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I. Introduction

There are many applications in digital image processing that require the proper alignment of 
different images. These problems arise from rather different domains. For example, in 
remote sensing it is important to put into correspondence the images acquired from differ-
ent viewpoints in order to achieve a global cartography from partial views. Likewise, in 

medical imaging it is helpful to determine a proper matching between the images provided by dif-
ferent kinds of sensors that are capable of highlighting different characteristics of the human anato-
my as bones, organs, or lesions. 

Image registration (IR) [1] is an important research field in digital image processing. It is used to 
align two or more images acquired under different conditions: at different times, using different sen-
sors, from different viewpoints, or a combination of some of the latter situations. In IR, the input 

and output images are available, but 
the specific transformation that pro-
duced the output image from the 
input one is usually unknown. IR 
aims to estimate the best geometric 
transformation leading to the best 
possible overlap thus transforming 
those independent images into a 
common one. 

To clarify terminology, the input 
image is also called scene and it is the 
image that will be transformed to 
reach the geometry of a reference 
image called model. They both are 
related by the said transformation 
and the degree of resemblance 
between them is measured by a Sim-
ilarity metric. The estimation of the 
transformation is usually tackled fol-
lowing an iterative optimization proce-
dure in order to properly explore the 
search space of possible transforma-
tions. Two search approaches have 

been considered in the IR literature. On the one hand, we find the matching-based IR approach, 
where the optimization problem is intended to look for a set of correspondences from pairs of similar 
image features. From those correspondences, the registration transformation is typically derived using 
numerical methods. On the other hand, IR methods following the approach based on the transforma-
tion parameters directly explore the range of each parameter describing the transformation. 

Medical IR is a mature research field with theoretical support and two decades of practical experi-
ence. A wide variety of applications have been proposed and there are excellent surveys that provide an 
up-to-date progress in the application of classical optimization techniques to the medical IR field [2]. 
Nevertheless, aspects such as presence of noise in images, image discretization, and orders of magnitude 
in the scale of the IR transformation parameters, among others, cause difficulties for the success of the 
optimization process applied by traditional IR methods, which are prone to be trapped in local mini-
ma. Recently, IR approaches based on evolutionary computation (EC) [3] and other metaheuristics (MHs)
[4] have demonstrated to be a promising solution for facing these challenging drawbacks [5]–[13]. 
Although they are not free of the problem of local minima and there is generally no guarantee that 
they will reach the global optimum in polynomial time, they have largely demonstrated their capability 
to perform a robust search in complex and ill-defined problems such as IR [14] and image processing 
[15]. Thus, they are usually considered as global optimization approaches. 
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Abstract–In the last few decades, image registration (IR) has been established 
as a very active research area in computer vision. Over the years, IR’s applica-
tions cover a broad range of real-world problems including remote sensing, 
medical imaging, artificial vision, and computer-aided design. In particular, 
medical IR is a mature research field with theoretical support and two decades 
of practical experience. 

Traditionally, medical IR has been tackled by iterative approaches consid-
ering numerical optimization methods which are likely to get stuck in local 
optima. Recently, a large number of medical IR methods based on the use of 
metaheuristics such as evolutionary algorithms have been proposed providing 
outstanding results. The success of the latter modern search methods is related 
to their ability to perform an effective and efficient global search in complex 
solution spaces like those tackled in the IR discipline. 

