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Abstract—In this contribution, we use Fuzzy Rule-Based Classi-
fication Systems for classifying the patients with respect to the
risk of suffering cardiovascular diseases. Specifically, we use a
methodology in which the linguistic labels of the classifier are
modeled by means of IVFSs. Thereafter, they are genetically
post-processed for tuning the amplitude of the support of the
upper bound of each membership function. In this manner a good
management of the uncertainty, associated with the definition of
the fuzzy terms, is provided to the system.

We show the goodness of our methodology by comparing its
performance with respect to the one provided by the initial
system in this specific medical case. First, we study the global
classification improvement and then, we carry out an exhaustive
analysis of the behavior of our approach in which we observe
the enhancement achieved in several specific situations.

Index Terms—Linguistic Fuzzy Rule-Based Classification Sys-
tems, Interval-Valued Fuzzy Sets, Tuning, Ignorance Functions,
Genetic Fuzzy Systems, Cardiovascular Disease.

I. INTRODUCTION

Fuzzy Rule-Based Classification Systems (FRBCS) [13] are

useful tools to deal with classification problems. They are

widely employed because of their capability to built a lin-

guistic model interpretable by the users. Moreover, they offer

the possibility of mixing information coming from different

sources, i.e. as expert knowledge, mathematical models or

empirical measures.

A key problem of representing the knowledge by means of

fuzzy sets is to choose the membership function which best

represents the information. Sometimes, it is really difficult to

select the membership degree of each element to the fuzzy

set. This problem led Zadeh to suggest the notion of type-2

fuzzy sets as an extension of fuzzy sets [28]. One of the most

used extensions are the Interval-Valued Fuzzy Sets (IVFSs),

which are a particular case of Type-2 Fuzzy Sets. IVFSs

were introduced by Sambuc in 1975 [22]. IVFSs have been

successfully applied in tasks such as classification [23], [26]

or image processing [3], among others.

In [23], authors introduced a method to enhance the per-

formance of FRBCSs by extending the Knowledge Base (KB)

with IVFSs. That is, it is proposed to characterize the linguistic

labels that compound the attributes of the problem by means of

IVFSs. Thereafter, they apply a post-processing genetic tuning

step in which the amplitude of the support of the IVFSs is

tuned allowing the improvement of the classification accuracy.

The aim of this work is to apply this methodology on the

classification of patients with respect to their risk of suffering

cardiovascular diseases (CVDs). These diseases are the ones

affecting to the heart and to the arteries, mainly the arteries of

the brain, legs and heart. Most of these disorders are induced

because of the decrease of either the caliber or the diameter of

the arteries, which is due to the presence of fat concentrations

adhered to the artery walls leading to hinder the blood flow.

However, the lack of supply blood is not only manifested

in the heart but also in the legs and in the brain, leading to

disorders for the patient implying the risk of heart attacks,

thrombosis or rupture of blood vessels, among others. CVDs

conform the main health problem in adult population in

general, being in the first place of the list of death cause of

persons older than forty five years in many countries. As an

example, about 100,000 persons per year die in Spain due

to these diseases, representing a death rate of 75-150 deaths

per 100,000 inhabitants depending on the region. This rate is

similar in most of the developed countries [10]. Therefore, it

is really important to obtain a quick diagnosis and to estimate

the patients’ risk of developing a CVD in order to allow the

quick start of the treatment and the reduction of the risk.

In order to estimate the risk, the doctors look up specific

tables called REGICOR [21] in which different features are

considered: gender, age, presence or absence of diabetes,

systolic and diastolic blood pressure, total cholesterol and the

value of the HDL cholesterol. The value obtained with this

procedure quantifies the risk of the patient of suffering a CVD

in ten years.
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In this contribution, we are going to obtain a FRBCS to

predict the risk of suffering a CVD, using as input values

only the physical values that can be measured directly by the

doctor, i.e. the gender, age, smoking, blood pressure and the

body mass index. The objective of the system is to give the

doctor a quick and reliable estimation of the risk, in such a

way that he/she can use our system as a help to decide the

necessity of making more analysis (cholesterol, triglycerides,

etc.) to obtain a more accurate value of the risk and to start

the treatment. We must point out that the resulting system can

be more useful in developing countries since blood tests are

not usually performed routinely.

The initial KB used as the base in which apply our method-

ology is generated by means of two basic and well-known

fuzzy rule learning algorithms, namely the Chi et al.’s method

[4] and the Fuzzy Hybrid Genetics-Based Machine Learning

(FH-GBML) algorithm by Ishibuchi and Yamamoto [15]. We

will study the behavior of our methodology with respect to

the base FRBCSs both when considering the classification

accuracy and when analyzing in detail scenarios which should

be fulfilled in this specific problem.

