;
Zitová and Flusser 2003). There exist two different IR approaches, each one work-
ing in a different solution space: (i) to search for the optimal point matching be-
tween two images (Cordón et al. 2008; Liu 2004); and (ii) to directly search
in the space of the registration transformation parameters (de Falco et al. 2008;
Silva et al. 2005). While the former takes a combinatorial optimization approach,
the latter does the same from a numerical (binary, integer, or real coded) optimiza-
tion standpoint. In particular, point matching searches for the right pairing of points
between two images, from which the registration transformation can be inferred by
using numerical methods (Horn 1987). The main advantage of this IR approach is
that it does not require the estimation of the suitable interval ranges of every parame-
ter defining the transformation. Thus, the proposal of good point matching algorithms
is of importance in the IR community.

In this contribution, we extend our previous work (Cordón et al. 2008) and exploit
the benefits of applying the recent hybridization of the greedy randomized adaptive
search procedure (GRASP) and the path relinking (PR) methodology (Resende et
al. 2010) when tackling point matching-based IR problems of 3D medical images.
We design our method to achieve a good trade-off between the intensification and
diversification components of this hybrid approach in order to obtain high quality so-
lutions. In line with this, it takes advantage of heuristic information extracted from
the images to guide the search process. Such information corresponds to the curvature
values of the object under study and has proven useful to achieve high quality solu-
tions (Cordón et al. 2008). Furthermore, curvature information facilitates a feature-
based IR approach characterized by a significant reduction of input data which are
represented by the most relevant points (according to this heuristic information) of
the object, thus allowing for better matching and speeding up the IR. It must be noted
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that the use of problem information is in line with previous findings in different meta-
heuristics, such as tabu search (Glover and Laguna 1997) and contrasts with random
designs typically applied in other evolutionary methods.

The performance of several designs based on GRASP and PR hybridization is
compared with a previous Scatter Search-based IR method (Cordón et al. 2008) when
solving six 3D medical images from realistic and real-world image datasets with dif-
ferent modalities: magnetic resonance images (MRIs) of human brains and computer
tomography images (CTs) of human wrists, respectively.

The structure of this paper is as follows: Sect. 2 describes the point matching-
based IR problem from a combinatorial optimization viewpoint. Section 3 explains
the recent hybridizations of GRASP and PR algorithms that we have adapted to tackle
the IR problem. Computational experiments are detailed in Sect. 4. Finally, Sect. 5
presents our concluding remarks and future works.

2 Point matching-based image registration

In this section the IR is formally described in terms of a combinatorial optimization
problem. We also provide the heuristic information and the permutation-based repre-
sentation scheme employed to guide the search process towards the best solutions for
the point matching-based IR problem.

2.1 Problem formulation

IR can be stated as an NP-hard combinatorial optimization problem which consists of
finding a mapping of points from two images: A and B , named scene and model, re-
spectively. The objective is to determine the geometric transformation f that applied
to A leading it to B (see Fig. 1).

Fig. 1 The IR optimization procedure
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Fig. 2 Implementation details
of the point matching
permutation π with size n

Typically, an image is represented by a huge amount of pixels/voxels. Therefore,
many IR methods apply a preprocessing step to extract the most relevant geometric
primitives (points, lines, etc.) in the two images to be registered (Zitová and Flusser
2003). This is called feature-based IR approach and affords the advantage of speed-
ing up the IR process and better guiding the objective function to escape from local
optima (Cordón et al. 2008). In particular, we consider points defining a crest line
(Monga et al. 1992) as a set of geometric primitives extracted from both images (in-
clude several math expressions). Crest lines are the locus of points on a surface whose
longest curvature (in absolute value) is locally maximal in the associated principal di-
rection. Thus, a crest line can be viewed as a generalization of an edge for smooth
surfaces in 3D (see Sect. 2.2).

In mathematical terms, point matching can be described as a combinatorial opti-
mization problem as follows. Given two set of points P1 = {x1,x2, . . . ,xn} and P2 =
{y1,y2, . . . ,ym}, the problem is to find a transformation f such that yi = f (xπ(i)) for
i = 1, . . . , r (r = min(n,m)), where π = (π1,π2, . . . , πl) is a permutation of size l
(l = max(n,m)). Without loss of generality and to simplify the notation, we consider
that P1 is the largest point set, i.e., its dimension n is greater than that one of P2, m.
Figure 2 shows a representation of the matching.

Problem solving is naturally divided into two phases. In the first one, a permuta-
tion of l elements defines the matching between the points in P1 and P2 in such a
way that the first elements (r = m in our case) of π are the P1 points associated to
each of the m P2 points. In the second phase, from the latter point matching, the pa-
rameters defining the transformation f are computed by a numerical method (usually
least squares estimation (Arun et al. 1987; Horn 1987)), the parameters defining the
transformation f are computed. The goal is to find the transformation minimizing the
distances between the model points and the corresponding transformed scene points.
Therefore, in optimization terms, the value associated with permutation π is given by
the following expression:

g(π) =
∑r

i=1 ‖fπ(xπ(i)) − yi‖2

r
, (1)

i.e., Eq. 1 corresponds to the Mean Square Error (MSE). Therefore, the point match-
ing problem can be simply stated as minimizing g(π) for any permutation π of l
elements and its corresponding transformation f .