In this contribution, we aim to develop an experimental survey of the most 
recognized feature-based medical IR methods considering evolutionary algo-
rithms and other metaheuristics. To do so, the generic IR framework is first 
presented by providing a deep description of the involved components. Then, 
a large number of the latter proposals are reviewed. Finally, the most represen-
tative methods are benchmarked on two real-world medical scenarios consid-
ering two data sets of three-dimensional images with different modalities. 
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In [16], the authors developed a comparative study on 
evolutionary IR methods for a different and specific applica-
tion as 3D modeling. The aim of the current contribution is 
two-fold. On the one hand, we aim to review the state of 
the art of the IR methods that lay their foundations on EC 
and other MHs including, in our modest opinion, the most 
relevant works. On the other hand, we aim to develop an 
experimental study to test the capability of thirteen of the 
latter contributions to tackle different medical IR problems 
considering two image modalities. The performance of this 
family of methods will be compared with the outcomes 
achieved by two gradient-based methods, classically used in 
the medical IR field, thus leading to the global analysis of 
fifteen methods. To do so, two case studies tackling two real-
world medical applications have been carried out. In both 
cases, we have considered a feature-based IR approach [1], 
[14] in which a preprocessing step, prior to the application of 
IR, is performed in order to extract a concise subset of 
salient features of the medical 3D images. The first image 
data set considered comes from the BrainWeb repository at 
McGill University [17]. The second one was kindly provided 
by the Brown Medical School of the Rhode-Island Hospital 
(USA) and it is composed of two different computed 
tomographies of human wrists from a real-world case study. 
In both cases, we will deal with complex scenarios by facing 
non-rigid IR problem instances considering similarity trans-
formations, that constitute a rotation, a translation, and a uni-
form scaling. Thus, the conducted experiments will provide 
us with actual information about the degree of suitability of 
evolutionary and MH-based IR methods to solve IR prob-
lems in medical imaging. 

The structure of this contribution is as follows. Section II 
describes the IR problem analyzing the principal components 
of a generic IR method. Next, Section III introduces a review 
of the state of the art in IR methods based on EC and other 
MHs. Section IV presents a broad experimentation with the 
two medical data sets considering thirteen of the reviewed IR 

methods and the two classical approaches. Finally, some conclu-
sions are drawn in Section V. 

II. Image Registration
There is not a universal design for a hypothetical IR method 
that could be applicable to all registration tasks, since various 
considerations on the particular application must be taken into 
account. Nevertheless, IR methods usually require the four 
following components (see Figure 1): two input Images (see 
Section II-A) named scene Is5 5 pS1, p

S
2, c, p

S
n6 and model 

Im5 5 pS1r , p
S r2 , c, p

S rm 6, with p
S

i and p
S

jr  being image points; a 
Registration transformation f  (see Section II-B), being a 
parametric function relating the two images; a Similarity 
metric F (see Section II-C), in order to measure a qualitative 
value of proximity or degree of fitting between the trans-
formed scene image, noted f r 1 Is 2 , and the model image; and 
an Optimizer which looks for the optimal transformation f
inside the defined solution search space (see Section II-D). 
Next, we will describe each of the four IR components. 

A. Nature of the Images
IR methods proposed in the literature have addressed problems 
involving 2D and 3D images. The former are commonly tack-
led in aerial and satellite applications, while the latter are pres-
ent in more challenging real-world problems such as medical 
applications [1]. In those cases, different 3D image modalities 
are usually acquired as magnetic resonance images (MRIs) and 
computed tomographies (CTs) (see Figure 2). 

According to the nature of the images the IR methods must 
deal with, they can be classified as voxel-based (or intensity/sur-
face-based) and feature-based methods [1], [14]. While the former 
directly operate with the images raw data, the latter introduce a 
preprocessing step of the images (before the application of the 
IR method) in order to extract a reduced subset with the most 
relevant features. Since voxel-based methods can deal with a 
larger amount of data, they are often considered as fine-tuning 
registration processes. On the other hand, feature-based meth-

ods typically achieve a coarser approxima-
tion to the global solution due to the 
reduced set of characteristics they take 
into account. Thus, the latter approach is 
usually followed by a final refinement 
stage to achieve accurate IR results. 

Most of the voxel-based approaches 
tackle the IR problem by looking for 
corresponding patterns in the scene and 
the model images. There is a need to 
delimit the region where the search is 
accomplished because of the large data 
sets under study. Therefore, voxel-based 
IR methods usually rely on a rectangular 
window that restricts the search of corre-
spondences between scene and model 
images. That is an important drawback 
when the images are deformed by 
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FIGURE 1 The IR optimization process.
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 complex transformations. Then, this type of window will not be 
able to cover the same parts of the transformed scene and model 
images. Moreover, if the window contains a smooth image 
region without any prominent detail, it will be likely incorrectly 
matched to other smooth image region in the model image by 
mistake. Nevertheless, the principal shortcoming of voxel-based 
methods appears when there are changes in the illumination 
conditions during the acquisition of the scene and the model 
images. In that case, the similarity metric offers unreliable mea-
surements and it induces the optimization process to be trapped 
in local minima. 

