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Abstract�Body posture recognition is a very important issue
as a basis for the detection of user�s behavior. In this paper, we
propose the use of a genetic fuzzy �nite state machine for this
real-world application.
Fuzzy �nite state machines (FFSMs) are an extension of

classical �nite state machines where the states and inputs are
de�ned and calculated by means of a fuzzy inference system,
allowing them to handle imprecise and uncertain data. Since the
de�nition of the knowledge base of the fuzzy inference system
is a complex task for experts, we use an automatic method for
learning this component based on the hybridization of FFSMs
and genetic algorithms (GAs). This genetic fuzzy system learns
automatically the fuzzy rules and membership functions of the
FFSM devoted to body posture recognition while an expert
de�nes the possible states and allowed transitions.
We aim to obtain a speci�c model (FFSM) with the capability

of generalizing well under different subject�s situations. The
obtained model must become an accurate and human friendly
linguistic description of this phenomenon, with the capability of
identifying the posture of the user. A complete experimentation
is developed to test the performance of the new proposal,
comprising a detailed analysis of results which shows the
advantages of our proposal in comparison with another classical
technique.

I. INTRODUCTION

Body posture recognition consists of identifying the differ-

ent poses of a human being. This research  eld has attracted

considerable attention as a basis for the detection of user�s

behavior, which could provide new context aware services.

Example of applications range from proactive care for elderly

people to safety applications based on fall detection.

There are two well distinguished approaches to tackle this

problem: the sensor-based and the computer vision approach.

The sensor-based approach consists of using small sensors

(usually accelerometers) placed in the body of the person.

In [1], the authors showed how acceleration data can aid the

recognition of pace and incline. The main advantages of this

approach are the possibilities of embedding these sensors

into clothes or electronic devices such as mobile phones due

to the advances in miniaturization, the capabilities of com-

munication between sensors through wireless connections,

and the low cost and energy consumption thanks to to the

Micro Electro Mechanical Systems (MEMS) technology. Its

principal drawback is the user�s need of wearing the sensors.

The computer vision approach is based on the use of video

cameras installed in the scenario under study [2]. While the

sensor-based approach made the user to wear sensors, in

this case, the additional hardware must be installed in each

room of the environment. This approach usually works in

lab but fails in real world scenarios due to clutter, variable

light intensity, and contrast. Moreover, the video cameras are

sometimes perceived as invasive and threatening by some

people. Another important drawback is the computational

cost of working with video signals.

In this work, we propose the use of fuzzy  nite state

machines (FFSMs) for body posture recognition within the

sensor-based approach. FFSMs are specially useful tools

for modeling dynamical processes which change in time,

becoming an extension of classical  nite state machines.

The main advantage of FFSMs is the use of Fuzzy Logic

(FL), which provides semantic expressiveness by the use of

linguistic variables [3] and rules [4] close to natural language

(NL). Moreover, being universal approximators [5], fuzzy

inference systems are able to perform nonlinear mappings

between inputs and outputs, allowing FFSMs to handle

imprecise and uncertain data, which is inherent to real-world

phenomena, in the form of fuzzy states and transitions.

In previous studies [6], [7], we have learnt that FFSMs

are suitable tools for modeling signals that follow an ap-

proximately repetitive pattern. As any fuzzy system, FFSMs

require the de nition of a knowledge base (KB). It is well

known that this is a complex task for experts as it was

the case in these previous works. In addition, the dynamic

nature of FFSMs increases the complexity of the process. For

that reason, in [8], we proposed a new automatic learning

method for the fuzzy KB of FFSMs based on the use of

genetic algorithms (GAs) [9]. GAs have proven largely their

effectiveness and ef ciency for the latter task in the last

two decades in the so-called genetic fuzzy systems (GFSs)

area [10], [11], [12]. In our approach, the fuzzy states and

transitions are de ned by the expert in order to keep the

knowledge that she/he has over the whole system while the

fuzzy rules and membership functions regulating the state

changes will be derived automatically by the GFS. This

combined action thus results in a robust, accurate, and human

friendly model called genetic fuzzy  nite state machine

(GFFSM) [8].

In this contribution, we propose the use of a GFFSM

for the body posture recognition problem. Our  nal goal

is to obtain a speci c model (FFSM) in such way that

this FFSM can generalize well under different subject�s

situations. Moreover, the obtained FFSM will result in an

accurate and human friendly linguistic description of this

phenomenon, with the capability of identifying the posture

of the user. A complete experimentation is developed to

test the performance of the new proposal, comprising a

detailed analysis of results which shows the advantages of

our proposal in comparison with another classical technique.