2.2 Using heuristic information derived from the 3D image

This section is devoted to describe the heuristic information that can be derived from
the curvature of the shapes included in the images in order to better address the opti-
mization procedure of the IR problem.
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Fig. 3 Differential
characteristics of surfaces

Let us first define the iso-intensity surface of a 3D image, which will be called sim-
ply the iso-surface in the rest of this paper. For any continuous function C(x, y, z)

of R
3, any value I of R (called the iso-value) defines a continuous, not self-

intersecting surface, without hole, which is called the iso-intensity surface of C

(Monga et al. 1992). A non ambiguous way to define the iso-surface is to consider
it as being the surface which separates the space regions where the intensity of C is
greater than or equal to I from these regions whose intensity is strictly lower than I .
Whether such an iso-surface corresponds or not to the boundary of the scanned ob-
ject is another problem, which falls outside the scope of the current contribution. Due
to their good topological properties, iso-surface techniques are the most widely used
segmentation methods for 3D medical images.

Figure 3 depicts the key elements of an iso-surface. At each point xi of those
surfaces, there is an infinite number of curvatures but, for each direction t in the
tangent plane at xi , there is only one associated curvature kt. There are two privileged
directions of the surface, called the principal directions (t1 and t2), which correspond
to the two extreme values of the curvature: k1 and k2. We limit our model to these two
parameters since we have empirically found that they contain enough information to
guide the search process.

In this contribution, we consider f to be a similarity transformation, thus being
composed of a rotation R = (λ, 〈φx,φy,φz〉), a translation t = (tx, ty, tz), and a uni-
form scaling s. Such a transformation has been extensively used to register aerial and
satellite images, bony structures in medical images, and multimodal brain images
(Goshtasby 2005). Once we know the expression of fπ , i.e., the (R, t, s) parameters
defining the similarity transformation, we can estimate the registration error existing
between the scene image points xi and the model image points yj , measured by the
function g() as proposed in Arun et al. (1987). We estimate the registration error by
simply computing the Euclidean distance from each transformed point in P1 (using
the aforementioned fπ parameters) to its corresponding matching point (considering
π ), as shown in Eq. 1, where fπ(xπi

) = y = s · R(xπi
) + t.

Note that Eq. 1 only computes the geometric information of both scene and model
feature points. Some authors (Luck et al. 2000; Robertson and Fisher 2002) have pro-
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posed several metaheuristics to minimize the g() error function. However, by consid-
ering only this objective function, search algorithms exhibit several limitations such
as their inability to handle large initial misalignments between the two images, which
usually makes the IR algorithm more likely to become trapped in local optima (Luck
et al. 2000). To overcome these problems, we use the context information contained
in the curvature. In particular, for each point xi , we consider the two values of the first
and second principal curvatures, k1 and k2, associated with the two principal orthog-
onal directions (which locally characterize the iso-surface). An interesting property
of this feature is that curvature values represent an invariant source of information
with respect to the similarity transformation fπ . Thus, we use a redefined function
merror(·) to evaluate the quality of the matching stored in a given solution, π , as
follows:

merror(π) = �k1 + �k2 where �kj =
r∑

i=1

(ki
j − k

πi

j )2, j = {1,2}

where �k1 and �k2 measure the error associated to the matching of scene and model
points with different values for the first and second principal curvatures, respectively.

Hence, the proposed objective function (similarity metric) for point matching
makes use of a weighted combination of the g() function (MSE of the registration
transformation resulting from the point matching encoded in π ) and the previous
criterion based on heuristic information as follows:

min F(π) = w1 · g(π) + w2 · merror(π) (2)

where w1 and w2 are weighting coefficients defining the relative importance of each
term. With such a function, we defined a more suitable similarity measure to induce
a better search process in the space of solutions (Cordón and Damas 2006; Cordón et
al. 2008).

3 GRASP and path relinking hybridizations

We propose different combinations of GRASP and PR for the point matching-based
IR problem based on hybrid designs used in the context of the max-min diversity
problem (Resende et al. 2010).

3.1 The greedy randomized adaptive search procedure

The GRASP methodology was developed in the late 1980s (Feo and Resende 1989).
We refer the reader to Resende and Ribeiro (2003) for a recent survey of this meta-
heuristic. Each GRASP iteration consists of constructing a trial solution and then
applying an improvement procedure to find a local optimum (i.e., the final solution
for that iteration). The construction phase is iterative, greedy, and adaptive. It is it-
erative because the initial solution is built considering one element at a time. It is
greedy because the addition of each element is guided by a greedy function. It is
adaptive because the element chosen at any iteration in a construction is a function of
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those previously chosen. The improvement phase typically consists of a local search
procedure.

Our adaptation of the GRASP methodology for the point matching problem fol-
lows. The information extracted from the shape of the object (described in Sect. 2.2)
can be used to establish a preference order for the assignments between the scene
image points and the model image ones. Hence, a point xi from the scene image
is more likely to be assigned to those model points yi presenting the same or sim-
ilar curvature values k1 and k2. In order to achieve that suitable point assignment,
a possible approach consists of considering a greedy heuristic. Such an approach is
characterized by a strict selection order to assign the closest model point yj in terms
of curvature to every scene point xi , where yj was not previously assigned to some
other scene point. However, we follow a different approach by introducing random-
ness in both processes thus allowing each decision to be taken randomly from the
points still stored in the nonempty candidate list. Specifically, the greedy randomized
construction GRC starts by creating two candidate lists, CL1 and CL2, related to the
scene and model images, respectively. At the beginning, every list consists of all the
points in the image (i.e., initially CL1 = P1 and CL2 = P2). For each element xi in
CL1, its Euclidean distance to CL2 in terms of curvature values is computed as:

di = min
j=1,...,m

√
(k1(xi ) − k1(yj ))2 + (k2(xi ) − k2(yj ))2. (3)