In order to avoid many of the drawbacks related to voxel-
based methods, the second IR approach is based on the extrac-
tion of prominent geometric primitives (features) from the 
images [1], [14]. The proper comparison of feature sets will be 
possible using a reliable feature detector that accomplishes the 
accurate extraction of invariant features. Those are features 
which are not affected by changes in the geometry of the 
images, radiometric conditions, and appearance of noise. There 
are many different kinds of features that can be considered, e.g., 
region features, line features, and point features. Among them, cor-
ners are widely used due to their invariance to the image 
geometry. 

We have decided to follow the feature-based approach in 
the final experimental study developed in this contribution 
(Section IV). In particular, we consider features given by prom-
inent image points, named crest-line points [18], extracted from 
3D MRIs and CT images using local curvature information. 

B. Registration Transformation
We can classify IR methods according to the registration trans-
formation model used to relate both the scene and the model 
images. The first category of transformations includes linear 
transformations, which preserve the operations of vector addition 
and scalar multiplication, being a combination of translation, 
rotation, scaling, and shear components. Among the most com-
mon linear transformations in IR we found rigid, similarity, 
affine, projective, and curved. Linear transformations are global 
in nature, thus not being able to model local deformations. The 
second category of transformation includes “elastic” or 
 “non-rigid” transformations which allow local warping of image 
features, thus allowing local deformations. 

The transformation considered will depend on the applica-
tion addressed and the nature of the images involved. In partic-
ular, we use similarity transformations for the two medical IR 
applications presented in Section IV. Such transformations have 
demonstrated their suitability in medical environments. 

C. Similarity Metric
One of the most important components of any IR method is 
the similarity metric [19]. It is considered as a function F that 
measures the quality of the IR problem solution given by a 
registration transformation f. The final performance of any IR 
method will depend on the accurate estimation of F. 

Each solution is evaluated by F as follows. First, f  is usually 
applied to the scene image 1 f 1 Is 22 . Next, the fitting degree 
between the transformed scene and the model images, C 1 # , # 2 , 
must be determined: 

 F 1 Is, Im, f 2 5C 1 f 1 Is 2 , Im 2 . (1)

There are different C 1 # , # 2  definitions depending on the 
dimensions and nature of the images: 

 ❏ Voxel-based approaches: sum of squared differences, nor-
malized cross-correlation (i.e., correlation coefficient or 
phase correlation), and mutual information [2]. 

 ❏ Feature-based approaches: metrics based on feature values 
and distance between corresponding geometric primitives 
[20], [21].
As the previous IR components, the F function is also 

affected by both image discretization and noise, causing worse 
estimations and favoring the IR method to get trapped in local 
 minima. 

The huge amount of data often required makes the prob-
lem-solving very complex and the IR procedure very time-
consuming. Therefore, most of the IR contributions use some 
spatial indexing data structure in order to speed up the similar-
ity metric computation. It aims to improve the efficiency of 
the considered optimization method; each time the closest 
point assignment computation between the transformed 
scene and model images must be computed. Such data struc-
ture is  computed only once at the beginning of the IR meth-
od. Two main variants of spatial indexes can be found in the 
IR literature: 

(a) (b) (c) (d)

FIGURE 2 Different image modalities. From (a)–(d): functional MRI, MRI, CT, and ultrasound.
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 ❏ Kd-tree, it is based on a generalization of bisection in one 
dimension to k dimensions. The first proposal applying kd-
trees to the IR problem is to be found in [22]. 

 ❏ Distance map, every cell of this data structure usually stores 
the Euclidean distance to the closest point of the mapped 
image. Yamany et al. [6] considered a particular distance 
map, named grid closest point (GCP), which consists of two 
cubes splitting the 3D space.

D. Search Strategies
As said, the key idea of the IR process is focused on determin-
ing the unknown parametric transformation that relates two 
images by placing them in a common coordinate system, 
bringing corresponding points as close as possible. According to 
the search strategy component, we can distinguish two different 
IR approaches in the literature to determine that parametric 
transformation: 

 ❏ Matching-based approach: it performs a search in the space of 
feature correspondences (typically, correspondences of image 
points). Once the matching of scene and model features is 
accomplished, the registration transformation is derived. 

