
A Multiobjective Memetic Ant Colony Optimization

Algorithm for the 1/3 Variant of the Time and

Space Assembly Line Balancing Problem

Manuel Chica∗, Oscar Cordon∗, Sergio Damas∗ and Joaquı́n Bautista†

∗European Centre for Soft Computing

c/ Gonzalo Gutiérrez Quirós s/n, Mieres (Asturias), Spain

Email: {manuel.chica, oscar.cordon, sergio.damas}@softcomputing.es
†Universitat Politècnica de Catalunya - Nissan Chair (http://www.nissanchair.com)

Barcelona, Spain. Email: joaquin.bautista@upc.edu

Abstract—Time and space assembly line balancing considers
realistic multiobjective versions of the classical assembly line
balancing industrial problems, involving the joint optimization of
conflicting criteria such as the cycle time, the number of stations,
and/or the area of these stations. The aim of this contribution
is to present a new multiobjective memetic algorithm based on
ant colony optimization for the 1/3 variant of this family of
industrial problems. This variant involves the joint minimisation
of the number and the area of the stations, given a fixed cycle
time limit. The good behaviour of the proposal is shown in nine
problem instances.

I. INTRODUCTION

An assembly line is made up of a number of workstations,

arranged either in series or in parallel. Since the manufacturing

of a production item is divided into a set of tasks, a usual

and difficult problem is to determine how these tasks can be

assigned to the stations fulfilling certain restrictions. Conse-

quently, the aim is to get an optimal assignment of subsets of

tasks to the stations of the plant. Moreover, each task requires

an operation time for its execution.

A family of academic problems –referred to as simple

assembly line balancing problems (SALBP)– was proposed

to model this situation [1] [2]. Taking this family as a base

and adding spatial information to enrich it, Bautista and

Pereira recently proposed a more realistic framework: the time

and space assembly line balancing problem (TSALBP) [3].

This framework considers an additional space constraint to

become a simplified version of real-world problems. The new

space constraint emerged due to the study of the specific

characteristics of the Nissan plant in Barcelona (Spain).

As many real-world problems, TSALBP formulations have a

multicriteria nature [4] because they contain three conflicting

objectives to be minimised: the cycle time of the assembly

line, the number of the stations, and the area of these stations.

In this paper we deal with the TSALBP-1/3 variant which

tries to minimise the number of stations and their area for a

given product cycle time. TSALBP-1/3 has an important set of

hard constraints like precedences or cycle time limits for each

station. Thus, the use of constructive approaches is more con-

venient than others like local or global search procedures [5].

In [6] we successfully tackled the TSALBP-1/3 by means of a

specific procedure based on the Multiple Ant Colony System

(MACS) algorithm [7], that approach is the state-of-the-art of

TSALBP-1/3. Later in [8], a multiobjective GRASP method

[9] was presented also showing the appropriateness of using

local search (LS) operators with multiobjective metaheuristics

to solve the problem.

The term memetic algorithm (MA) was introduced by

Moscato to describe genetic algorithms where LS played a

significant role [10]. This “hybrid” metaheuristic has demon-

strated its good performance because of the combination of

the genetic operators, that present a global search behaviour,

and the local optimizer, which acts to improve the solutions

produced by the genetic operators. With this methodology,

the LS strategy is part of the whole evolutionary procedure.

From the original contribution of Moscato, the evolutionary

computation community has shown a great interest on MAs

resulting in a broad research area [11], [12]. More specifically,

MAs have been widely used in industrial and engineering

applications [13], [14].

However, the use of multiobjective local search operators to

improve the solutions obtained by a global search procedure

for the assembly line balancing has not been extensively

explored. In this paper we do it by extending the multiobjective

ant colony optimization algorithm, MACS [6], by means of

incorporating a multicriteria local search scheme. An experi-

mentation is carried out in nine problem instances, comparing

the behaviour of the memetic MACS algorithm with the

basic MACS proposal and the multiobjective GRASP method.

Performance indicators are used to analyse the behaviour of

the algorithms

The paper is structured as follows. In Section II, the problem

formulation is explained. Then, the MACS metaheuristic is

described in Section III, and the new multicriteria local search

structure is shown in Section IV. The experimentation setup

as well as the analysis of results are presented in Section V.

Finally, some concluding remarks and future research are

discussed in Section VI.