Furthermore, we will also compare this new proposal against

a FFSM previously developed for body posture recognition,

whose KB had been de ned by the expert in [13].� � � � � � � � � � � � � � � � � 	 � � 	 
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The remainder of this paper is organized as follows.

Section II presents how to use FFSMs for modeling the

temporal evolution of a phenomenon. Section III explains

how to build FFSMs for recognizing the body posture. The

automatic method for learning the KB of these FFSMs based

on GAs is introduced in Section IV. Section V presents the

experimentation carried out, comparing the obtained results

with another system identi cation tool. Finally, Section VI

draws some conclusions and future research works.

II. FUZZY FINITE STATE MACHINES

In this section, we introduce the main concepts and ele-

ments of our paradigm for system modeling allowing experts

to build comprehensible fuzzy linguistic models in an easier

way. In our framework, a FFSM is a tuple {Q,U, f, Y, g},
where:

• Q is the state of the system.

• U is the input vector of the system.

• f is the transition function which calculates the state of

the system.

• Y is the output vector of the system.

• g is the output function which calculates the output

vector.

Each of these components are described in the following

subsections. Furthermore, the interested reader can refer to

[6], [7], [8], [13] for a more detailed description.

A. Fuzzy States (Q)

The state of the system (Q) is de ned as a linguistic

variable [3] that takes its values in the set of linguistic labels

{q1, q2, . . . , qn}, with n being the number of fuzzy states.

Every fuzzy state represents the pattern of a repetitive situ-

ation and it is represented numerically by a state activation

vector:

S[t] = (s1[t], s2[t], . . . , sn[t]), where si[t] ∈ [0, 1] and
n
∑

i=1

si[t] = 1.

S0 is de ned as the initial value of the state activation

vector, i.e., S0 = S[t = 0].

B. Input Vector (U )

U is the input vector (u1, u2, ..., unu
), with nu being

the number of input variables. U is a set of linguistic

variables obtained after fuzzi cation of numerical data. Typ-

ically, ui can be directly obtained from sensor data or

by applying some calculations to the raw measures, e.g.,

the derivative or integral of the signal, or the combination

of several signals. The domain of numerical values that

ui can take is represented by a set of linguistic labels,

Aui
= {A1

ui
, A2

ui
, . . . , Ani

ui
}, with ni being the number of

linguistic labels of the linguistic variable ui.

C. Transition Function (f )

The transition function (f ) calculates, at each time instant,

the next value of the state activation vector: S[t + 1] =
f(U [t], S[t]). It is implemented by means of a fuzzy KB.

Once the expert has identi ed the relevant states in the

model, she/he must de ne the allowed transitions among

states. There are rules Rii to remain in a state qi, and rules

Rij to change from state qi to state qj . If a transition is

forbidden in the FFSM, it will have no fuzzy rules associated.

A generic expression of a rule is of the form:

Rij : IF (S[t] is qi) AND Cij THEN S[t+ 1] is qj

where:

• The  rst term in the antecedent (S[t] is qi) computes the
degree of activation of the state qi in the time instant

t, i.e., si[t]. With this mechanism, we only allow the

FFSM to change from the state qi to the state qj (or to

remain in state qi, when i = j).

• The second term in the antecedent Cij describes the

constraints imposed on the input variables in disjunctive

normal form (DNF) [10]. For example: Cij = (u1[t] is
A3

u1
) AND (u2[t] is A

4

u2
OR A5

u2
).

• Finally, the consequent of the rule de nes the next value

of the state activation vector S[t + 1]. It consists of a
vector with a zero value in all of its components but in

sj [t], where it takes value one.

To calculate the next value of the state activation vector

(S[t+1]), a weighted average using the  ring degree of each
rule k (ωk) is computed as de ned in Equation 1:

S[t+ 1] =























#Rules∑

k=1

ωk·(s1,...,sn)k

#Rules∑

k=1

ωk

if
#Rules
∑

k=1

ωk 6= 0

S[t] if
#Rules
∑

k=1

ωk = 0

(1)

where (ωk) is calculated using the minimum for the AND

operator and the bounded sum of !ukasiewicz [14] for the

OR operator.

D. Output Vector (Y )

Y is the output vector: (y1, y2, ..., yny
), with ny being

the number of output variables. Y is a summary of the

characteristics of the system evolution that are relevant for

the application.

