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Abstract—The time and space assembly line balancing problem
(TSALBP) considers realistic multiobjective versions of the clas-
sical assembly line balancing involving the joint optimization of
conflicting criteria such as the cycle time, the number of stations,
and/or the area of these stations. This industrial problem is very
difficult to solve and of crucial importance in the manufacturing
context. As TSALBP-1/3 contains a set of hard constraints like
precedences or cycle time limits for each station it has been
mainly tackled using multiobjective constructive metaheuristics
(e.g. ant colony optimization). Global search algorithms in
general –and multiobjective genetic algorithms in particular–
have shown to be ineffective to solve this family of problems
up to now. The goal of this contribution is to present a new
multiobjective genetic algorithm design, taking the well known
NSGA-II algorithm as a base and new coding scheme and specific
operators, to properly tackle with the TSALBP. An experimental
study on six different problem instances is used to compare the
proposal with the state-of-the-art methods.

I. INTRODUCTION

An assembly line is made up of a number of workstations,

arranged either in series or in parallel. Since the manufacturing

of a production item is divided into a set of tasks, a usual

and difficult problem is to determine how these tasks can be

assigned to the stations fulfilling certain restrictions. Conse-

quently, the aim is to get an optimal assignment of subsets of

tasks to the stations of the plant. Moreover, each task requires

an operation time for its execution.

A family of academic problems –referred to as simple

assembly line balancing problems (SALBP)– was proposed

to model this situation [1] [2]. Taking this family as a base

and adding spatial information to enrich it, Bautista and

Pereira recently proposed a more realistic framework: the time

and space assembly line balancing problem (TSALBP) [3].

This framework considers an additional space constraint to

become a simplified version of real-world problems. The new

space constraint emerged due to the study of the specific

characteristics of the Nissan plant in Barcelona (Spain).

As many real-world problems, TSALBP formulations have a

multicriteria nature [4] because they contain three conflicting

objectives to be minimised: the cycle time of the assembly

line, the number of the stations, and the area of these stations.

In this paper we deal with the TSALBP-1/3 variant which

tries to minimise the number of stations and their area for a

given product cycle time. TSALBP-1/3 has an important set

of hard constraints like precedences or cycle time limits for

each station. Thus, the use of constructive approaches is more

convenient than others like local or global search procedures

[5]. In [6] authors successfully tackled the TSALBP-1/3 by

means of a specific procedure based on the multiple ant colony

system (MACS) algorithm [7]. This approach is the state-of-

the-art of TSALBP-1/3 and it outperformed a multiobjective

genetic algorithm. In particular, the latter method –a multiob-

jective extension of an existing genetic algorithm for SALBP

[8] based on the use of the NSGA-II [9]– showed a very

low performance when solving the TSALBP-1/3. Such weak

performance of the latter multiobjective genetic algorithm

was due to its inability to deal with the inherent problem

characteristics and not to any drawback of the evolutionary

multiobjective optimization (EMO) approach. In fact, EMO

could be a powerful tool to accurately solve this very complex

problem.

Therefore, in this contribution a new design of a multiobjec-

tive genetic algorithm is developed, also based on NSGA-II but

incorporating specific components to appropriately deal with

the TSALBP constraints. On the one hand, a new individual

representation will be proposed which is more faithful to

the solution phenotype and thus more appropriate for the

problem solving. On the other hand, novel crossover, repair,

and mutation operators will be designed to overcome the non

constructive nature of genetic algorithms when dealing with

the TSALBP constraints.

Our proposal will be compared with the existing multiob-

jective genetic algorithm and the state-of-the-art algorithm to

solve the problem, MACS for the TSALBP-1/3. We will con-

sider six well-known problem instances from the literature for

this experimental study. In order to evaluate the performance

of the different methods, a detailed analysis of results will be

developed considering the usual multiobjective performance

indicators (metrics).

This paper is structured as follows. In Section II the

formulation of the TSALBP-1/3 is given. Then, in Section III,

the MACS algorithm and the multiobjective extension of
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Fig. 1: A precedence graph representing the first 8 tasks of a

problem instance. Time and area information are shown next

to each task.

the genetic algorithm for SALBP are reviewed. Our novel

multiobjective genetic algorithm design for the problem is

described in Section IV. The used performance indicators,

problem instances, and the analysis of the obtained results

are presented in Section V. Finally, in Section VI, some

concluding remarks are provided.