978-1-61284-333-9/11/$26.00 ©2011 IEEE 16

II. THE TIME AND SPACE ASSEMBLY LINE BALANCING

PROBLEM

The manufacturing of a production item is divided into a

set V of n tasks. Each task j requires an operation time for

its execution tj > 0 that is determined as a function of the

manufacturing technologies and the employed resources. Each

station k is assigned to a subset of tasks Sk (Sk ⊆ V), called

workload. A task j is assigned to a station k.

Each task j has a set of direct predecessors, Pj , which

must be accomplished before starting it. These constraints

are normally represented by means of an acyclic precedence

graph, whose vertices stand for the tasks and where a directed

arc (i, j) indicates that task i must be finished before starting

task j on the production line. Thus, if i ∈ Sh and j ∈ Sk,

then h ≤ k must be fulfilled. Each station k presents a

station workload time t(Sk) that is equal to the sum of the

tasks’ lengths assigned to the station k. SALBP [2] focuses

on grouping tasks in workstations by an efficient and coherent

way. There is a large variety of exact and heuristic problem-

solving procedures for it [15].

The need of introducing space constraints in the assembly

lines’ design is based on two main reasons: (a) the length of the

workstation is limited in the majority of the situations, and (b)

the required tools and components to be assembled should be

distributed along the sides of the line. Hence, an area constraint

may be considered by associating a required area aj to each

task j and an available area Ak to each station k that, for the

sake of simplicity, we shall assume it to be identical for every

station and equal to A : A = max∀k∈{1..n}{Ak}. Thus, each

station k requires a station area a(Sk) that is equal to the sum

of areas required by the tasks assigned to station k.

This leads us to a new family of problems called TSALBP

in [3]. It may be stated as: given a set of n tasks with their

temporal tj and spatial aj attributes (1 ≤ j ≤ n) and a

precedence graph, each task must be assigned to a single

station such that: (i) every precedence constraint is satisfied,

(ii) no station workload time (t(Sk)) is greater than the cycle

time (c), and (iii) no area required by any station (a(Sk)) is

greater than the available area per station (A).

TSALBP presents eight variants depending on three opti-

mization criteria: m (the number of stations), c (the cycle time)

and A (the area of the stations). Within these variants there

are four multiobjective problems and we will tackle one of

them, the TSALBP-1/3. It consists of minimising the number

of stations m and the station area A, given a fixed value of

the cycle time c, mathematically formulated as follows:

f0(x) = m =

UBm
∑

k=1

max
j=1,2,...,n

xjk (1)

f1(x) = A = max
k=1,2,...,UBm

n
∑

j=1

ajxjk (2)

where UBm is the upper bound for the number of stations m,

aj is the area information for task j, xjk is a decision variable

taking value 1 if task j is assigned to station k, and n is the

number of tasks.

We chose this variant because it is realistic in the automotive

industry since the annual production of an industrial plant (and

therefore, the cycle time c) is usually set by some market

objectives. For more information we refer the interested reader

to [6].

III. MACS

MACS [7] was proposed as an extension of ant colony

system (ACS) [16] to deal with multiobjective problems. In

[6], the authors modified the original version of MACS to

adapt it for solving the TSALBP-1/3. The algorithm uses

one pheromone trail matrix and several heuristic information

functions. In the case of the TSALBP-1/3, the experimentation

carried out in [6] showed that the performance was better when

MACS was only guided by the pheromone trail information.

Therefore, the heuristic information functions have not been

considered in this contribution.

Since the number of stations is not fixed, the method is

based on constructive and station-oriented approach [2] to face

the precedence problem (as usually done for the SALBP [15]).

Thus, the algorithm opens a station and sequentially selects

tasks to fill it by means of the MACS transition rule till a

stopping criterion is reached. Then, a new station is opened to

be filled and the procedure is iterated till all the existing tasks

are allocated.

The pheromone information has to memorise which tasks

are the most appropriate to be assigned to a station.

Hence, a pheromone trail has to be associated to a pair

(stationk, taskj), k = 1...n, j = 1...n, with n being

the number of tasks, so the pheromone trail matrix has

a bi-dimensional nature. Since MACS is Pareto-based, the

pheromone trails are updated using the current non-dominated

solution set (Pareto archive). Two station-oriented single-

objective greedy algorithms are used to obtain the initial

pheromone value τ0.