Thus, di is the minimum value of the distances from xi to all the elements in CL2.
Then, the GRC phase constructs the restricted candidate list RCL1 with a percentage
α of the elements in CL1 with the lowest di (high quality) values. We randomly
select one element (say xk) from RCL1 for the matching assignment. In order to find
an appropriate point in the model to match xk , we construct RCL2 with a percentage
α of the elements in CL2 whose curvature values are closer to those of xk , i.e., those
elements presenting the lowest distance values to xk . Next, we randomly select a
point (say yt ) in RCL2 and match it to xk . The permutation π is accordingly updated
with π(t) = k. Finally, we update CL1 and CL2 (CL1 = CL1 −{xk},CL2 = CL2 −{yt })
and perform a new iteration. The GRC procedure finishes when r = min(n,m) points
have been matched, i.e., when either CL1 or CL2 is empty, and the remaining l − r

points in the permutation π are taken randomly from the points still stored in the
nonempty CL.

We also consider an alternative constructive method, GRC2, in which the greedy
and the randomization rules are modified (Resende and Werneck 2004). Specifically,
in the restricted candidate list RCL1 is built considering a percentage β of randomly
chosen elements in CL1. Next, the element with the lowest di value is selected from
RCL1. The same approach is followed for the construction of RCL2. Finally, we tested
a parameter-free version of GRC, called the reactive-GRC (RGRC), in which the
value of the parameter (α or β) is randomly determined according to an empirical
distribution of probabilities (Prais and Ribeiro 2000) identified in previous construc-
tion steps of the method.

Regarding the local search (LS) phase of GRASP, we have used the strategy de-
signed for the Improvement Method of the scatter search (SS)-based IR proposal de-
signed in our previous work (Cordón et al. 2008). Therein the “best-first” LS pro-
cedure with the swapping neighbor operator is considered. In particular, swappings
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are used as the primary mechanism to move from one solution to another. Moreover,
two improvements were considered in order to speed up the local search procedure.
A primary strategy was applied first in the neighborhood generation by only consider-
ing promising swapping moves taking as a base the curvature (heuristic) information.
Then, a selective application of the local optimizer was also considered.

3.2 Path relinking

PR (Glover and Laguna 1997) is an approach proposed to integrate intensification and
diversification strategies in the context of TS. This approach generates new solutions
by exploring trajectories that connect high quality solutions by starting from one of
these solutions, called an initiating solution, and generating a path in the neighbor-
hood space that leads toward the other solutions, called guiding solutions. This is
accomplished by selecting moves that introduce attributes contained in the guiding
solutions, and incorporating them in an intermediate solution initially originating the
initiating solution. PR was adapted in the context of GRASP as a form of intensifica-
tion (Laguna and Martí 1999). The relinking in this context consists of finding a path
between a solution found with GRASP and a chosen elite solution. As can be seen in
different sources (see for instance http://twitter.com/graspheuristic), the hybridization
of GRASP with PR has revealed itself to be a powerful metaheuristic, which is able
to provide high quality solutions for different combinatorial optimization problems.

Let π1 and π2 be two solutions of the point matching IR problem, interpreted
as the sets of n selected elements Selπ1 and Selπ2 , respectively (|Selπ1 | = |Selπ2 | =
n). PR(π1,π2) starts with the first (initiating) solution π1, and gradually transforms
it into the second (guiding) one π2 by swapping out elements selected in π1 with
elements selected in π2. The elements selected in both solutions π1 and π2, Selπ1π2 ,
remain selected in the intermediate solutions generated in the path between them. Let
Selπ1−π2 be the set of elements selected in π1 and not selected in π2. Symmetrically,
let Selπ2−π1 be the set of elements selected in π2 and not selected in π1, i.e.

Selπ1π2 = Selπ1 ∩ Selπ2 ,

Selπ1−π2 = Selπ1 \ Selπ1π2 ,

Selπ2−π1 = Selπ2 \ Selπ1π2 .

Let πini(0) = π1 be the initiating solution. To obtain the solution πini(1), we unse-
lect a single element πini(0)

i ∈ Selπ1−π2 and select a single element πini(1)
j ∈ Selπ2−π1

both in πini(0), thus obtaining:

Selπini(1) = Selπini(0) \ {πini(0)
i } ∪ {πini(0)

j }.

In the greedy PR (PRg) algorithm, the selection of the elements π
ini(0)
i and π

ini(0)
j

is made in a greedy fashion. To obtain πini(k+1) from πini(k), we evaluate all the
possibilities for π

ini(k)
i ∈ Selπini(k)−π2 to be de-selected and π

ini(k)
j ∈ Selπ1−πini(k)

to be selected, and perform the best swap. In this way, we reach π2 from π1 in
h = |Selπ1−π2 | = |Selπ2−π1 | steps, i.e. πini(h) = π2. The output of the PR algorithm

http://twitter.com/graspheuristic
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is the best solution, different from π1 and π2, found in the path connecting both
solutions (among πini(1), πini(2), . . . , πini(h−1)).

Another variant of PR is based on a greedy randomized (PRgr ) scheme (Faria
et al. 2005), in which the moves are done in a greedy randomized fashion. This
procedure mimics the selection method employed in a GRASP construction. In-
stead of exploring all the possibilities for π

ini(k)
i ∈ Selπini(k)−π2 to be de-selected

and π
ini(k)
j ∈ Selπ2−πini(k) to be selected to obtain πini(k+1) from πini(k), it can be

performed a truncated exploration of a certain percentage of the whole neighborhood
in order to speed up the run time. Thus, the candidate set C contains all these swaps,
i.e.