II. THE TIME AND SPACE ASSEMBLY LINE BALANCING

PROBLEM

The manufacturing of a production item is divided into a

set V of n tasks. Each task j requires an operation time for

its execution tj > 0 that is determined as a function of the

manufacturing technologies and the employed resources. Each

station k is assigned to a subset of tasks Sk (Sk ⊆ V ), called

workload. A task j is assigned to a station k.
Each task j has a set of direct predecessors, Pj , which

must be accomplished before starting it. These constraints

are normally represented by means of an acyclic precedence

graph, whose vertices stand for the tasks and where a directed

arc (i, j) indicates that task i must be finished before starting

task j on the production line. Thus, if i ∈ Sh and j ∈ Sk,

then h ≤ k must be fulfilled. Each station k presents a

station workload time t(Sk) that is equal to the sum of the

tasks’ lengths assigned to the station k. SALBP [2] focuses

on grouping tasks in workstations by an efficient and coherent

way. There is a large variety of exact and heuristic problem-

solving procedures for it [10].

The need of introducing space constraints in the assembly

lines’ design is based on two main reasons: (a) the length of the

workstation is limited in the majority of the situations, and (b)

the required tools and components to be assembled should be

distributed along the sides of the line. Hence, an area constraint

may be considered by associating a required area aj to each

task j and an available area Ak to each station k that, for the

sake of simplicity, we shall assume it to be identical for every

station and equal to A : A = max∀k∈{1..n}{Ak}. Thus, each
station k requires a station area a(Sk) that is equal to the sum

of areas required by the tasks assigned to station k. We can

see a graph example in Figure 1.

This leads us to a new family of problems called TSALBP

in [3]. It may be stated as: given a set of n tasks with their

temporal tj and spatial aj attributes (1 ≤ j ≤ n) and a

precedence graph, each task must be assigned to a single

station such that: (i) every precedence constraint is satisfied,

(ii) no station workload time (t(Sk)) is greater than the cycle

time (c), and (iii) no area required by any station (a(Sk)) is
greater than the available area per station (A).

TSALBP presents eight variants depending on three opti-

mization criteria:m (the number of stations), c (the cycle time)

and A (the area of the stations). Within these variants there

are four multiobjective problems and we will tackle one of

them, the TSALBP-1/3. It consists of minimising the number

of stations m and the station area A, given a fixed value of

the cycle time c, mathematically formulated as follows:

f0(x) = m =

UBm∑

k=1

max
j=1,2,...,n

xjk (1)

f1(x) = A = max
k=1,2,...,UBm

n∑

j=1

ajxjk (2)

where UBm is the upper bound for the number of stations m,

aj is the area information for task j, xjk is a decision variable

taking value 1 if task j is assigned to station k, and n is the

number of tasks.

We chose this variant because it is realistic in the automotive

industry since the annual production of an industrial plant (and

therefore, the cycle time c) is usually set by some market

objectives. For more information we refer the interested reader

to [6].

III. PREVIOUS APPROACHES TO SOLVE THE TSALBP-1/3

The specialised literature includes a large variety of exact

and heuristic problem-solving procedures as well as meta-

heuristics for solving the SALBP [10], [11]. Mainly, the use

of genetic algorithms [8], [12], tabu search [13], simulating

annealing [14], and ant colony optimization [3] have been

considered. Besides, multicriteria formulations of the SALBP

have also been tackled using genetic algorithms [15] and ant

colony optimization [16].

However, there are not many proposals for solving the

multiobjective 1/3 variant of the TSALBP [6]. A MACS al-

gorithm and a multiobjective extension of the SALBP genetic

algorithm (first introduced in [8]) can be found. These two

algorithms will be briefly reviewed in the next subsections, as

will be compared with our proposal in the experimental study

developed in Section V.

A. The MACS algorithm

MACS [7] was proposed as an extension of ant colony

system (ACS) [17] to deal with multiobjective problems. The

original version of MACS uses one pheromone trail matrix

and several heuristic information functions. However, in the
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case of the TSALBP-1/3, the experimentation carried out in

[6] showed that the performance was better when MACS was

only guided by the pheromone trail information. Therefore,

the heuristic information functions were not used.

Since the number of stations is not fixed, the algorithm uses

a constructive and station-oriented approach [2] to face the

precedence problem (as usually done for the SALBP [10]).