In addition, a novel mechanism was introduced in the

construction procedure in order to achieve a better search

intensification-diversification trade-off. This mechanism ran-

domly decides when to close the current station taking as a

base both a station closing probability distribution and an ant

filling threshold αi ∈ [0, 1]. The probability distribution is

defined by the station filling rate (i.e., the overall processing

time of the current set of tasks Sk assigned to that station) as

follows:

p (closing k) =

∑

i∈Sk
ti

c
. (3)

At each construction step, the current station filling rate is

computed. In case it is lower than the ant’s filling percentage

threshold αi (i.e. when it is lower than αi ·c), the station is kept

opened. Otherwise, the station closing probability distribution

is updated and a random number is uniformly generated in

[0, 1] to take the decision whether the station is closed or not.

If the decision is to close the station, a new station is created

17

to allocate the remaining tasks. Otherwise, the station will be

kept opened. Once the latter decision has been taken, the next

task is chosen among all the candidate tasks using the MACS

transition rule to be assigned to the current station as usual:

j =

{

arg maxj∈Ω(τij · [η
0
ij]

λβ · [η1
ij]

(1−λ)β), if q ≤ q0,

î, otherwise.
(4)

where Ω represents the current feasible neighbourhood of

the ant, β weights the relative importance of the heuristic

information with respect to the pheromone trail, and λ is

computed from the ant index h as λ = h/M . M is the number

of ants in the colony, q0 ∈ [0, 1] is an exploitation-exploration

parameter, q is a random value in [0, 1], and î is a node. This

node is selected according to the probability distribution p(j):

p(j) =

{

τij ·[η
0
ij]

λβ ·[η1
ij]

(1−λ)β

P

u∈Ω τiu·[η0
iu

]λβ ·[η1
iu

](1−λ)β , if j ∈ Ω,

0, otherwise.
(5)

The procedure goes on till there are no remaining tasks to

be assigned. Thus, the higher the ant’s threshold, the higher

the probability of a totally filled station, and vice versa. This is

due to the fact that there are less possibilities to close it during

the construction process. In this way, the ant population will

show a highly diverse search behaviour, allowing the method

to properly explore the different parts of the optimal Pareto

front by appropriately distributing the generated solutions.

The algorithm performs a local pheromone update every

time an ant crosses an edge < i, j > using the average costs

of the τ0 value. It is done as follows:

τij = (1 − ρ) · τij + ρ · τ0 (6)

The interested reader is referred to [6] for a complete

description of the MACS proposal for the TSALBP-1/3.

IV. MULTICRITERIA LS STRUCTURE AND COMPONENTS

Mainly, there are two stochastic LS approaches for multi-

objective combinatorial optimization problems [17], [18]. The

first one uses an acceptance criterion based on the weak

component-wise ordering of the objective value vectors of

neighbouring solutions. In addition, it maintains an unbounded

archive of non-dominated solutions found during the search

process (a Pareto archive) [19], [20]. The second family is

based on considering different scalarizations of the objective

function vector [21], [22], [23]. The MA design introduced

in this contribution will be based on this second approach.

The weighted sum scalarization of the two objectives of our

problem, A and m, are calculated by the following formula:

Min (λ1A + λ2m). (7)

This will be the function to be optimised by the multi-

criteria LS of the memetic MACS. As usually done in the

multiobjective MA area (see for example [23]), the weight

vector λ = (λ1, λ2) is created at random for each constructed

solution.

The existing local improvement procedures for ALB are

based on moves [24]. The LS operators are based on such

moves of tasks. In our design, two different neighbour gener-

ation operators will be considered and selected depending on

the weight vector λ (see Section IV). If λ1 > λ2, the neighbour

operator for minimising the A objective will be followed since

the LS optimization will be more biased to the improvement

of the latter objective than the other. Otherwise, the neighbour

operator headed to improve m will be considered first. If the

selected neighbour operator does not succeed minimising the

weighted sum scalarization, the other operator is then applied.

To explain the operation mode of both operators, it is

necessary to define, for each task j, the first, ESj , and last,

LPj , station where task j may be assigned according to the

assignment of its immediate predecessors and successors. In

general, a move (j, k1, k2) describes the assignment change

of task j from station k1 to station k2, where k1 6= k2 and

k2 ∈ [ESj , LPj].
The pseudo-code of the LS operator for the first objective,

A, is described in Algorithm 1. In this method, the solution

neighbourhood is built by means of the explained task moves.