E. Output Function (g)

The output function (g) calculates, at each time instant,

the next value of the output vector: Y [t] = f(U [t], S[t]).
The most simple implementation of g is Y [t] = S[t].

III. FUZZY FINITE STATE MACHINE FOR BODY POSTURE

RECOGNITION

This section presents the design of the main elements

needed to build a FFSM for body posture recognition [13].

A. Fuzzy States

In this application, we have de ned three different fuzzy

states which directly describe the body posture:

{q1 → Seated, q2 → Upright, q3 → Walking}

B. Input Vector

In our experiments, we have used a three-axial accelerom-

eter tight with a belt in the middle of the back. Therefore,

the numerical values that we obtain from the sensor are the

dorso-ventral acceleration (ax), the medio-lateral accelera-

tion (ay), and the antero-posterior acceleration (az). In order

to distinguish between the three different states, we have

created three linguistic variables {ax,mov, tilt} with these

numerical values:

• ax is the dorso-ventral acceleration as it was obtained

from the sensor.� �



• mov measures the amount of movement. It is the sum

of the difference between the maximum and minimum

of ax, ay , and az , respectively, contained in an interval

of 1 second.

• tilt is a variable that measures the tilt of the body. It

is calculated as the sum of the absolute value of the

medio-lateral acceleration (ay) and the absolute value

of the antero-posterior acceleration (az), i.e., |ay|+ |az|.

The term sets for each linguistic variable

are: {Sax
,Max

, Bax
}, {Smov,Mmov, Bmov}, and

{Stilt,Mtilt, Btilt}, where S, M , and B are linguistic

terms representing small, medium, and big, respectively.

C. Transition Function

The de nition of which transitions are allowed and which

are not can be easily represented by means of the state

diagram. Figure 1 shows how we use the FFSM to de ne

constraints on the possibilities to change of state. More

speci cally, we force the model to pass by the state Upright

(q2) when the subject passes from Seated (q1) to Walking

(q3). This restriction makes the system more robust.

From the state diagram represented in Figure 1, it can be

recognized that there are 8 fuzzy rules overall in the system:

3 rules to remain in each state and other 5 to change between

states.

Fig. 1. State diagram of the FFSM for body posture recognition.

Therefore, the RB will have the following structure:

R11: IF (S[t] is q1) AND C11 THEN S[t+ 1] is q1
R22: IF (S[t] is q2) AND C22 THEN S[t+ 1] is q2
R33: IF (S[t] is q3) AND C33 THEN S[t+ 1] is q3
R12: IF (S[t] is q1) AND C12 THEN S[t+ 1] is q2
R21: IF (S[t] is q2) AND C21 THEN S[t+ 1] is q1
R23: IF (S[t] is q2) AND C23 THEN S[t+ 1] is q3
R32: IF (S[t] is q3) AND C32 THEN S[t+ 1] is q2
R31: IF (S[t] is q3) AND C31 THEN S[t+ 1] is q1

where Cij could be: (ax is Sax
) AND (mov is Mmov) AND

(tilt is Mtilt OR Btilt).

D. Output Vector and Output Function

In this contribution, we simply consider Y [t] = S[t], i.e.,
the output of the FFSM is the degree of activation of each

state.

IV. GENETIC FUZZY SYSTEM

The current section reviews the fusion framework between

FFSMs and GAs developed in [8], which will be considered

to solve a new application in the current contribution. In

this case, we will learn the KB of the FFSM designed for

body posture recognition. The KB is comprised by the data

base (DB), which contains the linguistic labels� membership

functions (MFs); and the RB, which collects the fuzzy if-

then rules. The following subsections describe the structure

of the different components of this GFS.

A. Representation Scheme and Initial Population Generation

We have divided the representation scheme into two parts:

the RB part and the DB part. In the following, we explain

each of these representations.

1) RB part: We codify the whole rule set in a chromosome

following the Pittsburgh approach [15]. For each of the three

input variables ax, mov, and tilt, the rule representation

consists of a binary sub-string of length 3 that refers to its

linguistic term set {Sax
,Max

, Bax
}, {Smov,Mmov, Bmov},

and {Stilt,Mtilt, Btilt}, respectively. Only the non- xed part
of the DNF rule antecedent (see Section III-C) is encoded.

Each bit has a one (zero) which denotes the presence

(absence) of each linguistic term in the rule. Moreover, the

feature selection capability of this representation is used

since an input variable is omitted in the rule if all of its bits in

the representation become zeros or ones. The RB part of the

chromosome will thus be composed of 8 rules × 9 linguistic

terms (3 per input variable) = 72 binary-coded genes.