Thus, the algorithm will open a station and select one task till

a stopping criterion is reached. Then, a new station is opened

to be filled and the procedure is iterated till all the existing

tasks are allocated.

The pheromone information has to memorise which tasks

are the most appropriate to be assigned to a station.

Hence, a pheromone trail has to be associated to a pair

(stationk, taskj), k = 1...n, j = 1...n, with n being

the number of tasks, so the pheromone trail matrix has

a bi-dimensional nature. Since MACS is Pareto-based, the

pheromone trails are updated using the current non-dominated

set of solutions (Pareto archive). Two station-oriented single-

objective greedy algorithms were used to obtain the initial

pheromone value τ0.

In addition, a novel mechanism was introduced in the

construction procedure in order to achieve a better search

intensification-diversification trade-off able to deal with the

problem difficulties. This mechanism randomly decides when

to close the current station taking as a base both a station

closing probability distribution and an ant filling threshold αi.

The probability distribution is defined by the station filling rate

(i.e., the overall processing time of the current set of tasks Sk

assigned to that station) as follows:

p (closing k) =

∑
i∈Sk

ti

c
(3)

At each construction step, the current station filling rate is

computed. In case it is lower than the ant’s filling percentage

threshold αi (i.e., when it is lower than αi·c), the station is kept
opened. Otherwise, the station closing probability distribution

is updated and a random number is uniformly generated in

[0, 1] to take the decision whether the station is closed or not.

If the decision is to close the station, a new station is created

to allocate the remaining tasks. Otherwise, the station will be

kept opened. Once the latter decision has been taken, the next

task is chosen among all the candidate tasks using the MACS

transition rule to be assigned to the current station as usual.

The procedure goes on till there is no more remaining task to

be assigned.

Thus, the higher the ant’s threshold, the higher the proba-

bility of a totally filled station, and vice versa. This is due to

the fact that there are less possibilities to close it during the

construction process. In this way, the ant population will show

a highly diverse search behaviour, allowing the algorithm to

properly explore the different parts of the optimal Pareto front

by appropriately distributing the generated solutions.

The interested reader is referred to [6] for a complete

description of the MACS proposal for the TSALBP-1/3.

B. A multiobjective extension of a single-objective genetic

algorithm

An extension of an existing single-objective genetic algo-

rithm for the SALBP was proposed in [6] to deal with the

TSALBP-1/3. The authors chose the proposal introduced in [8]

and adapted it by means of the state-of-the-art multiobjective

NSGA-II approach. In short, the features of this TSALBP-

NSGA-II designed can be summarised as follows:

• Coding: The original order-based encoding scheme pro-

posed in [8] is considered. The length of the chromo-

some is equal to the number of tasks. The task-station

assignment is implicitly encoded in the genotype and it is

obtained by using a simple station-oriented constructive

mechanism [2] guided by fulfilling the available cycle

time of each station. A station is opened and sequentially

filled with the tasks listed in the chromosome order while

the overall processing time of the set of assigned tasks

does not exceed the assembly line cycle time. Once there

is not available time to place the next task in the current

station, this station is closed and a new empty one is

opened to assign the remaining tasks. The procedure stops

when all the tasks are allocated.

• Initial population: it is randomly generated by assuring

the feasibility of the precedence relations.

• Crossover: A kind of order preserving crossover [18],

[19] is considered to ensure that feasible offsprings

are obtained satisfying the precedence restrictions. This

family of order-based crossover operators emphasises the

relative order of the genes from both parents. In our case,

two different offspring are generated from the two parents

to be mated, proceeding as follows. Two cutting points

are randomly selected for them. The first offspring takes

the genes outside the cutting points in the same sequence

order as in the first parent. That is, from the beginning

to the first cutting point and from the second cutting

point to the end. The remaining genes, those located

between the two cutting-points, are filled in by preserving

the relative order they have in the second parent. The

second offspring is generated the other way around, i.e.

taking the second parent to fill in the two external parts

of the offspring and the first one to build the central

part. Notice that, preserving the order of the genes of

the other parent in the central part will guarantee the

feasibility of the obtained offspring solution in terms of

precedence relations. The central genes also satisfy the

precedence constraints with respect to those that are in

the two external parts.

• Mutation: The same mutation operator considered in the

original single-objective genetic algorithm [8], a scramble

mutation, is used. A random cut-point is selected and the

genes after the cut-point are randomly replaced (scram-

bled), assuring feasibility.