Ck
π1π2 = {(πini(k)

i , π
ini(k)
j ) | i ∈ Selπini(k)−π2 , j ∈ Selπ2−πini(k)}.

Let z(i, j) be the value of the move associated with de-select π
ini(k)
i and select π

ini(k)
j

in the current solution πini(k) to obtain πini(k+1). Then,

z(i, j) = F(πini(k+1)) − F(πini(k)).

In step k of the path from π1 to π2, the restricted candidate list RCLk
π1π2 of good

candidates for swapping is

RCLk
π1π2 = {(πini(k)

i , π
ini(k)
j ) ∈ Ck

π1π2 | z(i, j) ≥ δz∗},

where z∗ is the minimum of z(i, j) in Ck
π1π2 and δ (0 ≤ δ ≤ 1) is a search parameter.

A pair (π
ini(k)
i , π

ini(k)
j ) ∈ RCLk

π1π2 is randomly selected and the associated swap is
performed.

Furthermore, PR can be performed bi-directionally by exploring the two possi-
ble paths connecting two given solutions. The best solution found is accordingly
returned. Regarding the computation time, improved performance can be achieved
by considering a pruning scheme for the neighborhood exploration of PR based on
the heuristic information extracted from the image. This strategy, also called trun-
cated path relinking, is inspired by the observation that as the PR nears the guiding
solution, there are fewer allowed moves to explore and the search tends to be less
effective. Hence, it tends to find good solutions near the initiating one since it can
explore the space more effectively around the latter. If this happens, then the effort
made by path relinking near the guiding solution is fruitless. Therefore, we can prune
(truncate) the path when a percentage of solutions has been explored, applying an
early stopping criterion to save computational effort.

3.3 Static GRASP with PR

In Stc-G&PR, we propose a static hybridization in which we first apply GRASP to
construct the elite set (ES) (see steps 1 to 14 in Fig. 4) and then, as a second step,
we apply PR to generate solutions between all the pairs of solutions in ES (see steps
15 to 24 in Fig. 4). As shown in Fig. 4, we always keep the best solution in ES (π1)
during performance of the GRASP and the LS phases. Note the use of a distance
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Begin Stc-G&PR

1 GlobalIter ← number of global iterations;
2 Apply GRASP (construction and local search) for b = |ES| iterations to populate

ES ← {π1,π2, . . . , πb};
3 NumIter ← b + 1;
4 While NumIter ≤ GlobalIter Do
5 π ← GRASP construction phase;
6 π ′ ← GRASP LS starting at π ;
7 πk ← closest solution to π ′ in ES with F(π ′) < F(πk);
8 ES′ ← {ES \ πk} ∪ π ′;
9 If F(π ′) < F(π1) Or (F(π ′) < F(πb) And Div(ES′) ≥ Div(ES)) Then
10 Add π ′ to ES and remove πk ;
11 Sort ES from best π1 to worst πb ;
12 End-If;
13 NumIter ← NumIter + 1;
14 End-While;
15 πbest ← π1;
16 For i = 1, . . . , b − 1 Do
17 For j = i + 1, . . . , b Do
18 Apply PR(πi ,πj ) and PR(πj ,πi ) and let π ′ be the best solution found;
19 π ′′ ← GRASP LS starting at π ′;
20 If (F(π ′′) < F(πbest)) Then
21 πbest ← π ′′;
22 End-If;
23 End-For;
24 End-For;
25 Return πbest ;

End-Stc-G&PR

Fig. 4 Pseudo-code of the Stc-G&PR algorithm

considered to measure how diverse one solution is with respect to a set of solutions,
which is ES in this case. Specifically, for the point matching we consider the distance
between two permutations πa and πb as the number of times πa

(i) differs from πb
(i)

for i = 1, . . . , r . Then, the candidate solution π ′ is considered for inclusion in ES if
its quality surpasses (according to F() value) either the current best in ES (π1), or
the current worst in ES (πb) and it also increases the diversity of ES (Div(ES)) by
means of replacing πk ∈ ES with π ′ (ES ← {ES \πk} ∪π ′). In the second step of the
algorithm, for each pair of solutions {πa,πb} ∈ ES, we apply PR in a bidirectional
manner, i.e. PR(πa,πb) and PR(πb,πa). Next, the best solution generated in both
paths is subjected to the LS method (described in Sect. 3.1). Stc-G&PR stops once
PR is applied to all the pairs in ES and the best overall solution xbest is returned as
the output.

Unlike in Resende et al. (2010), in our specific implementation of point matching
the dth parameter (which is a distance threshold value that reflects the term “suffi-
ciently different” and it should be empirically adjusted) has been properly removed
from Stc-G&PR (see line 9 in Fig. 4) as well as from the subsequent hybrids.
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Begin Dyn-G&PR

1 GlobalIter ← number of global iterations;
2 Apply GRASP (construction and local search) for b = |ES| iterations to populate

ES ← {π1,π2, . . . , πb};
3 NumIter ← b + 1;
4 While NumIter ≤ GlobalIter Do
5 π ← GRASP construction phase;
6 π ′ ← GRASP LS starting at π ;
7 Randomly select πj from ES;
8 Apply PR(π ′,πj ) and PR(πj ,π ′) and let π ′′ be the best solution found;
9 π ′′′ ← GRASP LS starting at π ′′;
10 πk ← closest solution to π ′′′ in ES with F(π ′′′) < F(πk);
11 ES′ ← {ES \ πk} ∪ π ′′′;
12 If F(π ′′′) < F(π1) Or (F(π ′′′) < F(πb) And Div(ES′) ≥ Div(ES)) Then
13 Add π ′′′ to ES and remove πk ;
14 Sort ES from best π1 to worst πb ;
15 End-If;
16 NumIter ← NumIter + 1;
17 End-While;
18 πbest ← π1;
19 Return πbest ;