The paper is organized as follows: we present in Section

II the basic concepts employed in the paper for FRBCSs. In

Section III we describe in detail the IVFSs model, showing

the modifications introduced in the Fuzzy Reasoning Method

(FRM). The proposal to tune the amplitude of the upper bound

of the IVFSs is introduced in Section IV. Section V shows our

experimental framework and the experimental analysis carried

out. Finally, the conclusions of this work are presented in

Section VI.

II. FUZZY RULE BASED CLASSIFICATION SYSTEMS AND

FUZZY LEARNING METHOD

FRBCSs are a very useful tool in Data Mining, since they

allow the inclusion of all the available information in system

modeling, both the one that comes from expert knowledge and

the one from empirical measures and mathematical models,

deriving on a very interpretable model and, therefore, allowing

the knowledge representation to be understandable for the

system users.

Any classification problem consists of m training patterns

xp = (xp1, . . . , xpn, yp), p = 1, 2, . . . , m from M classes

where xpi is the ith attribute value (i = 1, 2, . . . , n) of the

p-th training pattern.

In this work we use fuzzy rules of the following form for

our FRBCSs:

Rule Rj : If x1 is Aj1 and . . . and xn is Ajn

then Class = Cj with RWj ,

where Rj is the label of the jth rule, x = (x1, . . . , xn) is an
n-dimensional pattern vector, Aji is an antecedent fuzzy set

(we use triangular membership functions), Cj is a class label,

and RWj is the rule weight [12]. Specifically, in this work the

rule weight is computed using the Penalized Certainty Factor

(PCF) defined in [14] as:

PCFj =

∑

xp∈ClassCj

μAj
(xp) −

∑

xp /∈ClassCj

μAj
(xp)

m∑

p=1

μAj
(xp)

(1)

.

Fuzzy learning methods are the basis to build a FRBCS. The

algorithms used in this work are: 1) the method proposed in

[4], that we have called the Chi et al.’s rule generation; 2) the

Fuzzy Hybrid Genetics-Based Machine Learning (FH-GBML)

algorithm proposed by Ishibuchi and Yamamoto in [15].

A. Chi et al.’s Rule Generation

To generate the fuzzy rule base, this FRBCSs design method

determines the relationship between the variables of the prob-

lem and establishes an association between the space of the

features and the space of the classes by means of the following

steps:

1) Establishment of the linguistic partitions. Once the do-

main of variation of each feature Ai is determined, the

fuzzy partitions are computed.

2) Generation of a fuzzy rule for each example xp =
(xp1, . . . , xpn, Cp). To do this it is necessary:

2.1 To compute the matching degree μ(xp) of the

example to the different fuzzy regions using a

conjunction operator (usually modeled with a min-

imum or product T-norm).

2.2 To assign the example xp to the fuzzy region with

the greatest membership degree.

2.3 To generate a rule for the example, whose an-

tecedent is determined by the selected fuzzy region

and whose consequent is the label of class of the

example.

2.4 To compute the rule weight.

We must remark that rules with the same antecedent can be

generated during the learning process. If they have the same

class in the consequent we just remove one of the duplicated

rules, but if they have a different class only the rule with the

highest weight is kept in the rule base.

B. Fuzzy Hybrid-Genetic Based Machine Learning Rule Gen-

eration Algorithm

Different GFSs have been proposed in the specialized liter-

ature for designing fuzzy rule-based systems in order to avoid

the necessity of linguistic knowledge from domain experts [5],

[8], [11], [20].

The basis of the method described here, the FH-GBML

algorithm [15], consists of a Pittsburgh approach where each

rule set is handled as an individual. It also contains a Genetic

Cooperative Competitive Learning (GCCL) approach (an in-

dividual represents a unique rule), which is used as a kind

of heuristic mutation for partially modifying each rule set,

because of its high search ability to efficiently find good fuzzy

rules.

10



This method simultaneously uses four fuzzy set partitions

for each attribute, as shown in Figure 1. As a result, each

antecedent attribute is initially associated with 14 fuzzy sets

generated by these four partitions as well as a special “do not

care” set, i.e., 15 in total.

The main steps of this algorithm are described below:

Step 1: Generate Npop rule sets with Nrule fuzzy rules.

Step 2: Calculate the fitness value of each rule set in the

current population.