• Diversity: the similarity-based mating scheme for EMO

proposed in [20] to recombine extreme and similar par-

ents was used in this algorithm to try to improve the
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diversity and spread of the Pareto set approximations.

This NSGA-II design for the TSALBP-1/3 showed poor

results in comparison with MACS [6]. The generated Pareto

front approximations showed a very low cardinality and con-

verged to a narrow region located in the left-most zone of the

objective space (i.e. solutions with small values of the number

of stations, m). The latter fact is justified by the TSALBP-1/3

nature as a strongly constrained combinatorial optimization

problem, which was not properly tackled by the global search

algorithm considered (a multiobjective genetic algorithm) and

by the basic order encoding used.

Nevertheless, in the next section we will propose an ad-

vanced EMO design able to overcome the problems of the

latter basic multiobjective genetic algorithm and to success-

fully solve the TSALBP-1/3.

IV. AN ADVANCED NSGA-II-BASED APPROACH FOR THE

TSALBP-1/3

The weak performance of the previous EMO algorithm

(Section III-B) when solving the TSALBP-1/3 cannot be

explained because of the chosen multiobjective genetic al-

gorithm. It is well known that NSGA-II has shown a large

success when solving many different multiobjective numerical

and combinatorial optimization problems (see Chapter 7 in

[21] for a detailed review classified in different application

areas). On the contrary, that weak behaviour was due to

the inherent characteristics of the combinatorial optimization

problem being solved. In principle, the use of global search

procedures as genetic algorithms could be less appropriate

than constructive metaheuristics to deal with the TSALBP-

1/3 because of the hard constraints (precedence relations and

stations’ cycle time limitation). In addition, the representation

used does not seem to be adequate because it is not a natural

coding for the problem.

Hence, a novel design is proposed, also based on the

original NSGA-II search scheme [9]. However, a more ap-

propriate representation and more effective operators are used

to solve the TSALBP-1/3. From now on, the new algorithm

will be referred as advanced TSALBP-NSGA-II because of

its problem-specific design and potential application to other

TSALBP variants. The previous method will be referred to

as basic TSALBP-NSGA-II in order to stress the difference

between both approaches. The main features and operators

of the advanced TSALBP-NSGA-II are described in the next

subsections.

A. Representation scheme

The most important problem of the basic TSALBP-NSGA-II

method was the representation scheme, based on that usually

considered by the existing genetic algorithm approaches for

the SALBP. We should note that the SALBP is a single-

objective problem and thus it is not strictly necessary to

represent a solution as an assignment of tasks to stations to

solve it. Instead, an order encoding is used to define a specific

task ordering in a chromosome and the latter assignment is

determined in a constructive fashion, as seen in Section III-B.

However, the latter representation is not a good choice for

the TSALBP-1/3. It carries the problem of biasing the search

to a narrow area of the Pareto front (as demonstrated by the

experimental results in [6] and in the current contribution).

Here is where our new proposal, the advanced TSALBP-

NSGA-II, takes the biggest step ahead with respect to the

existing basic algorithm. The new coding scheme introduced

will explicitly represent task-station assignments regardless the

cycle time of the assembly line, thus ensuring a proper search

space exploration for the joint optimization of the number and

the area of the stations. Furthermore, the representation will

also follow an order encoding to facilitate the construction

of feasible solutions with respect to the precedence relations

constraints.

The allocation of tasks among stations is made by employ-

ing separators1. Separators are thus dummy genes which do

not represent any specific task and they are inserted into the

list of genes representing tasks. In this way, they define groups

of tasks being assigned to a specific station. The maximum

possible number of separators is n − 1 (with n being the

number of tasks), as it would correspond to an assembly line

configuration with n stations, each one composed of a single

task. Tasks are encoded using numbers in {1, . . . , n}, as in

the previous representation, while separators take values in

{n+1, . . . , 2 ·n− 1}. Hence, the genotype is again an order-

based representation.

The number of separators included in the genotype is

variable and it depends on the number of existing stations

in the current solution. Therefore, the algorithm works with a

variable-length coding scheme, although its order-based repre-

sentation nature avoids the need of any additional mechanism

to deal with this issue. The maximum size of the chromosome

is 2 · n − 1 to allow the presence of separators for the

maximum number of possible stations. On the other hand,

the representation scheme ensures the encoded solutions are

feasible with respect to the precedence relations constraints.

However, the cycle time limitation could be violated and it

will be a task of the genetic operators to ensure feasibility

with respect to that constraint.