 ❏ Transformation parameters-based approach: a direct search in 
the space of the f  parameters is done.
In both approaches, IR arises as a non-linear optimization 

problem that cannot be solved by a direct method (e.g. resolu-
tion of a simple system of linear equations) because of the 
uncertainty underlying the estimation of f. On the contrary, it 
must be tackled by means of an iterative procedure searching 
for the optimal estimation of f, following one of the said 
approaches. Classical numerical optimizers can be used. How-
ever they usually get trapped in a local minima solution. 

1) Matching-Based Image Registration Approach
This search space exploration strategy needs to compute the 
two following steps. First, a typically big number of correspon-
dences in both the scene and the model images must be estab-
lished. IR approaches based on EC and other MHs have been 
proposed to tackle this complex first step (see Section III). 
Next, the transformation f  is retrieved by numerical methods 
considering the matching determined in the previous step (see 
Figure 3, left). Least squares (LS) estimators are the most com-
monly used numerical methods [23] within this approach, due 
to their special and interesting properties, e.g., they only require 
means, variances and covariances. 

Therefore, the complexity of both the matching step and 
the subsequent registration transformation estimation strongly 

depends on the method being considered. Likewise, an iterative 
process may be followed either for the estimation of the 
matching, or the registration, or both, until reaching conver-
gence within a tolerance threshold of the concerned similarity 
metric. This is the case of the Iterative Closest Point (ICP) algo-
rithm [24], well-known in computer aided design and medical 
imaging. ICP is an iterative gradient-based method based on 
the least squares estimation of the IR transformation from the 
computed matching between scene and model points consid-
ering the closest assignment rule. Notice that ICP is not guided 
by the similarity metric but by the computed matching, as the 
remaining matching-based IR methods. In this strategy, the 
function F (typically the Mean Square Error —MSE—) only 
plays the role of the stopping criterion. Moreover, the transfor-
mation estimator (numerical method) is dependent on the 
good outcomes of the matching step. Thus, the better the 
choice of the matching performed, the more precise the esti-
mation of the transformation f. Consequently, the value of the 
similarity metric will be more accurate leading to a proper 
convergence. 

The original ICP proposal has three main drawbacks: i) the 
algorithm is very dependent on the initial guess and it likely 
gets trapped in local optima solutions, which forces the user to 
manually assist the IR procedure in order to overcome these 
undesirable situations; ii) one of the two images (typically the 
scene one) should be contained in the other, e.g., in feature-
based IR problems, the geometric primitives of one image 
should be a subset of those in its counterpart image; and ii) as 
previously mentioned, it can only handle normally distributed 
observations. Since that original proposal, many contributions 
have been presented extending and partially solving the latter 
shortcomings [22], [25], [26]. 

2) Transformation Parameters-Based 
Image Registration Approach
Opposite to the previous approach, the second one involves 
directly searching for the solution in the space of parameters of 
the transformation f  (see Figure 3, right). In order to perform 
that search, the registration transformation f  is parametrized 
and each solution to the IR problem is encoded as a vector 
composed by the values for the f  parameters. 

Thus, the IR method generates possible vectors of parame-
ter values, that is, candidate definitions of registration transfor-
mations. Unlike ICP-based strategies, the search space 
exploration is directly guided by the similarity metric F. Each 
solution vector is evaluated by such metric, thus clearly stating 

Optimization:
Search for the Best

Matching

Optimization:
Search for the Best

f Parameters

f Parameters
Estimation

(Numerical Methods)

Error
Estimation

Error
Estimation

(a) (b)

FIGURE 3 From (a) to (b), matching-based vs. transformation parameters-based IR approaches.
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the IR task as a numerical optimization problem involving the 
search for the best f  parameters that minimize F. 

Notice that orders of magnitude in the scale of f  parame-
ters are crucial for IR methods dealing with this search space 
strategy. Unit changes in angle have much greater impact on an 
image than unit changes in translation. Indeed, when applying 
a rotation, the further a given point on the image from its cen-
ter of mass (origin of rotation), the greater the displacement. 
Meanwhile, the distance between the transformed scene and 
the model images is kept constant in case of translations. This 
difference in the scale appears as elongated valleys in the 
parameter search space, causing difficulties for the traditional 
gradient-based local optimizers [7], [24]. Therefore, if the con-
sidered IR method is not robust tackling these scenarios, the 
theoretical convergence is not guaranteed and it will get 
trapped in local minima in most cases. 