2) DB part: We have considered the use of trapezoidal

strong fuzzy partitions (SFPs) [16] because they allow us to

reduce the number of parameters to tune, in such way that

the normalization constraint is easily satis ed by only coding

the two modal points of each MF. Therefore, we have to code

12 real parameters, 4 per input variable where one parameter

is enough to codify the  rst and third linguistic label and two

parameters are needed to codify the second linguistic label.

Therefore, the DB part of the chromosome will be composed

of 12 real-coded genes:

{a1ax
, a2ax

, b2ax
, a3ax

, a1mov , a
2
mov , b

2
mov , a

3
mov , a

1
tilt

, a2
tilt

, b2
tilt

, a3
tilt

}

We use a real-coded representation. The variation interval

of each allele is de ned within the interval de ned by its

previous and next parameter. Figure 2 shows the graphical

representation of the fuzzy partition related with the linguis-

tic input variable mov. Notice that, the parameters a1mov and

a3mov are enough to codify the  rst and third linguistic labels,

Smov and Bmov respectively, while two parameters a
2

mov and

b2mov are needed to codify the intermediate linguistic label

Mmov.

0

0.5

1

a
3

mov
b
2

mov
a
1

mov

S
mov

M
mov

B
mov

a
2

mov

Fig. 2. Parameters that form all the trapezoidal linguistic labels of the
linguistic variable mov.

Hence, the  nal chromosome encoding a candidate prob-

lem solution will be comprised by 72+12 = 84 genes, with
the  rst 72 being binary-coded genes corresponding to the

RB part, and the last 12 being real-coded genes associated

to the DB part. We have initialized the  rst population by

generating all the individuals at random, except the DB part� �



Fig. 3. Chromosome structure encoding the RB and DB part.

of the  rst individual of the population that encodes uniform

fuzzy partitions for each linguistic variable. Figure 3 shows

the structure of the complete chromosome encoding the RB

and DB part.

B. Fitness Function

Since the computation of the next state is based on the

previous state, we need to evaluate the tentative FFSM

de nition encoded in each chromosome over the whole data

set. We have chosen as  tness function the mean absolute

error (MAE) measure, de ned in Equation 2:

MAE =
1

n
·
1

T
·

n
∑

i=1

T
∑

j=0

|si[j]− s∗i [j]| (2)

where:

• n is the number of states, i.e., n = 3.
• T is the dataset size (i.e., the considered time interval

duration).

• si[j] is the degree of activation of state qi at time t = j.

• s∗i [j] is the expected degree of activation of state qi at

time t = j.

The MAE directly measures the difference between the

actual state activation vector (S∗[t]) and the obtained one

(S[t]). However, we need to de ne S∗[t] for each input data
set that we want to learn. This de nition could be problematic

and must be done carefully because, more than one state can

be de ned at each time instant, each of those states activated

with certain degree in the interval [0, 1]. In the following

subsection, this issue is explained in detail.

C. De ning the Training Data Set

We have to create a training vector which

consists of ax[t], ay[t], az[t] and S∗[t], i.e.,

(ax[t], ay[t], az[t], s
∗

1
[t], s∗

2
[t], s∗

3
[t]). To de ne it, we

have developed a user-friendly graphical interface that

allows the expert to select manually the relevant points

where each state starts and ends using her/his knowledge

about body posture and the duration of each part of the

experiment. The fuzzy de nition of the states is based

on the imprecision of the expert when de ning those

relevant points. For each state qi, there are different points

comprising the beginning (b
j
i ) and the end of each state

(e
j
i ), with j ∈ N.

As an example, let us consider the de nition of the actual

degree of activation of state q3 when there is a transition

from state q2 to state q3 and then from state q3 to state

q1. The actual value of s
∗

3
[t] is then speci ed by Equation 3.

Between the end time of q2 (e
j
2
) and the start time of q3 (b

j
3
),

the activation of the state q3 is rising from 0 to 1. Between

the start (b
j
3
) and the end time (e

j
3
) of q3, de ned by the

user, the activation has the maximum of 1. Afterwards, the

activation drops till zero at the start of q1 (b
j
1
). Otherwise,

the activation is zero.

s∗
3
[t] =























t−e
j
2

b
j
3−e

j
2

if e
j
2
< t < b

j
3

1 if b
j
3
≤ t ≤ e

j
3

b
j
1−t

b
j
1−e

j
3

if e
j
3
< t < b

j
1

0 otherwise

(3)

The interested reader is referred to [8] for a deeper

description on the human de nition of the activation degrees

for the fuzzy states in FFSMs.