In summary, the proposed representation shows two advan-

tages. On the one hand, it is clear and natural and thus it fulfils

the rule of thumb that the genetic coding of a problem should

be a natural expression of it. On the other hand, the genotype

keeps on being a permutation, thus allowing us to consider the

extensively used genetic operators for this representation.

B. The crossover operator

The main difficulty when using non-standard representations

is the design of a suitable crossover operator able to combine

relevant characteristics of the parent solutions into a valid

offspring solution. Nevertheless, as our representation is order-

based, the crossover operator can be designed from a clas-

sical order-based one. Crossover operators of the latter kind

1We should notice that, although this representation is not very extended,
the use of separators in an order encoding was previously considered in a
document clustering application [22].
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which have been suggested in the literature include partially

mapped crossover (PMX), order crossover, order crossover

# 2, position based crossover, and cycle crossover, among

others [23]. We have selected one of the most extended ones,

PMX, which has been already used in other genetic algorithm

implementations for the SALBP (for example in [8]).

PMX generates two offspring from two parents by means of

the following procedure: a) two random cut points are selected,

b) for the first offspring, the genes outside the random points

are copied directly from the first parent, and c) the genes inside

the two cut points are copied but in the order they appear in

the second parent. The same mechanism is followed up with

the second offspring but with the opposite parents.

Thanks to our advanced coding scheme and to the use of

a permutation-based crossover, the feasibility of the offspring

with respect to precedence relations is assured. However, since

information about the tasks-stations assignment is encoded

inside the chromosome, it is compulsory to assure that: a)

there is not any station exceeding the fixed cycle time limit,

and b) there is not any empty station in the configuration of

the assembly line.

Therefore, a repair operator must be applied for each

offspring after crossover. The use of these kinds of operators is

very extended in evolutionary computation when dealing with

combinatorial optimization problems with hard restrictions

[24]. They should be carefully developed as a poor design of

the repair operator can bias the convergence of the genetic

algorithm or can make the crossover operator lose useful

information from the parents. The goals and methods of our

repair operator are the following:

• Redistribute spare tasks among available stations: chang-

ing the order of the genes in the parents to generate the

offspring can cause the appearance of stations with an

excessive cycle time. The repair operator must reallocate

the spare tasks in other stations. First, the critical stations

(those exceeding the cycle time) and their tasks are

localised. Then, the feasible stations to reallocate each

task of the critical station, fulfilling the restrictions, are

calculated. If one spare task can be reallocated in more

than one different station, the algorithm will choose one

of them randomly for the reallocation. This process is

repeated till either the critical station satisfies the cycle

time restriction or there is no feasible movement. In the

latter case, the critical station will be randomly divided

in two or more stations by adding the needed separators

to balance the load.

• Removing empty stations: no empty stations are allowed.

For the genotype of the individual, this means that two

or more genes representing separators cannot be placed

together. Thus, the repair operator will find and remove

them to only keep the necessary separators 2.

2Notice that, the application of the current operator is not actually needed
and it is more related to aesthetic reasons. The coding scheme, the designed
genetic operators and the multiobjective fitness function would actually allow
the algorithm to work with chromosomes encoding empty stations by directly
ignoring them.

C. Mutation operator

A mutation operator has been specifically designed and

applied uniformly to the selected individuals of the population.

It is based on reordering a part of the sequence of tasks

and reassigning them to stations. It will be called scramble

mutation operator.

The scramble mutation operator works as follows: after

choosing two points randomly, the tasks between those points

are scrambled forming a new sequence of tasks in such a way

the mutated solution keeps on being feasible with respect to the

precedence relations. The existing separators among the two

mutation points are ignored and a new reallocation of those

tasks is considered by randomly generating new separator

locations within the task sequence.

To do so, a similar mechanism to the filling thresholds of the

MACS algorithm have been followed (see Section III-A). The

task sequence is analysed from left to right and each position

has a random choice for the insertion of a separator. The

probability distribution associated to the separator insertion

depends on the current station filling rate according to the

cycle time (see equation 3).

V. EXPERIMENTS

This section is devoted to describe the experimental study

developed to test our proposal. We first specify the problem

instances, parameter values, and multiobjective performance

indicators used for the computational tests. Then, our novel

proposal is compared to the existing basic TSALBP-NSGA-II

and the state-of-the-art algorithm for the TSALBP-1/3, MACS.