The main goal is to reduce the area occupied by the station

with the highest area by moving tasks to other stations. It

works by first sorting the tasks of a target station and selecting

the task with the highest area. Then, the algorithm tries to

move this task to one of its feasible stations in order to reduce

the scalarization value of the solution. If there is no possible

improvement with this task, the algorithm selects the next task

of the sorted list of tasks of the target station.

In the case of the second LS operator, the goal is reducing

the number of stations m. From the initial solution, a neigh-

bourhood is created by moving all the tasks from the station

with the lowest number of tasks (called the Target Station) to

other stations, keeping a feasible solution. The operator works

as described in Algorithm 2: for a sorted list of stations with

respect to the number of tasks, the algorithm tries to move all

the tasks of each station in order to improve the scalarization

function value. This is done for a maximum number of

stations. Given a station to be removed, the algorithm uses a

branch & bound function (Algorithm 3) to search for a feasible

solution having the Target Station’s tasks reallocated in other

stations.

The local search is also run MAX ITERATIONS = 20
times. In addition, we have to specify a maximum number

of stations (MAX STATIONS) to limit the computational

time of the local search.

V. EXPERIMENTS

We explain the instances, parameters and performance in-

dicators used for the experimentation. Then, we analyse the

results of the different algorithms.

A. Problem Instances and Parameter Values

Nine problem instances with different features have been

selected for this first experimentation: arc111 with cycle

18

Algorithm 1: The pseudo-code of the LS operator for the

A objective.

while Iterations ≤ MAX ITERATIONS do1

Target Station ← Find the station with the highest2

area;

Tasks ← Descending Sort(tasks of Target Station);3

while no scalarization function improvement AND4

Tasks 6= ∅ do

Task ← First element of Set Of Tasks ;5

Find First Station and Last Station of Task;6

while no scalarization function improvement do7

Possible Station ← station with the lowest8

area ∈ [First Station,Last Station];
Move Task from Target Station to9

Possible Station;

if scalarization function improvement then10

Make the move permanent;11

end12

end13

Remove Task from Set Of Tasks;14

end15

if Target Station = ∅ then16

Remove Target Station;17

end18

Iterations ← Iterations +1;19

end20

return true if scalarization function is improved;21

Algorithm 2: The pseudo-code of the LS operator for the

m objective.

while Iterations ≤ MAX ITERATIONS do1

Set Of Stations ← Ascending Sort (with respect to2

no. of tasks);

i ← 1;3

while i ≤ MAX STATIONS AND no scalarization4

function improvement do

Target Station ← i-th element of5

Set Of Stations;

Set Of Tasks ← Descending Sort(tasks of6

Target Station);

for all elements of Set Of Tasks do7

Find First Station and Last Station;8

end9

First Element = First Element of Set Of Tasks10

BB(First Element, Set Of Tasks);

if no scalarization function improvement then11

i ← i + 1;12

end13

end14

Iterations ← Iterations +1;15

end16

return true if scalarization function is improved;17

Algorithm 3: The pseudo-code of the Branch & Bound

function used by the LS operator for objective m.

Function BB(Current Task, Set Of Tasks)1

if all elements of Set Of Tasks allocated then2

// Base case

Calculate scalarization function of the objective3

function vector;
else4

for all the possible stations of Current Task do5

Move Current Task to the selected station if6

feasible;

// Recursive call of the Branch &

Bound algorithm

Next Task ← Next task of Set Of Tasks;7

BB(Next Task, Set Of Tasks);8

if no scalarization function improvement then9

Undo Current Task movement;10

end11

end12

end13

return true if scalarization function is improved;14

time limits of c = 5755 and c = 7520 (P1 and P2),

barthol2 (P3), barthold (P4), lutz2 (P5), lutz3 (P6),

mukherje (P7), scholl (P8), and weemag (P9). They have

been chosen to be as diverse as possible to test the performance

of the algorithms and their variants when they deal with

different problem conditions 1. Originally, these instances were

SALBP-1 instances2 only having time information. However,

we have created their area information by reverting the task

graph to make them bi-objective (as done in [3]). The 9

TSALBP-1/3 instances considered are publicly available at

http://www.nissanchair.com/TSALBP.