D. Genetic Operators

A binary tournament selection and a generational replace-

ment with elitism are considered. The classical two-point

crossover has been used for the RB (binary-coded) part of

the chromosome and BLX-α crossover [17] for the DB (real-

coded) part. The BLX-α crossover is applied twice over a

pair of parents in order to obtain a new pair of chromosomes.

The classical bitwise mutation has been selected for the

binary-coded RB part, while uniform mutation has been

chosen for the real-coded DB part.

In this contribution, we have implemented three different

termination conditions. First, the search is stopped when the

algorithm has obtained a  tness value equal to zero, which

is the best value that the  tness function can take. Moreover,

we have decided to set a maximum number of generations

and also to stop the search when, for a certain number of

generations, the  tness value of the best individual is not

improved.

V. EXPERIMENTATION

This section presents the experimentation carried out. First,

the experimental setup, which comprises the data acquisition

and the parameters of the GA, is explained. The second part

contains a brief description of an alternative model used for

body posture recognition. Finally, the third part presents and

analyzes the results obtained.

A. Experimental Setup

1) Data acquisition: We have used a wireless three-axial

accelerometer attached to a belt, centered in the back of the

person. It provided measurements of the three orthogonal

accelerations with a frequency of 100 Hz. Therefore, every

record contained the information: (t, ax, ay, az) where t is

each instant of time, ax is the dorso-ventral acceleration,

ay is the medio-lateral acceleration, and az is the antero-

posterior acceleration.

We asked this person to perform a variety of activities,

such as sitting at her/his desk, having a coffee, visiting a

colleague, having a meeting, etc. In this simpli ed scenario,

we have set a reduced time for the different tasks because we

wanted to test how our system is able to recognize all de ned

states related to body posture. This process was repeated

ten times producing ten different datasets. These datasets� �



were then processed as explained in Section IV-C getting

the following structure:

(ax[t], ay[t], az[t], s
∗

1
[t], s∗

2
[t], s∗

3
[t])

where:

• ax[t] is the dorso-ventral acceleration at time instant t.

• ay[t] is the medio-lateral acceleration at time instant t.

• az[t] is the antero-posterior acceleration at time instant

t.

• s∗
1
[t] is the expected degree of activation of state q1 at

time instant t.

• s∗
2
[t] is the expected degree of activation of state q2 at

time instant t.

• s∗
3
[t] is the expected degree of activation of state q3 at

time instant t.

2) Parameters of the GA:

• Population size → 30 individuals.

• Crossover probability → pc = 0.8.
• Value of alpha (BLX-α parameter) → α = 0.3.
• Mutation probability per bit → pm = 0.02.
• Termination conditions:

� Fitness value reached → MAE = 0.
� Maximum number of generations → 200.

� Generations without improvement of the  tness

function → 50.

B. Autoregressive Linear Models

In order to benchmark the GFFSM results, we have con-

sidered another technique commonly used in system model-

ing of time-dependent systems: autoregressive linear models

(ARX) [18]. We have de ned a multiple-input multiple-

output (MIMO) ARX model with the structure de ned by

Equation 4:

Y [t] = A1 · Y [t− 1] + . . .+AnA
· Y [t− nA]

+B0 · U [t] + . . .+BnB
· U [t− nB ]

(4)

where:

• Y [t] = (s1[t], s2[t], s3[t]) is the current output vector.
• Y [t− 1], . . . , Y [t−nA] are the previous output vectors
on which the current output vector depends.

• U [t] = (ax[t],mov[t], tilt[t]), . . . , U [t − nB ] are the

current and delayed input vectors on which the current

output vector depends.

• nA is the number of previous output vectors on which

the current output vector depends.

• nB is the number of previous input vectors on which

the current output vector depends.

• A1, . . . , AnA
and B0, . . . , BnB

are the matrices that

de ne the models. They are estimated using the least

squares method.

The performance of this model has been tested with values

of nA = nB = 20, resulting in the ARX model de ned by

Equation 5:

Y [t] = A1 · Y [t− 1] + . . .+A20 · Y [t− 20]

+B0 · U [t] + . . .+B19 · U [t− 19]
(5)

C. Results

To test the performance of the GFFSM and the ARX

model, we have done a leave-one-out cross validation for

each of the 10 datasets. Table I shows the MAE obtained

TABLE I
MAE FOR EACH DATASET OF THE LEAVE-ONE-OUT.