Step 3: Generate (Npop -1) rule sets by selection, crossover

and mutation in the same manner as the Pittsburgh-

style algorithm. Apply a single iteration of the

GCCL-style algorithm (i.e., the rule generation and

the replacement) to each of the generated rule sets

with a pre-specified probability.

Step 4: Add the best rule set in the current population to

the newly generated (Npop -1) rule sets to form the

next population.

Step 5: Return to Step 2 if the pre-specified stopping

condition is not satisfied.

Next, we will describe every step of the algorithm:

• Initialization: Nrule training patterns are randomly se-

lected. Then, a fuzzy rule from each of the selected

training patterns is generated by choosing probabilisti-

cally (as shown in (2)) an antecedent fuzzy set from

the 14 candidates Bk(k = 1, 2, . . . , 14) (see Figure 1)

for each attribute. Then each antecedent fuzzy set of the

generated fuzzy rule is replaced with don’t care using a

pre-specified probability Pdon′t care.

P (Bk) =
μBk

(xpi)∑
14

j=1
μBj

(xpi)
(2)

• Fitness computation: The fitness value of each rule set Si

in the current population is calculated as the number of

correctly classified training patterns by Si. For the GCCL

approach the computation follows the same scheme,

counting the number of correct hits for each single rule.

• Selection: It is based on binary tournament.

• Crossover: The substring-wise and bit-wise uniform

crossover are applied in the Pittsburgh part. In the case

of the GCCL part only the bit-wise uniform crossover is

considered.

• Mutation: Each fuzzy partition of the individuals is ran-

domly replaced with a different fuzzy partition using a

pre-specified mutation probability for both approaches.

For more details about this proposal, please refer to [15].

III. FUZZY RULE-BASED CLASSIFICATION SYSTEMS WITH

INTERVAL-VALUED FUZZY SETS

In this section we present the model that employs IVFSs to

represent the linguistic labels of FRBCSs. The use of IVFSs

allows to handle the uncertainty associated with the ad-hoc

construction of fuzzy partitions and, in this way, it is possible

to increase the performance of the system.

In the remaining of this section, we briefly introduce the

IVFSs and then we describe in detail de FRBCSs with the

linguistic labels modeled by means of IVFSs and also the

adaptation of the Fuzzy Reasoning Method (FRM) in order to

work with this representation.

A. Interval-Valued Fuzzy Sets

The IVFSs [1] are an extension of Fuzzy Sets [27]. In 1975

Sambuc presented the concept of IVFS in his doctoral thesis.

He applied IVFSs to medical diagnosis in thyroid pathology

[22]. Later, in the eighties, Gorzalczany [9] and Turksen [25]

gave relevance to the IVFSs and were definitively established.

We must point out that Interval Type-2 Fuzzy Sets (IT2FSs)

are a particular case of Type-2 Fuzzy Sets. In [16], [17], [18]

is proved that IVFSs are a particular case of IT2FSs.

We denote by L([0, 1]) the set of all closed subintervals of

the closed interval [0, 1]; that is:

L([0, 1]) = {x = [x, x]|(x, x) ∈ [0, 1]2 and x ≤ x} .

L([0, 1]) is a partially ordered set with respect to the relation
≤L defined in the following way; given x, y ∈ L([0, 1]):
x ≤L y if and only if x ≤ y and x ≤ y.

(L([0, 1]), ≤L) is a complete lattice where the smallest element

is 0L = [0, 0] and the largest is 1L = [1, 1].
The following definition can be found in [2], [18], [19],

[24]:

Definition 1: An Interval-valued fuzzy set (IVFS) A on the

universe U �= ∅ is a mapping A : U → L([0, 1]).
Obviously, A(u) = [A(u), A(u)] ∈ L([0, 1]) is the mem-

bership degree of u ∈ U .

B. IVFS Model

As we have stated previously, we are going to model the

linguistic labels by means of IVFSs. To do so, we generate

the initial KB by means of any rule learning algorithm (the

two previous ones introduced in Section II in this case). Then,

starting from the fuzzy sets which compose the initial KB we

construct each IVFS as follows:

• The lower bound corresponds to the initial membership

function.

• The upper bound is centered in the maximum of the lower

bound (being symmetrical in both sides) and its amplitude

of the support is 50% greatter than the one of the intial

membership function.

As we construct the IVFSs after the rule generation process,

we will only study their influence in the FRM.