Together with the commonly used gradient-based optimiz-
ers [27], approaches based on EC and other MHs are the most 
extended optimization procedures for IR when this search 
space strategy is considered. That is shown by the large number 
of contributions proposed so far [5]–[13] (see Section III). 

III. State of the Art of Image Registration Based on 
Evolutionary Computation and Other Metaheuristics

A. Evolutionary Computation and Metaheuristics
Approximate or heuristic optimization methods (also named 
MHs [4]) belonging to the field of EC use computational 
models of evolutionary processes for evolving populations of 
solutions as key elements in the design and implementation of 
computer-based problem-solving systems. EC approaches con-
stitute a very interesting choice since they are able to achieve 
good quality outcomes when, for instance, global solutions of 
hard problems cannot be found with a reasonable amount of 
computational effort. 

There is a variety of EC models that have been proposed 
and studied, which are referred as evolutionary algorithms 
(EAs) [3], [28]. Among them we refer to four well-defined EAs 
which have served as the basis for much of the activity in the 
field: genetic algorithms (GAs), evolution strategies (ES), genet-
ic programming (GP), and evolutionary programming (EP). In 
particular, GAs are probably the most used EAs in the literature 
to face real-world optimization problems. Some other EAs 
have been proposed in the last few years improving the state of 
the art in this field by adopting more suitable optimization 
strategies: the CHC algorithm1 and differential evolution (DE). 

EAs are also considered a member of the set of MHs [4]. 
MHs are among the most prominent and successful techniques 
to solve a large amount of complex and computationally hard 
combinatorial and numerical optimization problems arising in 
human activities, such as economics (e.g., portfolio selection), 
industry (e.g., scheduling or logistics), or engineering (e.g., 

routing), among many others. MHs can be seen as general 
algorithmic frameworks that require relatively few modifica-
tions to be adapted to tackle a specific problem. They are a 
diverse family of optimization algorithms including methods as 
simulated annealing (SA), tabu search (TS), multi-start methods, 
iterated local search (ILS), variable neighborhood search (VNS), 
greedy randomized adaptive search procedures (GRASP), 
memetic algorithms (MAs), scatter search (SS), ant colony opti-
mization (ACO), and particle swarm optimization (PSO). 

Nowadays, MHs have become an interdisciplinary research 
area, intertwining disciplines such as computer science, 
 operations research, engineering, etc. They have received enor-
mous attention as witnessed by thousands of journals and con-
ference papers, hundreds of authored and edited books 
published, and a large number of dedicated conference series. 

B. Suitability of Evolutionary Computation 
and Metaheuristics in Image Registration

There are different strengths and limitations that have been 
stated either to justify or to avoid the use of these methods 
when tackling complex optimization problems like IR. Some 
advantages follow: 

 ❏ Unlike classical gradient-based search methods, those based 
on EC and other MHs do not depend on the starting solu-
tion, thus are more robust approaches. Moreover, they provide 
specific strategies to scape from local optima. In particular, 
they can cope with multimodal functions to tackle IR [31]. 

 ❏ EC and MHs have been used in a wide variety of optimiza-
tion tasks within IR including numerical optimization and 
combinatorial optimization problems, i.e. facing both the 
transformation parameters and the matching-based IR 
approaches, respectively. 

 ❏ They are conceptually simple and easy to implement. 
 ❏ They can handle arbitrary kinds of constraints and objectives 
easily. The latter can be considered weighted components of 
the fitness function. Thus, it is easier to adapt the optimiza-
tion scheduler to the particular requirements of a wide 
range of possible objectives. They can also be integrated in a 
multi-objective scheme for solving the IR problem [13]. 

 ❏ Unlike other numerical IR techniques (e.g. gradient-based) 
that are only applicable for continuous functions or other 
constrained sets, their performance is independent of the 
solution representation. 

 ❏ They offer a framework wherein including prior knowl-
edge about the problem is easy. Thus, the search process is 
more appropriate, yielding a more efficient exploration of 
the space of possible solutions. For instance, a feature-based 
IR approach in [32]–[34] led to a better design of the 
objective functions to exploit information related to the 
geometry and the intensity of the images. 