End-Dyn-G&PR

Fig. 5 Pseudo-code of the Dyn-G&PR algorithm

3.4 Dynamic GRASP with PR

Another alternative of hybrid implementation using GRASP and PR algorithms con-
sists of a dynamic update of ES, we called it Dyn-G&PR. In this design, each solution
π ′ generated with GRASP is directly subjected to the PR algorithm, which is applied
between π ′ and a solution πj , randomly selected from ES. As in Stc-G&PR, the LS
method is applied to the output of PR. In this case, the resulting solution is directly
tested for inclusion in ES. If successful, it can be used as a guiding solution in later
applications of PR. Figure 5 shows pseudo-code for this dynamic variant. The method
stops after Globaliter number of iterations.

3.5 Evolutionary GRASP with PR

Evolutionary GRASP with PR (Andrade and Resende 2007), Evo-G&PR, starts in the
same way as dynamic GRASP with PR, Dyn-G&PR. This can be clearly seen in the
first steps (1–16) of Fig. 6. Specifically, Dyn-G&PR is applied for GlobalIter number
of iterations, in which the construction and the improvement phase of GRASP as
well as the PR method are executed. At this point, a post-processing phase is applied
for improved outcomes. Specifically, we apply PR to each pair of solutions in ES
(steps 17 to 30 in Fig. 6). The solutions obtained with the latter application of PR
are considered candidates to enter ES, and PR is again applied to them as long as a
new solution is able to enter ES. Hence, solutions in ES evolve and the method stops
when no new solutions update ES.
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Begin Evo-G&PR

1 GlobalIter ← number of global iterations;
2 Apply GRASP (construction and local search) for b = |ES| iterations to populate

ES ← {π1,π2, . . . , πb};
3 For iter = 1, . . . ,GlobalIter Do
4 For i = 1, . . . ,LocalIter Do
5 π ← GRASP construction phase;
6 π ′ ← GRASP LS starting at π ;
7 Randomly select πj from ES;
8 Apply PR(π ′,πj ) and PR(πj ,π ′) and let π ′′ be the best solution found;
9 π ′′′ ← GRASP LS starting at π ′′;
10 πk ← closest solution to π ′′′ in ES with F(π ′′′) < F(πk);
11 ES′ ← {ES \ πk} ∪ π ′′′;
12 If F(π ′′′) < F(π1) Or (F(π ′′′) < F(πb) And Div(ES′) ≥ Div(ES)) Then
13 Add π ′′′ to ES and remove πk ;
14 Sort ES from best π1 to worst πb ;
15 End-If;
16 End-For;
17 NewSol ← 1;
18 While NewSol Do
19 NewSol ← 0;
20 Apply PR(π,π ′) and PR(π ′,π ) for every pair (π,π ′) in ES not combined

before. Let π ′′ be the best solution found;
21 π ′′′ ← GRASP LS starting at π ′′;
22 πk ← closest solution to π ′′′ in ES with F(π ′′′) < F(πk);
23 ES′ ← {ES \ πk} ∪ π ′′′;
24 If F(π ′′′) < F(π1) Or (F(π ′′′) < F(πb) And Div(ES′) ≥ Div(ES)) Then
25 Add π ′′′ to ES and remove πk ;
26 Sort ES from best π1 to worst πb ;
27 NewSol ← 1;
28 πbest ← π1;
29 End-If;
30 End-While;
31 End-For;
32 Return πbest ;

End-Evo-G&PR

Fig. 6 Pseudo-code of the Evo-G&PR algorithm

Note that this design can be considered similar in general terms to other evolution-
ary methods, such as scatter search, in which solutions in the reference set (the elite
set where the best solutions are stored) evolve by means of combinations. However,
in Evo-G&PR instead of combinations we apply PR, which is somewhat a general-
ization of the classical combination methods. Moreover, we apply PR from the very
beginning of the execution, making the search aggressive (i.e. obtaining high-quality
solutions in early stages of the method).

4 Computational experiments

This section describes the computational experiments we performed to compare our
proposed procedures to state-of-the-art methods for solving medical IR problems.
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Our GRASP with PR implementations follows the framework described in the pre-
vious section. We first set the key search parameters of our methods and then study
their effectiveness and robustness, including comparisons with a recent scatter search
algorithm (Cordón et al. 2008) and three state-of-the-art methods. All the methods
have been implemented in C/C++ programming and tested in the same architecture
using a 2.26 GHz Intel® Core™2 Duo P8400 and a MS® Windows operating sys-
tem.

We consider six medical images from two different image datasets to test our
methods. The first dataset is composed of four different magnetic resonance images
(MRIs). These images have been obtained from the BrainWeb database at McGill
University (Kwan et al. 1999). The purpose of this repository is to provide researchers
with ground truth data for image analysis techniques and algorithms. BrainWeb has
been widely used by the IR research community (see, for example Wachowiak et al.
2004). One of the most challenging IR problems concerns registering different pairs
of images of the same object. Therefore, we tackle a more realistic problem in medical
IR, namely intra-subject registration, than the one considered in Cordón and Damas
(2006). The other two images considered belong to a second dataset of a real-world
medical case study kindly provided by the Rhode Island Hospital (Marai et al. 2006).
Both are computerized tomography (CT) images of two different human wrists. In
this case, we want to highlight the complexity of the problem to be tackled due to its
particular anatomical structure. After pre-processing, the six images (I1 to I6) present
583, 393, 348, 284, 575, and 412 crest line points respectively.