Due to the modeling of the linguistic labels by means

of IVFSs, the RW will be compounded by a tuple

(PCFLj , PCFUj) whose computation will be done following

the Expression (1), considering the lower and the upper bounds

as the terms in each case. That is:

PCFLj =

∑

xp∈ClassCj

Aj(xp) −
∑

xp /∈ClassCj

Aj(xp)

m∑

p=1

Aj(xp)

(3)
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Fig. 1. Four fuzzy partitions for each attribute membership function

PCFUj =

∑

xp∈ClassCj

Aj(xp) −
∑

xp /∈ClassCj

Aj(xp)

m∑

p=1

Aj(xp)

(4)

As the lower bound of each IVFS is the same fuzzy set used

by the rule learning algorithm, the rule weight associated with

the lower bound (PCFLj) is equal to RWj .

The use of IVFSs also implies the following two changes

in the FRM:

• Matching degree between the antecedent of the rule and

the example: We apply a T-norm both to the lower bound

and the upper bound as follows:

μLAj(xp) = T (Aj1(xp1), . . . , Ajn(xpn)),

j = 1, . . . , L. (5)

μUAj(xp) = T (Aj1(xp1), . . . , Ajn(xpn)),

j = 1, . . . , L. (6)

Therefore, the matching degrees obtained form the fol-

lowing interval:

[μLAj(xp), μUAj(xp)]

• As association degree we take the mean between the

product of the matching degree by the rule weight asso-

ciated with the lower and the upper bound respectively.

That is,

bk
j =

μLAj(xp) ∗ PCFLjk + μUAj(xp) ∗ PCFU jk

2
k = 1, . . . , M, j = 1, . . . , L.

(7)

At this point we already have a single value associated with

the class. Therefore, we can apply the rest of the algorithm as

in the general FRM.

IV. GENETIC AMPLITUDE TUNING OF THE UPPER BOUND

OF THE IVFS

The length of the IVFSs can be seen as a representation

of the uncertainty associated with the definition of the mem-

bership functions. In the initial construction of the IVFSs we

have added the upper bound of all the linguistic labels making

their amplitude greater than the one of the lower bound in the

same proportion in all cases. In this manner, we consider the

same uncertainty degree for all the fuzzy labels but, as the

amount of available information can be different depending

on the variable, the length of each IVFSs can vary.

In order to look for the optimal amount of uncertainty each

IVFS represents, we propose a post-processing genetic tuning

step in which we perform slight changes to the amplitude of

the support of the IVFSs. In this manner, we contextualize

the fuzzy partitions for each specif problem leading to an

improvement of the classification accuracy.

The modification of the amplitude is given by a number

within the interval [0, 1], that is, from the situation in which

both bounds are the same (value 0) to the situation in which the

amplitude of the upper bound is twice than the amplitude of

the lower bound (value 1). The amplitude of the upper bound

will be uniformly increased according to intermediate values.

The noticeable situations are depicted in Figure 2.
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b) Gene = 0.5 c) Gene = 1.0a) Gene = 0.0

Fig. 2. Gene values representation in the genetic amplitude tuning. a) Upper
and lower bounds are the same. b) Initial construction of the IVFSs. c) Upper
bound amplitude is twice than the one of the lower bound

In order to apply the genetic tuning, we will consider the

use of CHC algorithm [7], which presents a good trade-off

between diversity and convergence, being a good choice in

complex problems. The components needed to design this

process are explained below:

1) Coding Scheme: A real coding is considered, where each

gene of the chromosome represents the modification of

the amplitude of the support as defined above. Thus,

there are as many genes as fuzzy partitions in the Data

Base.

2) Chromosome Evaluation: The fitness function is the

classification accuracy.

3) Initial Gene Pool: The initial pool is obtained with the

first individual having all genes with value 0.5 (the initial

FRBCS). The second and the third individuals having

all genes with values 0 and 1 respectively, whereas the

remaining individuals are generated at random in [0, 1].

4) Crossover Operator: We consider the Parent Centric

BLX (PCBLX) operator, which is based on the BLX-α.

We consider the incest prevention mechanism, checking

and modifying an initial threshold, in order to apply the

PCBLX operator.

5) Restarting approach: When the threshold value is lower

than zero, all the chromosomes are regenerated at ran-

dom within the interval [0, 1]. Furthermore, the best

global solution found is included in the population to

increase the convergence of the algorithm.

V. EXPERIMENTAL STUDY

The experimental study is aimed to show the improvements

achieved by the application of our methodology with respect

to the initial FRBCSs employed in this work. We will show

the global improvement and the advantages of the application

of our approach for both the patient and the health institution.