We run each algorithm 10 times with different random

seeds, setting a fixed run time as stopping criterion (900 sec-

onds). All the algorithms were launched in the same computer:

Intel PentiumTM D with two CPUs at 2.80GHz and CentOS

Linux 4.0 as operating system. The specific parameter values

considered for the different algorithms are shown in Table I.

For the multiobjective local search, 20 as the maximum

number of iterations and MAX STATIONS = 20.

B. Multiobjective Performance Indicators

We will consider two different multiobjective performance

indicators [25], [26] to evaluate the quality of the memetic

MACS proposal with respect to the TSALBP-1/3 state-of-the-

art, the basic MACS algorithm and a GRASP method.

On the one hand, we selected one unary performance

indicator: the hypervolume ratio (HV R). On the other hand,

1Not only the time and area information of each task influence the
complexity of the problem instance, but also other factors as the cycle time
limit and the order strength of the precedence graph, which actually are the
most conclusive factors.

2Available at http://www.assembly-line-balancing.de

19

TABLE I
USED PARAMETER VALUES FOR THE MULTIOBJECTIVE ALGORITHMS

Parameter Value

MACS

Number of ants 10
ρ 0.2
Ants’ thresholds {0.2, 0.4, 0.6,
(2 ants per each) 0.7, 0.9}
β 2
q0 0.2

GRASP

γ 0.3
Diversity thresholds {0.2, 0.4, 0.6,

0.7, 0.9}

we have also considered a binary performance indicator, the

set coverage indicator C. We have used boxplots based on

the C indicator that calculates the dominance degree of the

approximate Pareto sets of every pair of algorithms (see

Figure 1). Each rectangle contains nine boxplots representing

the distribution of the C values for a certain ordered pair of

algorithms in the nine problem instances (P1 to P9). Each box

refers to algorithm A in the corresponding row and algorithm

B in the corresponding column and gives the fraction of B
covered by A (C(A,B)).

In addition, we use attainment surface plots [27] to ease

the analysis of the results. The attainment surfaces plots of 4

problem instances, P1, P9, P8 and P3, appear in Figures 2 and

3.

C. Analysis of Results

The experimental results obtained by the memetic and

basic MACS and the GRASP method can be seen in the C
performance indicator boxplots of Figure 1, the HV R values

in Table II (M-MACS corresponds to the memetic proposal

and MACS to the basic one), and the attainment surfaces of

Figures 2 and 3.

We can compare the behaviour of the memetic and basic

MACS algorithms by analysing the C and HV R performance

indicator values. The figures arise the following conclusions:

• The basic MACS algorithm is clearly outperformed by the

memetic MACS variant. The difference is significant in

view of the HV R values in Table II. There is a difference

of about 0.2 between both algorithms. It means that the

memetic MACS algorithm converges much more than the

basic MACS.

• The C boxplots of Figure 1 are also untroubled. Almost

all the solutions generated by the basic MACS algorithm

are dominated by those obtained by the memetic MACS.

In addition, an analysis between the memetic MACS algo-

rithm and the GRASP method is valuable. The HV R values

and C boxplots of the GRASP method are also shown in

Table II and Figure 1. The performance of the GRASP method

is much higher than the basic MACS algorithm according to

Fig. 2. Attainment surfaces for the P1 and P9 problem instances.

all the performance indicators. Therefore, we can state that the

memetic algorithms outperform the basic MACS algorithm.

A comparison between the memetic MACS and GRASP is

more difficult since their behaviour varies depending on the

problem instance. Again, taking into account the C boxplots

and HV R values, the memetic MACS algorithm performance

is better than GRASP in P2, P3, P7, and P8, but worse in

P1, P5, P6 and P9. In P4, P5, and P6, they behave similarly

and the values of the performance indicators are very close.

Therefore, it cannot be stated which of these two MAs is the

best one without focusing on a particular instance.

Figures 2 and 3 graphically shows the aggregated Pareto

fronts corresponding to P1, P9, P3, and P8 respectively. The

same conclusions arise and the convergence differences can

be observed. The Pareto fronts obtained by the basic MACS

algorithm are far from the pseudo-optimal Pareto front in all

the cases. The memetic MACS algorithm and the GRASP

method converge much more.

The attainment surface plots also corroborate the fact that

the behaviour of the memetic MACS and GRASP depends

on the problem instance and we cannot assert which one is

20

Fig. 1. C metric values represented by means of boxplots comparing the memetic MACS with the basic MACS and the GRASP method in the 9 problem
instances.