The first column of Figs. 7 and 8 show the original MRIs and CTs, respectively.
The second column of those figures corresponds to the isosurfaces segmenting the
original images to extract the regions of interest in each image, i.e. the brain and the
wrist. The third column shows the crest line points extracted from each 3D medical
image.

In order to evaluate the performance of the IR methods tested, we considered
four similarity transformations (see Sect. 2.2) Ti (see Table 1), each one describing a
different level of misalignment between a pair of images (Cordón and Damas 2006).

4.1 Fine tuning and alternative designs

In our first preliminary experiment we compare the performance of the constructive
algorithms: GRC and GRC2 with α,β ∈ {0.75,0.9,0.95}, and their reactive versions,
reactive-GRC (RGRC) and reactive-GRC2 (RGRC2). To do so, sixteen IR problem
instances (see Table 2) have been designed from the combination of the considered
image datasets of MRIs of human brains and the four similarity transformations (see
Fig. 7 and Table 1, respectively). Each of the latter four variants of GRASP has been
run once considering a maximum number of one hundred iterations of the construc-
tion and the LS phases. We keep the same parameter settings for the LS method as in
Cordón et al. (2008).

Both the first (#better) and the second (Divergence) rows in Table 3 show the
average value of: (i) the percentage of times in which a given GRC variant achieved
a solution as good as the best found so far in each of the one hundred iterations; and
(ii) the divergence of a given GRC variant to the best GRC variant according to MSE
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Fig. 7 From left to right, and top to bottom: original MRI images, their respective isosurfaces, and their
crest lines points. Note that the second and third MRIs include 1% of Gaussian noise while the fourth one
has a 5%. I3 and I4 (last two rows) also considers a multiple sclerosis lesion (see circle)

values. From these results, we remark that the GRC variant considering α = 0.9 is
the best alternative to construct solutions for GRASP. Thus, this will be our choice
for the subsequent experiments.

In our second preliminary experiment we study the best configuration of PR
when hybridized with GRASP. Specifically, we consider the Stc-G&PR approach
(described in Sect. 3.3) and compare the following twelve PR designs described in
Sect. 3.2:

– PR1 : PRg & uni-directional1

1An unidirectional scheme considers the construction of one solution following the route that connects
the initial with the guiding solution. On the other hand, a bi-directional scheme performs the construction
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Fig. 8 From left to right:
original CT images, their
respective isosurfaces, and their
crest lines points. The first and
second rows refer to I5 and I6,
respectively

Table 1 Similarity transformations considered

T1 T2 T3 T4

λ 115.0 168.0 235.0 276.9

φx −0.863868 0.676716 −0.303046 0.872872

φy 0.259161 −0.290021 −0.808122 0.436436

φz 0.431934 0.676716 0.505076 −0.218218

tx −26.0 6.0 16.0 12.0

ty 15.5 5.5 −5.5 5.5

tz −4.6 −4.6 −4.6 −24.6

s 1.0 0.8 1.0 1.2

Table 2 The sixteen IR
problem instances designed
considering the realistic case of
study of human brains, with
Ti = T1, . . . , T4 (see Table 1)

IR problem Scene image Model image

Lesion Noise Lesion Noise

I1 vs. Ti(I2) No No No 1%

I1 vs. Ti(I3) No No Yes 1%

I1 vs. Ti(I4) No No Yes 5%

I2 vs. Ti(I4) No 1% Yes 5%

– PR2 : PRg & bi-directional
– PR3 : PR1 & pruning the 30% of the path
– PR4 : PR1 & pruning the 50% of the path
– PR5 : PR2 & pruning the 30% of the path
– PR6 : PR2 & pruning the 50% of the path
– PR7 : PRgr & uni-directional

of two solutions considering the two possible routes (i.e. from the initial to the guiding solution, and the
reverse route) and the best one is accordingly selected.
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Table 3 Results obtained by each of the eight considered variants of GRC

GRC0.75 GRC0.9 GRC0.95 RGRC GRC20.75 GRC20.9 GRC20.95 RGRC2

#better (%) 3 11 8 8 2 0 0 9

Divergence 7.63 1.81 4.93 6.48 33.88 50.05 67.87 4.90

Table 4 The four IR problem
instances designed considering
the realistic case of study of
human brains, with
Ti = T1, . . . , T4 (see Table 1)

IR problem Scene image Model image

Lesion Noise Lesion Noise

I1 vs. T1(I2) No No No 1%

I1 vs. T2(I3) No No Yes 1%

I1 vs. T3(I4) No No Yes 5%

I2 vs. T4(I4) No 1% Yes 5%

Table 5 MSE results obtained by each of the twelve variants of PR when using or not a pruning scheme