In the remainder of this section, we will first describe the

experimental framework and then we analyze the achieved

results.

A. Experimental Framework

In this section we describe the data used in the generation

of the FRBCS to predict the risk of suffering a CVD.

In 1948, Framingham Heart Study [6] led to the identifica-

tion of the major CVD risk factors: high blood pressure, high

blood cholesterol, smoking, obesity, diabetes, and physical

inactivity, as well as a great deal of valuable information on

the effects of related factors such as blood triglyceride and

HDL cholesterol levels, age, gender, and psychosocial issues.

Nowadays, the Framingham tables are being adapted to

the features of the spanish population by means of a well

contrasted calibration process which is under validation. They

allow to quantify the risk of a heart problem like angina

pectoris or myocardial infarction in ten years.

In the Spanish tables called REGICOR [21], using the

values of gender, diabetes, smoking, systolic blood pressure,

diastolic blood pressure, total cholesterol and cholesterol HDL

we can obtain the risk that can be: Low, Mild, Moderate or

High.

The dataset consist of 904 cases obtained from the clinical

records of seven health centers of Pamplona (Navarra, Spain)

during 2008. We have followed the Spanish Law of personal

data protection (LOPD). In each clinical case, a doctor has

assigned a REGICOR risk value following the REGICOR

tables. Furthermore, the doctor also has taken into account

all the data in the medical history of the patient. Therefore,

some data can differ from the one recorded in the tables since

the doctor takes into account his/her own knowledge.

In the data set there exist 300 cases of class Low, 300 of

class Mild, 300 of class Moderate and 4 of class High1. All

of them are not diabetic but a similar FRBCS using the data

from diabetic patients could be obtained.

As input values we are going to use only the following

attributes:

• Gender.

• Smoking.

• Blood systolic pressure.

• Blood diastolic pressure.

• Body mass index.

These attributes are collected to provide a fast diagnosis

tool to the doctor, since all of them can be obtained in a

simple medical encounter. In this manner, the doctor can

decide the necessity of making more medical tests, i.e. the

total cholesterol or the value of the HDL cholesterol, in order

to obtain a more suitable risk degree.

To carry out the experiment we have considered a 5-folder

cross-validation model, i.e., five random partitions with a

twenty per cent of the patterns, using the combination of four

of them (eighty per cent) for training and the remaining one

for testing. For each data-set we consider the average results

of the five partitions.

We will apply the same configuration for both FRBCS

approaches (Chi and FH-GBML), which consists of product t-

norm as conjunction operator, together with PCF for the rule

weight and the FRM of the winning rule. Furthermore, we

have selected the use of three labels per variable in the case

of the Chi FRBCS.

For the FH-GBML algorithm, we consider the following

values for the specific parameters of the genetic process:

1It is really difficult to find people with such risk level due to they are used
to go to health centers and therefore they are treated so their risk is usually
low
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• Number of fuzzy rules: 5 · d rules.

• Number of rule sets: 200 rule sets.

• Crossover probability: 0.9.

• Mutation probability: 1/d.

• Number of replaced rules: All rules except the best-one

(Pittsburgh-part, elitist approach), number of rules / 5

(GCCL-part).

• Total number of generations: 1000 generations.

• Don’t care probability: 0.5.

• Probability of the application of the GCCL iteration: 0.5.

where d stands for the dimensionality of the problem (number

of variables).

Finally, we have considered the following values for the

parameters of the genetic tuning:

• Population Size: 50 individuals.

• Number of evaluations: 5000 · number of variables.
• Bits per gene for the Gray codification (for incest pre-

vention): 30 bits.

B. Analysis of the Usefulness of the Genetic Amplitude Tuning

Table I shows the results achieved by the two FRBCSs used

in this work, both when the KB is composed of fuzzy sets

(Base) and when the KB is formed of IVFSs which are post-

processed with the Genetic Amplitude Tuning (IVFS GAT).

These results are grouped by pairs of columns, training and

testing, and the best result achieved in test is stressed in bold-

face.

TABLE I
RESULTS IN TRAIN (TR.) AND TEST (TST) OF BOTH METHODS WITH AND

WITHOUT THE GENETIC AMPLITUDE TUNING.

Chi

Base IVFS GAT
Tr. Tst Tr. Tst

72.42 70.28 75.32 72.44

FH-GBML

Base IVFS GAT
Tr. Tst Tr. Tst

73.96 71.85 77.07 74.00

Results of Table I shown that our methodology allows

the improvement of the classification accuracy of the initial

FRBCS in both cases. Specifically, we raise the performance of

both base classifiers a 2% which is an important improvement.