TABLE II
MEAN AND STANDARD DEVIATION VALUES (IN BRACKETS) OF THE HV R METRIC FOR ALL THE PROBLEM INSTANCES.

P1 P2 P3 P4 P5 P6 P7 P8 P9

MACS 0.776 (0.005) 0.77 (0.01) 0.707 (0.01) 0.719 (0.015) 0.622 (0.017) 0.611 (0.024) 0.725 (0.01) 0.619 (0.007) 0.758 (0.008)

M-MACS 0.967 (0.003) 0.97 (0.003) 0.981 (0.002) 0.946 (0.015) 0.916 (0.01) 0.949 (0.016) 0.993 (0.001) 0.994 (0.003) 0.965 (0.004)

GRASP 0.994 (0.001) 0.97 (0.001) 0.903 (0.003) 0.984 (0.003) 0.941 (0.011) 0.973 (0.007) 0.981 (0.002) 0.983 (0.003) 0.988 (0.004)

the best algorithm for the TSALBP. The memetic MACS

algorithm is the best algorithm in P3 and P8 (Figure 3).

However, the GRASP method is more suitable for P1 and

P9 instance (Figure 2).

VI. CONCLUDING REMARKS

In this contribution, we have designed and applied a new

memetic MACS algorithm to solve the TSALBP-1/3 in nine

well-known problem instances. The new algorithm is multi-

objective to tackle the industrial problem and makes use of

a multiobjective local search procedure with two problem-

specific local improvement methods, one per objective.

The memetic MACS algorithm shows a good behaviour

in the majority of the problem instances, obtaining much

better results than the state-of-the-art algorithm, MACS. The

memetic MACS was also compared with a GRASP method.

The best algorithm in quality is not clear enough since the

memetic MACS and GRASP performed differently depending

on the problem instance.

We aim to explore in future works the application of the

local search to a multiobjective genetic algorithm to increase

the quality of the Pareto fronts and try to obtain more diverse

solutions. The application of the designed memetic approaches

to real case studies is also planned.

ACKNOWLEDGEMENT

This work is supported by the UPC Nissan Chair and

the Spanish Ministerio de Educación y Ciencia under project

DPI2010-16759 (PROTHIUS-III) and by the Spanish Minis-

terio de Ciencia e Innovación under project TIN2009-07727,

21

Fig. 3. Attainment surfaces for the P3 and P8 problem instances.

both including EDRF fundings.

REFERENCES

[1] I. Baybars, “A survey of exact algorithms for the simple assembly line
balancing problem,” Management Science, vol. 32, no. 8, pp. 909–932,
1986.

[2] A. Scholl, Balancing and Sequencing of Assembly Lines (2nd. Edition).
Physica-Verlag, Heidelberg, 1999.

[3] J. Bautista and J. Pereira, “Ant algorithms for a time and space
constrained assembly line balancing problem,” European Journal of

Operational Research, vol. 177, pp. 2016–2032, 2007.
[4] V. Chankong and Y. Y. Haimes, Multiobjective Decision Making Theory

and Methodology. North-Holland, 1983.
[5] F. Glover and G. A. Kochenberger, Eds., Handbook of Metaheuristics.

Kluwer Academic, 2003.
[6] M. Chica, O. Cordón, S. Damas, and J. Bautista, “Multiobjective,

constructive heuristics for the 1/3 variant of the time and space assembly
line balancing problem: ACO and random greedy search,” Information

Sciences, vol. 180, pp. 3465–3487, 2010.
[7] B. Barán and M. Schaerer, “A multiobjective ant colony system for vehi-

cle routing problem with time windows,” in 21st IASTED International

Conference, Innsbruck (Germany), February 2003, pp. 97–102.

[8] M. Chica, O. Cordón, S. Damas, and J. Bautista, “A multiobjective
GRASP for the 1/3 variant of the time and space assembly line balancing
problem,” in Trends in Applied Intelligent Systems, Lecture Notes in

Artificial Intelligence, Vol. 6098, June 2010, pp. 656–665.
[9] T. A. Feo and M. G. C. Resende, “Greedy randomized adaptive search

procedures,” Journal of Global Optimization, vol. 6, pp. 109–133, 1995.
[10] P. Moscato, “On evolution, search, optimization, genetic algorithms

and martial arts: towards memetic algorithms,” Caltech Concurrent
Computation Program, Pasadena, Tech. Rep. 826, 1989.