A. Problem instances and parameters

Six problem instances with different features have

been selected for the experimentation: arc111 (P1),

barthol2 (P2), barthold (P3), lutz2 (P4),

scholl (P5), and weemag (P6). The six TSALBP-

1/3 instances considered are publicly available at

http://www.nissanchair.com/TSALBP. Originally,

these instances only had time information. However, their

area information has been created by reverting the task graph

to make them bi-objective (as done in [3]).

We executed each algorithm 10 times with different random

seeds, setting a fixed run time as stopping criterion (900 sec-

onds). This stopping criterion was chosen because it is broadly

admitted and used in real-world industrial environments. Also,

all the algorithms were launched in the same computer: Intel

PentiumTM D with two CPUs at 2.80GHz, and CentOS Linux

4.0 as operating system. Furthermore, the parameters of the

developed algorithms and their operators are shown in Table I.

The values of these parameters were selected after carrying out

a preliminary experimentation.

B. Multiobjective performance indicators

We will consider two different multiobjective performance

indicators [21] to evaluate the quality of the advanced

TSALBP-NSGA-II proposal with respect to the TSALBP-1/3
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TABLE I: Used parameter values for the three algorithms

presented in the experimentation.

Parameter Value Parameter Value

Basic TSALBP-NSGA-II

Population size 100 Ishibuchi’s γ, δ values 10

Crossover probability 0.8 Mutation probability 0.1

MACS

Number of ants 10 β 2
ρ 0.2 q0 0.2
Ants’ thresholds {0.2, 0.4, 0.6,
(2 ants per each) 0.7, 0.9}

Advanced TSALBP-NSGA-II

Population size 100

Crossover probability 0.8 Mutation probability 0.1

state-of-the-art, the MACS algorithm, and the basic TSALBP-

NSGA-II.

On the one hand, we selected one unary performance

indicator: the hypervolume ratio (HV R). The HV R [21] has

become a very useful unary performance indicator. Its use is

very extended as it can jointly measure the distribution and

convergence of a Pareto set approximation. It can be calculated

as follows:

HV R =
HV (P )

HV (P ∗)
, (4)

where HV (P ) and HV (P ∗) are the volume (S indicator

value) of the Pareto front approximation and the true Pareto

front, respectively. When HV R equals 1, then the Pareto

front approximation and the true Pareto front are equal. Thus,

HV R values lower than 1 indicate a generated Pareto front

approximation that is not as good as the true Pareto front.

On the other hand, we have also considered the binary set

coverage metric C to compare the obtained Pareto sets two

by two based on the following expression:

C(P,Q) =
|{q ∈ Q ; ∃p ∈ P : p ≺ q}|

|Q|
, (5)

where p ≺ q indicates that the solution p, belonging to the

approximate Pareto set P , dominates the solution q of the

approximate Pareto set Q in a minimisation problem.

Hence, the value C(P,Q) = 1 means that all the solutions

inQ are dominated by or equal to solutions in P . The opposite,

C(P,Q) = 0, represents the situation where none of the

solutions in Q are covered by the set P . Note that both

C(P,Q) and C(Q,P ) have to be considered, since C(P,Q)
is not necessarily equal to 1− C(Q,P ).

We have used boxplots based on the C metric for showing

the dominance degree of the Pareto sets of every pair of

algorithms (see Figure 2). Each rectangle contains six boxplots

representing the distribution of the C values for a certain

ordered pair of algorithms in the six problem instances (P1

to P6). Each box refers to algorithm A in the corresponding

TABLE II: Mean and standard deviation x̄(σ) of theHV R per-

formance indicator values for the advanced TSALBP-NSGA-II

(TN), and the state-of-the-art algorithms, MACS and the basic

TSALBP-NSGA-II (BasTN) for instances P1 to P6. Higher

values indicate better performance.

HV R

P1 P2 P3

MACS 0.7860 (0.005) 0.7721 (0.01) 0.8104 (0.017)
BasTN 0.7854 (0.03) 0.6835 (0.070) 0.1502 (0.067)
TN 0.9429 (0.041) 0.9175 (0.058) 0.8717 (0.049)

P4 P5 P6

MACS 0.7095 (0.02) 0.5682 (0.007) 0.8700 (0.009)
BasTN 0.0089 (0.011) 0.1731 (0.001) 0.4583 (0.209)
TN 0.9747 (0.027) 0.9238 (0.044) 0.9622 (0.027)

row and algorithm B in the corresponding column and gives

the fraction of B covered by A (C(A,B)).
In addition, we use attainment surface plots [25] to ease

the analysis of the results. The attainment surfaces plots of 2

problem instances, P2 and P5, appear in Figures 3 and 4.