Without pruning With pruning

min max μ σ min max μ σ

PR1 51.00 140.55 84.43 34.04 53.18 170.58 95.03 46.04

PR2 52.13 129.89 82.32 32.59 47.51 149.08 87.69 40.35

PR3 51.44 172.71 89.79 49.37 47.44 188.07 96.58 54.82

PR4 48.10 140.84 92.08 43.24 45.72 249.35 117.29 81.99

PR5 46.04 133.51 80.46 36.14 43.11 153.79 96.18 45.58

PR6 53.82 164.15 89.88 44.52 55.58 151.83 85.21 39.30

PR7 52.74 160.49 89.82 43.18 43.74 150.94 87.68 42.87

PR8 52.93 154.38 89.42 38.80 52.71 127.10 82.39 27.35

PR9 44.31 168.62 89.27 49.29 54.60 139.12 91.08 35.86

PR10 45.49 141.22 78.14 38.56 45.08 148.52 93.92 43.40

PR11 47.34 153.65 86.05 43.02 57.52 170.12 96.81 45.36

PR12 47.29 136.64 82.12 35.54 45.55 150.30 83.15 41.19

– PR8 : PRgr & bi-directional
– PR9 : PR7 & pruning the 30% of the path
– PR10 : PR7 & pruning the 50% of the path
– PR11 : PR8 & pruning the 30% of the path
– PR12 : PR8 & pruning the 50% of the path

We study four different IR problem instances (see Table 4) designed from the
combination of the MRIs of human brains and the four similarity transformations
(see Fig. 7 and Table 1, respectively). The size of ES was set to 6. Each of the latter
twelve variants of Stc-G&PR has been run once with a maximum CPU time of 600
seconds.

Table 5 depicts the statistical results achieved by each of the variants of PR when
tackling every of the four IR problem instances (e.g., I1 vs. T1(I2), I1 vs. T2(I2), I1
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vs. T3(I2), and I1 vs. T4(I2)) of their corresponding scenarios (I1 vs. Ti(I2)). Ac-
cording to mean values, we can see how the PR variants provide better performance
when the pruning scheme is not considered. The latter behavior is corroborated by the
higher values of standard deviation obtained when such a scheme is used. Regarding
the minimum and the mean MSE values, it is proven that PR10 (which makes use of
a greedy randomized scheme for movement selection of PR and follows a pruning
scheme of 50% of the unidirectional path) is the best choice among all the variants.
Thus, we will consider this variant for the subsequent experiments.

4.2 Final designs and previous methods

In our next experiment we analyze the effectiveness of each of the three hybrids based
on GRASP and PR, Stc-G&PR, Dyn-G&PR, and Evo-G&PR. Moreover, we also in-
clude a pure GRASP (using GRC and α = 0.9) and the previous method based on
scatter search (Cordón et al. 2008). Each of the five IR methods is run once consid-
ering a maximum CPU time of 600 seconds on each problem instance (described in
Table 2).

Table 6 is split into four subtables considering every IR problem scenario (I1 vs.
Ti(I2), I1 vs. Ti(I3), I1 vs. Ti(I4), and I2 vs. Ti(I4)). The best MSE value is shown in
underlined bold font for each of the sixteen IR problem instances. We remark the poor
performance obtained by the pure GRASP which only achieves the best MSE value
in one of the sixteen instances. On the contrary, the hybrid GRASP with PR variants
proposed for point matching-based IR achieved competitive results when compared
to the state-of-the-art algorithm based on SS, which obtained the best MSE value in
six of the sixteen instances. The remaining best MSE values (nine) were shared out
amongst the three proposed hybrids. Specifically, Table 7 shows how both the SS and
the Evo-G&PR methods achieved the best average effectiveness when tackling the
point matching IR problem. Hence, we can see how Evo-G&PR obtains high quality
solutions for the IR problem, as it has previously done in other challenging problems
(Resende and Werneck 2004; Resende et al. 2010).

To complement this analysis, we again consider our three GRASP with PR
hybridization-based IR proposals, a pure GRASP and the previous SS, but now we
enrich the IR problem instances by including the real-world case study based on the
image dataset of human wrists of CTs. Specifically, we considered the five IR prob-
lem instances shown in Table 8.

Moreover, we included three different IR state-of-the-art methods in order to high-
light the computational results of this final experiment. Specifically, we considered
the following parameter setting for each of them:

– The ICP+SA algorithm is run for one complete iteration with a maximum of 40
iterations for the wrapped improved version of the ICP algorithm (I-ICP) (Liu
2004). The annealing process has 20 iterations and 50 trial movements around
each annealing iteration, with an initial temperature value estimated with T0 =
[μ/ − ln(φ)]C(S0), where C(S0) is the cost of the given solution generated by the
previous run of I-ICP, and both the μ and the φ factors take value 0.3.

– In the dynamic GA (Dyn-GA) (Chow et al. 2004), the size of the initial population
has been established at 100 individuals and the remainder of the specific parame-
ters have retained their original values.
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Table 7 Overall effectiveness of each of the IR methods averaging
their corresponding sixteen MSE values from Table 6

Stc-G&PR Dyn-G&PR Evo-G&PR GRASP SS

μ 76.37 69.06 68.48 100.11 66.33

Table 8 The five IR problem
instances designed considering
realistic and real-world cases of
study of human brains and
human wrists, respectively

IR problem Scene image Model image

Lesion Noise Lesion Noise

I1 vs. T1(I2) No No No 1%

I1 vs. T2(I3) No No Yes 1%

I1 vs. T3(I4) No No Yes 5%

I2 vs. T4(I4) No 1% Yes 5%

I6 vs. T1(I5) − − − −

– The iterated local search (ILS) IR method (Cordón and Damas 2006) is based on
the same optimization approach as the IR algorithms tested in this work using per-
mutations for representation of the point matching IR approach (see Sect. 2.1). The
perturbation rate and the remainder of control parameters have been maintained
from the original design.