FOLD
GFFSM ARX

TRAIN TEST TRAIN TEST

1 0.010 0.016 0.071 0.083
2 0.009 0.007 0.072 0.093
3 0.010 0.009 0.076 0.064
4 0.009 0.010 0.078 0.059
5 0.010 0.013 0.076 0.072
6 0.009 0.012 0.075 0.073
7 0.010 0.010 0.075 0.081
8 0.011 0.009 0.070 0.104
9 0.008 0.010 0.077 0.065
10 0.009 0.009 0.076 0.072

MEAN 0.009 0.011 0.074 0.077
STD 0.001 0.002 0.003 0.014

TABLE II
MAE OBTAINED FOR EACH DATASET BY THE FFSM DEFINED BY THE

EXPERT AND OBTAINED IN TEST WITH THE LEAVE-ONE-OUT.

DATASET FFSM GFFSM ARX

1 0.023 0.016 0.083
2 0.027 0.007 0.093
3 0.016 0.009 0.064
4 0.020 0.010 0.059
5 0.022 0.013 0.072
6 0.028 0.012 0.073
7 0.022 0.010 0.081
8 0.030 0.009 0.104
9 0.017 0.010 0.065
10 0.018 0.009 0.072

MEAN 0.022 0.011 0.077
STD 0.005 0.002 0.014

for each fold of the leave-one-out in training and test. It

also depicts the average value of the MAE (MEAN) and its

standard deviation (STD) for the ten results of the procedure.

In addition, we have evaluated the FFSM manually de ned

by the expert in [13] (where no training data has been used)

over these ten datasets. Table II shows the MAE obtained

for each dataset by the expert FFSM and the MAE obtained

in test with the leave-one-out procedure for the GFFSM and

the ARX model.

It can be easily observed that our proposal (GFFSM)

and the FFSM de ned by the expert obtain better results

than the autoregressive linear model (ARX). Moreover, ARX

models are black-box models not understandable by the

human expert while our GFFSM is able to describe and

0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.5
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a
x
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0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5
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0.2 0.4 0.6 0.8 1 1.2
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Fig. 4. Linguistic labels� trapezoidal MFs of each linguistic variable which
comprise the learnt DB compared with the uniformly distributed original
ones.� �



model the body posture by means of linguistic fuzzy if-then

rules achieving a good interpretability-accuracy tradeoff.

Note that, with the application of the genetic learning

procedure proposed in [8], we have increased the accuracy

of the FFSM de ned by the expert (by reducing the average

MAE from 0.022 to 0.011) keeping her/his knowledge about

this application, and producing a RB and a DB that have the

same interpretability as the former.

As an example of how our novel proposal is describing

linguistically the temporal evolution of the body posture, a

complete set of constraints imposed on the input variables

(which forms the RB as explained in III-C) learned for the

second fold of the leave-one-out procedure is shown as

follows:

C11 = (ax is Max ) AND (mov is Smov OR Bmov) AND (tilt is Btilt)

C11 = (ax is Max ) AND (mov is ¬Mmov)
1 AND (tilt is Btilt)

C22 = (ax is Bax )

C33 = (mov is Mmov)

C12 = (ax is ¬Sax ) AND (mov is ¬Smov) AND (tilt is ¬Btilt)

C21 = (ax is Sax ) AND (mov is ¬Mmov) AND (tilt is Btilt)

C23 = (ax is Bax ) AND (mov is ¬Smov) AND (tilt is Stilt)

C32 = (mov is Smov) AND (tilt is ¬Btilt)

C31 = (ax is Sax ) AND (mov is Smov) AND (tilt is Mtilt)

Figure 4 shows the graphical representation of the learnt

DB associated with this RB. The initial DB is also plotted,

which consists of uniformly distributed MFs.

VI. CONCLUDING REMARKS

We have presented a practical application where we de-

scribed how to build a FFSM to recognize the body posture in

a dynamical environment. We de ned three different states

related to the body posture and applied the FFSM genetic

learning procedure proposed in [8] to recognize these states.

This GFS can obtain automatically the fuzzy rules and

fuzzy MFs associated to the linguistic terms of the FFSM

while the states and transitions are de ned by the expert,

thus maintaining the knowledge that she/he has about the

application. The results obtained by the GFFSM showed the

goodness of our proposal. Moreover, its ability to combine

the handling of the available expert knowledge with the

accuracy achieved by the learning process can be used to

study several phenomena where the human interaction is

demanded.
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