The reader should notice that the true Pareto sets of the six

problem instances are not known. To overcome this problem

we will consider a pseudo-optimal Pareto set, i.e. an approxi-

mation of the true Pareto set. It is obtained by merging all the

(approximate) Pareto sets generated for each problem instance

by any algorithm in any run. Thanks to this pseudo-optimal

Pareto set we can compute the HV R performance indicator.

C. Experimentation and analysis of results

In this section we analyse the performance of the advanced

TSALBP-NSGA-II against the state-of-the-art MACS and the

basic TSALBP-NSGA-II. We use the multiobjective perfor-

mance indicators considered in the previous section.

The results corresponding to the binary C indicator values

on the 6 instances are represented by means of boxplots in

Figure 2. The corresponding HV R values are included in

Table II. Besides, attainment surfaces for some instances are

plotted in Figure 3 and 4.

In view of the boxplots generated by the C indicator values

(Figure 2), a clear analysis can be drawn: the advanced

TSALBP-NSGA-II outperforms both MACS and the basic

TSALBP-NSGA-II without any doubt. Hardly none of the

solutions generated by the advanced TSALBP-NSGA-II are

dominated by the solutions generated with the other methods.

Only in instance P6, some solutions of the advanced TSALBP-

NSGA-II are dominated by the other methods in some of the

performed runs.

The same global analysis can be observed using the re-

sults of the unary indicator, HV R (Table II). The values of

the Pareto front approximations generated by the advanced

TSALBP-NSGA-II are the highest ones. Thus, the convergence

and diversity achieved by the advanced TSALBP-NSGA-II are

higher than the state-of-the-art algorithms in all the instances.

See for example the HV R values of problem instance P5 to

check the big difference. On the contrary, the basic TSALBP-
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Fig. 2: Boxplots representing the binary C indicator values for comparisons between the advanced TSALBP-NSGA-II (TN) and

the state-of-the-art algorithms, MACS and basic TSALBP-NSGA-II (BasTN) for instances P1 to P6. White boxplots correspond

to C(TN,MACS/BasTN), coloured boxplots to C(MACS/BasTN, TN). Larger values indicate better performance.
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Fig. 3: Attainment surfaces plot for instance P2 (barthol2).

NSGA-II has a very low convergence to the whole Pareto front

(e.g. see the HV R values of problem instance P4).

Finally, the overall excellent performance of the advanced

TSALBP-NSGA-II can also be remarked in the attainment

surfaces of Figures 3 and 4. There is a high distance between

the attainment surfaces obtained by the advanced TSALBP-

NSGA-II and those corresponding to the other algorithms in

both instances, P2 and P5. We can also see the solutions

obtained by the basic TSALBP-NSGA-II in both figures. As
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Fig. 4: Attainment surfaces plot for instance P5 (scholl).

explained in Section III-B, although the basic TSALBP-NSGA-

II is able to reach better solutions than the MACS algorithm

in a specific small region of the Pareto front, its performance

is worse in the rest of it. The latter fact motivated the design

of an EMO algorithm able to outperform both algorithms in

all the Pareto front. This goal was clearly achieved by the

proposal presented in this work.

In view of this experimental study, it can be seen that every

included component in the advanced TSALBP-NSGA-II, i.e.
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individual representation and operators, are more faithful to the

solution phenotype and thus more appropriate for the problem

solving. This fact helps to increase the performance of the

algorithm and achieve the best intensification-diversification

trade-off in the multiobjective search space, obtaining better

results than the MACS algorithm.

VI. CONCLUSIONS

A novel multiobjective genetic algorithm design has been

proposed to tackle the TSALBP-1/3 resulting in a new ap-

proach called advanced TSALBP-NSGA-II. The performance

of this new algorithm has been compared with the state-of-

the-art algorithms, the multiobjective ACO approach, MACS,

and a previous multiobjective extension of an existing genetic

algorithm for the SALBP, called basic TSALBP-NSGA-II. The

comparisons were carried out using up-to-date multiobjec-

tive performance indicators. The advanced TSALBP-NSGA-II

clearly outperformed the latter two methods when solving six

TSALBP-1/3 instances considered.