Notice how ILS and Dyn-GA adopt approaches employing point matching and
transformation parameters, respectively, while ICP+SA makes use of a cooperative
design of both approaches. Thus, we considered using the following objective func-
tion proposed in Cordón et al. (2006) for both the Dyn-GA and the annealing stage
of ICP+SA:

F(f, Is, Im) = ω1 ·
(

1

1 + ∑N
i=1 ‖(sR(pi ) + t) − p′

j‖2

)

+ ω2 ·
(

1

1 + |ρs
c − ρm|

)

(4)
where Is and Im are the scene and model images; f is the transformation encoded in
the evaluated solution; pi is the ith 3D point from the scene and p′

j is its correspond-
ing closest point in the model obtained with the GCP data structure (Yamany et al.
1999); ω1 and ω2 (ω1 + ω2 = 1) weight the importance of each function term; ρs

c is
the radius of the sphere wrapping up the scene image transformed with the current f ;
and ρm is the radius of the sphere wrapping up the model image. As the first term of
F reveals, the modeled error corresponds to the MSE. Note that F maximizes up to
1.0 for an infrequent perfect fit.

Finally, each of the eight IR methods has been run2 ten times and considering a
maximum CPU time of 600 seconds, except ICP+SA which is iteration-based.

From Table 9, we notice how the Evo-G&PR-based IR method achieves a compet-
itive performance compared to the state-of-the-art IR algorithm based on SS. Specif-

2Each run uses a different seed for the pseudo-random number generator in order to avoid the bias of
randomness.
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ically, the former algorithm achieves the best mean results for three of the five IR
problem instances. Moreover, it obtains the lowest standard deviation values in all
the cases. Therefore, Evo-G&PR-based provides a good trade-off between search
space diversification and intensification, thus showing more robust behavior than the
SS-based IR method, the pure GRASP, and its counterpart hybrids: Stc-G&PR and
Dyn-G&PR. Regarding accuracy of the approaches (i.e. minimum value of MSE),
both SS and Evo-G&PR IR methods behave in very similarly, obtaining accurate re-
sults when tackling IR problem instances involving MRIs. The last row in Table 9
shows the average/overall performance (regarding the mean value of MSE) of each
of the IR methods compared to tackle both the realistic and the real-world case stud-
ies. The latter results reveal that, both Evo-G&PR and SS methods performed best
according to the overall robustness of the methods tackling the point matching-based
IR problem. This behavior is similar to that shown by both methods in terms of ef-
fectiveness.

Regarding the results obtained by the state-of-the-art IR algorithms, their perfor-
mance is noticeably lower than the best ones analyzed in this work (Stc-G&PR, Dyn-
G&PR, Evo-G& PR, GRASP, and SS). Among the former three algorithms, only
ICP+SA and ILS show competitive results in the third and fifth problem instances,
respectively, but far from the best results achieved by the two best IR proposals based
on SS and Evo-G&PR. The poor performance of Dyn-GA is related to the restart
strategy designed by the authors to provide an IR method for working on reduced
search spaces in order to achieve precise alignment results.

Figure 9 represents these results graphically for the five best IR methods glob-
ally (according to the numerical results in Table 9): pure GRASP, Stc-G&PR, Dyn-
G&PR, Evo-G&PR, and SS. The first column in Fig. 9 corresponds to the initial con-
figurations of the four different IR problem instances of MRIs. The next columns
show the best IR results obtained by the compared methods: pure GRASP, Stc-
G&PR, Dyn-G&PR, Evo-G&PR, and SS, respectively. Notice that the initial con-
figurations considered correspond to important misalignment of the images. Hence,
the IR problem instances tackled are highly complex. Even dealing with such com-
plex scenarios, both Evo-G&PR and SS methods achieve outstanding best solutions.
That is visually shown by the almost perfect overlapping of the colors of the ob-
jects in the fifth and sixth columns of Fig. 9. The visual results corresponding to the
IR of CT images, i.e. I6 vs. T1(I5) (see Fig. 10) show the high complexity of this
real-world case study, mainly caused by the nature of the anatomical structure of the
human wrist. Again, it can be observed how the two said methods provide the best
results.

5 Conclusions and future works

We have presented a contribution to undertake a challenging real-world computer
vision problem by means of recent hybridizations of GRASP and PR algorithms.
Specifically, in this work we have proposed several advanced hybridization designs
to tackle the point matching-based IR problem based on a static, a dynamic, and an
evolutionary approach.
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Fig. 10 The first column graphically represent the IR problem instance using CT images (I6 vs. T1(I5)).
From left to right, the next columns show the best IR results achieved by GRASP, Stc-G&PR, Dyn-G&PR,
Evo-G&PR, and SS IR methods, respectively

Next, we studied the performance of these new IR methods in both realistic and
real-world medical applications, using different image modalities such as MRIs and
CT images of human brains and human wrists, respectively. We proved how the
synergy between the single and multiple trajectory approaches and the evolutionary
scheme of PR provided effective and robust results which were competitive with the
state-of-the-art point matching-based IR methods based on the SS algorithm. A good
trade-off between search space diversification and intensification has achieved the
high performance of the new hybrid designs.

Moreover, we compared the tested algorithms with other state-of-the-art IR meth-
ods, including the transformation parameters (Dyn-GA), the point-matching (ILS),
and a cooperative scheme (ICP+SA) of the latter two approaches. Thus we demon-
strated how the combinatorial optimization approach used by the two best algorithms,
SS and Evo-G&PR, is an outstanding alternative for tackling IR problem instances
of 3D medical images.

In future works, we shall consider the use of new hybrid designs based on GRASP
and PR and similar approaches (Lozano and García-Martínez 2010) for tackling the
point matching-based IR problem in order to obtain more accurate and robust meth-
ods.
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