 ❏ They can also be easily combined with more traditional 
optimization techniques such as gradient-based methods 
[35]–[37]. The stochastic strategy is first applied and next the 
deterministic one is launched [37]. Another outstanding 
approach aims to exploit the benefits of both strategies by 

1The CHC acronym stands for Cross generational elitist selection, Heterogeneous 
recombination, Cataclysmic mutation [29], [30].
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their hybridization in the well-known memetic computation 
paradigm [38], [39]. Such scheme was successfully applied to 
the IR problem in [36]. Currently, this hybrid approach 
brings an outstanding performance due to the proper com-
bination of the exploration and the exploitation capabilities 
of both stochastic and deterministic optimization schemes.

The most important shortcomings related to the use of EC and 
other MHs are shown as follows: 

 ❏ Both stochastic optimization approaches need an initial tun-
ing of control parameters following a manual expert-based 
procedure. In the last few years, advanced strategies are aris-
ing in order to provide new optimization algorithms with 
an adaptive behavior of control parameters [38]. 

 ❏ They are usually discarded when real-time requirements are 
needed. Typically, EC and MHs are time consuming. Parallel 
implementations have been proposed to face this pitfall [40]. 

 ❏ There is no formal proof that these approaches converge to 
the global optimum. However, results in IR and other prob-
lem domains are so good that those previously described 
hybrid approaches are usually considered to escape from 
local optima and try to reach the global optimum [36]. 

 ❏ The estimation of the appropriate stop criterion is not easy 
and it is closely related to the fair comparison of the differ-
ent methods under study. Moreover, it is problem depen-
dent. Either the CPU time or the number of function 
evaluations are typical criteria. The former should be pre-
ferred tackling methods with heterogeneous designs.

C. First Evolutionary Image Registration Methods
The first attempts to solve IR using EC approaches can be 
found in the early eighties. The size of data as well as the num-
ber of parameters that are looked for prevent an exhaustive 
search of the solutions. An approach based on a GA was pro-
posed in 1984 for the 2D case and applied to angiographic 
images [41]. Later, in 1989, Mandava et al. [42] used a 64-bit 
structure to represent a possible solution when trying to find 
the eight parameters of a bilinear transformation through a 
binary GA. Brunnström and Stoddart [32] proposed a new 
method based on the manual prealignment of range images 
followed by an automatic IR process using a novel GA that 
searches for solutions following the matching-based approach. 
Tsang [43] used 48-bit chromosomes to encode three test 
points as a base for the estimation of the 2D affine registration 
function by means of a binary-coded GA. In the case of  
Yamany et al. [6] and Chalermwat et al. [8] proposals, the same 
binary coding is found when dealing with 3D and 2D rigid 
transformations, respectively. Yamany et al. enforced a range of 
631° over the angles of rotation and 6127 units in displace-
ment by defining a 42-bit chromosome with eight bits for 
each translation parameter and six bits for each rotation angle. 
Meanwhile, Chalermwat et al. used twelve bits for the coding 
of the 2D rotation parameter to get a search scope of 620.48°, 
therefore allowing the use of a precision factor for the discreti-
zation of the continuous rotation angle interval. Other ten bits 
stored each of the two translation parameters 16512 pixels 2 . 

All the latter approaches showed several pitfalls from an EC 
perspective. On the one hand, they make use of the basic bina-
ry coding to solve inherently real coded problems, when it is 
well known that binary coding suffers from discretization flaws 
(as unreacheable problem solutions in the search space) and 
requires transformations to real values for each solution evalua-
tion. Moreover, the kind of GA considered is usually based on 
the old-fashioned original proposal by Holland [44]. In this 
way, a selection strategy based on fitness-proportionate selec-
tion probability assignment and the stochastic sampling with 
replacement, as well as the classical one-point crossover and 
simple bit flipping mutation, are used. It is well known that 
such selection strategy causes a strong selective pressure, thus 
having a high risk of premature convergence of the algorithm. 
On the other hand, it has also been demonstrated that it is dif-
ficult for the single-point crossover to create useful descendants 
as it is excessively disruptive with respect to the building blocks. 