It has been demonstrated that the existing basic TSALBP-

NSGA-II showed a poor performance due to the use of non-

appropriate representation and genetic operators to solve the

problem. Since the TSALBP-1/3 is a very complex combi-

natorial optimization problem with strong constraints, a deep

study of the best design options for the specific context

was mandatory to get a high performance problem solving

technique. Therefore, it can be asserted that EMO algorithms

are suitable to solve this kind of multiobjective assembly line

balancing problems, if a good design is used.

Future work is devoted to improve the performance of the

EMO proposal with new diversity mechanisms to provide

better Pareto approximation sets. In addition, we aim to add

interactive preferences into the multiobjective algorithm to

guide the search to the Pareto front regions preferred by the

expert [26]–[28].

ACKNOWLEDGEMENT

This work has been supported by the Spanish Ministerio

de Ciencia e Innovación (MICINN) under project TIN2009-

07727, including EDRF fundings.

REFERENCES

[1] I. Baybars, “A survey of exact algorithms for the simple assembly line
balancing problem,” Management Science, vol. 32, no. 8, pp. 909–932,
1986.

[2] A. Scholl, Balancing and Sequencing of Assembly Lines (2nd. Edition).
Physica-Verlag, Heidelberg, 1999.

[3] J. Bautista and J. Pereira, “Ant algorithms for a time and space
constrained assembly line balancing problem,” European Journal of

Operational Research, vol. 177, pp. 2016–2032, 2007.
[4] V. Chankong and Y. Y. Haimes, Multiobjective Decision Making Theory

and Methodology. North-Holland, 1983.
[5] F. Glover and G. A. Kochenberger, Eds., Handbook of Metaheuristics.

Kluwer Academic, 2003.
[6] M. Chica, O. Cordón, S. Damas, and J. Bautista, “Multiobjective,

constructive heuristics for the 1/3 variant of the time and space assembly
line balancing problem: ACO and random greedy search,” Information

Sciences, vol. 180, pp. 3465–3487, 2010.
[7] B. Barán and M. Schaerer, “A multiobjective ant colony system for vehi-

cle routing problem with time windows,” in 21st IASTED International

Conference, Innsbruck (Germany), February 2003, pp. 97–102.

[8] I. Sabuncuoglu, E. Erel, and M. Tayner, “Assembly line balancing using
genetic algorithms,” Journal of Intelligent Manufacturing, vol. 11, pp.
295–310, 2000.

[9] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Transactions on

Evolutionary Computation, vol. 6, no. 2, pp. 182–197, 2002.
[10] A. Scholl and C. Becker, “State-of-the-art exact and heuristic solution

procedures for simple assembly line balancing,” European Journal of

Operational Research, vol. 168, no. 3, pp. 666–693, 2006.
[11] A. Scholl and S. Voss, “Simple assembly line balancing- heuristic

approaches,” Journal of Heuristics, vol. 2, pp. 217–244, 1996.
[12] Y. K. Kim, W. S. Song, and J. H. Kim, “A mathematical model and

a genetic algorithm for two-sided assembly line balancing,” Computers

and operations research, vol. 36, no. 3, pp. 853–865, 2009.
[13] W. C. Chiang, “The application of a tabu search metaheuristic to

the assembly line balancing problem,” Annals of Operations Research,
vol. 77, pp. 209–227, 1998.

[14] A. Heinrici, “A comparison between simulated annealing and tabu search
with an example from the production planning,” in Operations Research

Proceedings 1993, H. Dyckhoff, U. Derigs, and M. Salomon, Eds.,
Berlin, Germany, 1994, pp. 498–503.

[15] Y. Y. Leu, L. A. Matheson, and L. P. Rees, “Assembly line balancing
using genetic algorithms with heuristic-generated initial populations and
multiple evaluation criteria,” Decision Sciences, vol. 25, pp. 581–606,
1994.

[16] P. R. McMullen and P. Tarasewich, “Multi-objective assembly line
balancing via a modified ant colony optimization technique,” vol. 44,
pp. 27–42, 2006.

[17] M. Dorigo and L. Gambardella, “Ant colony system: a cooperative learn-
ing approach to the traveling salesman problem,” IEEE Transactions on

Evolutionary Computation, vol. 1, no. 1, pp. 53–66, 1997.
[18] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Ma-

chine Learning. Addison-Wesley Publishing, 1989.
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