[11] H. Ishibuchi, T. Yoshida, and T. Murata, “Balance between genetic
search and local search in memetic algorithms for multiobjective per-
mutation flow shop scheduling,” IEEE Transactions on Evolutionary

Computation, vol. 7, no. 2, pp. 204–223, 2003.
[12] Y. S. Ong, M. Lim, N. Zhu, and K. Wong, “Classification of adaptive

memetic algorithms: a comparative study,” IEEE Transactions on Sys-

tems, Man and Cybernetics, Part B: Cybernetics, vol. 36, no. 1, pp.
141–152, 2006.

[13] C. Prins, “Two memetic algorithms for heterogeneous fleet vehicle
routing problems,” Engineering Applications of Artificial Intelligence,
vol. 22, pp. 916–928, 2009.

[14] J. Santamarı́a, O. Cordón, S. Damas, J. M. Garcı́a-Torres, and A. Quirin,
“Performance evaluation of memetic approaches in 3D reconstruction of
forensic objects,” Soft Computing, vol. 13, no. 8-9, pp. 883–904, 2009.

[15] A. Scholl and C. Becker, “State-of-the-art exact and heuristic solution
procedures for simple assembly line balancing,” European Journal of

Operational Research, vol. 168, no. 3, pp. 666–693, 2006.
[16] M. Dorigo and L. Gambardella, “Ant colony system: a cooperative learn-

ing approach to the traveling salesman problem,” IEEE Transactions on

Evolutionary Computation, vol. 1, no. 1, pp. 53–66, 1997.
[17] J. Teghem and A. Jaszkiewicz, “Multiple objective metaheuristics for

combinatorial optimization: A tutorial,” in Proceedings of the 4th Meta-

heuristic International Conference (MIC 2003), Kyoto (Japan), 2003,
pp. 25–28.

[18] L. Paquete and T. Stützle, “A study of stochastic local search algorithms
for the biobjective QAP with correlated flow matrices,” European

Journal of Operational Research, vol. 169, pp. 943–959, 2006.
[19] J. Knowles and D. Corne, “On metrics for comparing nondominated

sets,” in Proceedings of Evolutionary Multi-criterion Optimization (EMO

2003), ser. Lecture Notes in Computer Science, vol. 2632. Berlin,
Germany: Springer-Verlag, 2003, pp. 295–310.

[20] E. Zitzler and L. Thiele, “Multiobjective evolutionary algoritms: A com-
parative case study and the strength pareto approach,” IEEE Transactions

on Evolutionary Computation, vol. 3, no. 4, pp. 257–271, 1999.
[21] X. Gandibleux and A. Freville, “Tabu search based procedure for solving

the 0-1 multiobjective knapsack problem: The two objectives case,”
Journal of Heuristics, vol. 6, no. 3, pp. 361–383, 2000.

[22] M. P. Hansen, “Tabu search for multiobjective optimization: MOTS,”
in 13th International Conference on Multiple Criteria Decision Making

(MCDM’97), Cape Town, South Africa, 1997.
[23] A. Jaszkiewicz, “Genetic local search for multiple objective combinato-

rial optimization,” European Journal of Operational Research, vol. 137,
no. 1, pp. 50–71, 2002.

[24] R. Rachamadugu and B. Talbot, “Improving the equality of workload
assignments in assembly lines,” International Journal of Production

Research, vol. 29, pp. 619–633, 1991.
[25] C. A. Coello, G. B. Lamont, and D. A. Van Veldhuizen, Evolutionary Al-

gorithms for Solving Multi-objective Problems (2nd edition). Springer,
2007.

[26] E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and V. Grunert da
Fonseca, “Performance assessment of multiobjective optimizers: an
analysis and review,” IEEE Transactions on Evolutionary Computation,
vol. 7, no. 2, pp. 117–132, 2003.

[27] C. M. Fonseca and P. J. Fleming, “On the performance assessment
and comparison of stochastic multiobjective optimizers,” in Proceedings

of the 4th International Conference on Parallel Problem Solving from

Nature (PPSN), ser. Lecture Notes in Computer Science, vol. 1141,
Berlin, Germany, 1996, pp. 584–593.

22