D. State-of-the-Art Evolutionary 
Image Registration Methods
The old genetic framework described in the previous section is 
a clear pitfall affecting the latter group of proposals. Some out-
standing IR methods that solve the latter drawbacks by using 
advanced EAs are as follow: 

1) Rouet et al.’s GA-Based Proposal
In this contribution the authors face 3D MR-CT IR by means 
of a three step algorithm [5]. First, the transformation parame-
ters-based approach is used and a rigid transformation is deter-
mined by a real-coded GA. Second, they use another 
matching-based GA trying to determine a global trilinear 
transformation. Last, they introduce a post-analysis of the out-
put population of the previous step in order to achieve a fine 
tuning of the solution using a local optimization process. 
Despite the promising results they obtain, we still identify dif-
ferent weak points in their approach: 

 ❏ Different studies have shown that a trade-off between pop-
ulation diversity and convergence to the solution is needed 
in order to get a good behavior of any EA (to avoid getting 
stuck in local minima) [36]. Although Rouet et al. used the 
principle of Latin squares to control the distribution of the 
population over the search space, there are other approaches 
that could perform this task better, for instance, niching 
techniques [28] as those used by Pascale et al. [31]. 

 ❏ The success of the second step of the algorithm depends on a 
precise definition of the curvature class of each point. More-
over, the use of simple operators (like uniform crossover) in a 
real-coded GA is not the best option in all cases, even if the 
aim is to improve the efficiency of the algorithm [45].

2) He and Narayana’s GA-Based Proposal
This IR method [7] is a slight improvement of the previously 
reviewed Yamany et al.’s approach [6]. It considers a real coding 
scheme that makes use of arithmetic crossover and uniform 
mutation operators within an elitist generational model 
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 including a restart mechanism. This evolutionary IR method 
deals with rigid transformations following a two-step tech-
nique. First, a coarse parameter estimation is tackled using a 
real-coded GA. Then, the obtained preliminary solution is 
refined by means of a local search procedure based on the 
dividing rectangle method. In the coarse resolution, the ranges 
of the parameters were set to: 620 voxels along x and y direc-
tions, and 640 voxels along z direction for the translation, and 
rotations of 610° around x and y axes, and 620° around z 
axis. However, the setting of the parameters range and the use 
of a simple rigid transformation may be a weak point when 
applying this method to some real-world environments. 

3) Robertson and Fisher’s GA-Based Proposal
As in [8], the GA-based IR method proposed by Robertson 
and Fisher [40] adopts a parallel computing approach in order 
to improve the efficiency of IR tasks dealing with range imag-
es. Specifically, a master node is dedicated to manage the evolu-
tion of the population of solutions (selection, mutation, 
crossover, etc.). Meanwhile, each slave node is fully dedicated to 
evaluating the solutions. Unlike in [8], this method is based on 
a real-coded representation of solutions corresponding to a 
rigid transformation given by six parameters. With regards to 
the specific design of the proposed GA-based IR method, the 
authors considered four and two different mutation and cross-
over operators, respectively. The main novelty of the method 
consists of providing a selection probability to each operator, 
and storing them in a normalized unit vector. The vector is 
updated according to the achievement of better solutions after 
the application of each operator. Tournament selection is also 
considered. Finally, it is not stated whether the evolutionary 
design ensures the crossover operator is applied at least once, 
which is a requirement to be accomplished by any GA [28]. 

4) Chow et al.’s GA-Based Proposal
The authors proposed in [9] the same generational and propor-
tionate-fitness models for population reproduction than the 
method by He and Narayana [7]. However, Chow et al. intro-
duced the use of a crossover operator that randomly selects the 
number of genes to be swapped. The value to be accumulated 
for a mutated gene is generated randomly within a constant 
range for the rotation genes and dynamically computed for the 
translation ones according to the fitness value of the chromo-
some. They also make use of a GA with more suitable compo-
nents to the current EC framework such as a real coding 
scheme and a sophisticated restart mechanism (named “dynamic 
boundary”). In spite of these improvements, there are some 
drawbacks in terms of accuracy, due to the fact that the authors 
work with a smaller, randomly selected data set from scene 
images with a huge amount of data. Besides, although the algo-
rithm aims to get a quick registration estimation with the latter 
procedure, the efficiency could be reduced since it needs to per-
form a sort operation for each evaluation of the fitness function. 
As many of the mentioned proposals, it also has the limitation 
of only considering a rigid transformation (translation and rota-

tion). The restart scheme assumes that, prior to its application, 
the population will fall in a search space region that is near to 
the global optimum, which may not always be the case. 