From now on, we are going to perform a deep analysis

of the behavior of our methodology in two specific scenarios

which can provide benefits both for the patients and for the

medical institutions. We use confusion matrices as they allow

us to show easily the number of correctly classified patterns

and the class in which the patterns are classified when they

are misclassified.

Table II shows the confusion matrices of the results provided

both in training and testing by the Chi et al. rule learning

algorithm. In the first part of the table are presented the

results when the KB is composed of fuzzy sets and, in the

second part, the results achieved when the linguistic labels

are modeled by means of IVFSs and are genetically post-

processed. Table III presents the confusion matrices for the

FH-BML algorithm with and without our methodology and

follows the same structure of Table II.

TABLE II
CONFUSION MATRIX IN TRAINING AND TESTING OF THE CHI ET AL.
ALGORITHM WITH AND WITHOUT GENETIC AMPLITUDE TUNING.

Base Chi et al. algorithm

Train Test

Class 0 1 2 3 Class 0 1 2 3

0 208 6 7 0 0 50 4 1 0
1 52 93 77 0 1 14 24 21 0
2 11 35 171 0 2 3 10 40 0
3 0 0 2 0 3 0 0 0 0

Chi et al. algorithm with IVFS GAT

Train Test

Class 0 1 2 3 Class 0 1 2 3

0 213 3 6 0 0 53 1 1 0
1 39 127 56 0 1 12 34 13 0
2 9 51 157 0 2 2 15 36 0
3 0 0 2 0 3 0 0 0 0

The first specific scenario is the one in which the patient

would have a low risk degree of suffering a CVD. If the

patient is not classified with such risk degree he/she would

have to pass more medical tests producing over cost to the

health institution. From Tables II and III it is observed that

after the application of our methodology diminishes notably

the number of misclassification of patients with a low risk

degree in both FRBCSs.

Another important situation is the one in which the patient

would have a mild or moderate risk of suffering a CVD. The

patient should be exhaustive analyzed, since if its diagnosis un-

derestimate the risk degree his/her health would be in danger.

From the results shown in Tables II and III it is noticed that

the number of patients classified with a low risk diminishes in

both cases. However, when applying our methodology to the

KB generated by the Chi et al. algorithm most of the patients

are classified with a mild risk. Furthermore, when applying

our approach to the KB created by the FH-GBML method,

most of the patients are classified with a moderate risk.

These findings allow us to assert that our methodology is

suitable to face this problem. Specifically, we recommend the

use of our methodology with the KB generated by the FH-

GML algorithm, since it fulfills the suitable situations. Further-

more, in the case of having doubts between mild or moderate

risk, it shows a trend to classify the patients with moderate

risk which is good for them, since the subsequent medical

tests they have to pass will allow to quantify accurately their

risk.

VI. CONCLUSION AND FUTURE LINES

In this contribution we have presented a methodology for

improving the classification accuracy of FRBCSs. First, we

model the linguistic labels by means of IVFSs in order to take

into account the semantic uncertainties related to the definition

of the membership functions and then, we post-process each

IVFS in such a way that their amplitude is tuned leading to a

good management of the uncertainties of the system.

We have applied our methodology to the detection of the

risk of the patients of suffering a CVD. The experimental study
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TABLE III
CONFUSION MATRIX IN TRAINING OF THE FH-GML ALGORITHM WITH

AND WITHOUT GENETIC AMPLITUDE TUNING.

Base FH-GBML algorithm

Train Test

Class 0 1 2 3 Class 0 1 2 3

0 187 32 3 0 0 45 8 2 0
1 17 144 61 0 1 6 36 17 0
2 5 53 159 0 2 0 16 37 0
3 0 0 2 0 3 0 0 0 0

FH-GBML algorithm with IVFS GAT

Train Test

Class 0 1 2 3 Class 0 1 2 3

0 207 10 5 0 0 51 1 3 0
1 15 127 80 0 1 5 30 24 0
2 2 32 183 0 2 0 10 43 0
3 0 0 2 0 3 0 0 0 0

has shown the suitability of our approach, since it enhances

the results of the both base FRBCSs considered in this work.

We stress the goodness of our methodology applied to the KB

generated by the FH-GBML algorithm, since it improves the

behavior of the classifier in all the specific scenarios we have

analyzed.

In future works doctors will verify the results and further

research will be done in order to increase the performance of

the FRBCSs.
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