5) Silva et al.’s GA-Based Proposal
This contribution [46] addressed the pair-wise IR problem of 
range images acquired by 3D laser range scanners. Specifically, 
they used several range data sets obtained from the well-known 
SAMPL public-access database which were acquired with a 
Konica-Minolta Vivid 700© laser scanner (resource available at 
http://sampl.eng.ohio-state.edu). Each data set considers adja-
cent range images acquired every 20 rotation degrees of the 
turn table. The higher the degree of rotation, the lower the 
amount of overlapping existing between the images. The 
authors tackled the IR problem from the transformation 
parameters-based approach for rigid transformations. The pro-
posed method is inspired in the steady-state evolutionary 
scheme of GAs (90% of the worst solutions are replaced instead 
of the entire population as done in generational schemes) [3], 
where tournament selection, uniform crossover and random 
selection mutation operators are considered. Moreover, a hill-
climbing algorithm is added to the GA in order to achieve 
accurate results. In addition, the authors proposed a new simi-
larity metric, named surface interpenetration measure (SIM), 
which reveals that more discriminating and accurate results can 
be obtained compared to those results achieved by metrics 
based on the Euclidean distances. 

6) Lomonosov et al.’s GA-Based Proposal
Authors proposed a new method for the pair-wise IR prob-
lem of range images [12] facing three real-world noisy mea-
sured data sets provided by their REPLICA laser range 
scanner system and another two from the SAMPL public-
access database. They considered the transformation parame-
ters-based approach using rigid transformations. The main 
novelties of this contribution are the inclusion of a degree 
of overlapping parameter in the solution vector and the uti-
lization of the trimmed squares metric as objective function 
to be minimized. They constitute a different schematic 
approach for the IR problem that offers correct coarse IR 
results at overlaps under 50%. A random sampling procedure 
is performed in order to speed up the performance of the 
method. According to the evolutionary design of their 
method, a generational GA performing search in the seven 
dimensional space formed by three translation parameters, 
three rotation parameters, and the newly added degree of 
overlapping parameter is considered. They used an integer 
coding representation of solutions which should be properly 
normalized onto the corresponding real-value range. Simple 
one-point crossover was employed and two mutation opera-
tors were introduced. Shift mutation alters one parameter 
randomly by a value not exceeding a 10% of the parameter 
range. Meanwhile, replacement mutation substitutes a 
parameter with a random value. Tournament and elitism 
were also employed. 
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7) Cordón et al.’s CHC-Based Proposal
This contribution used the sophisticated CHC EA [29], [30] 
that shows a very good intensification/diversification trade-off 
for the IR of MRIs [11]. Authors introduced two different 
variants of the method. First, they used binary-coded solutions 
and the HUX crossover [47], based on the original CHC 
structure. The second variant of the CHC-based IR method 
extends the latter structure to work in a real-coded fashion by 
considering a real to binary coding translation mechanism as 
well as using different specific real-coded genetic operators as 
the blend crossover operator (BLX- a). Authors considered 
similarity transformations, thus eight-dimensional real coded 
solutions are considered to encode the transformation (four 
parameters for rotation, three for translation, and one for uni-
form scaling). They proposed the following objective function 
in order to tackle these particular scenarios: 
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where Is and Im are the scene and model images; f  is the trans-
formation encoded in the evaluated solution; p

S
i is the i th 3D 

point from the scene and p
S

jr is its corresponding closest point 
in the model obtained with the GCP data structure (see Sec-
tion II-C); v1 and v2 (v11v25 1) weigh the importance of 
each function term; rc

s is the radius of the sphere wrapping up 
the scene image transformed with the current f; and rm is the 
radius of the sphere wrapping up the model image. As the first 
term of F reveals, the modeled error corresponds to the MSE. 
Note that F maximizes up to 1.0 for a rarely perfect fit. 

8) Winter et al.’s CMA-ES-Based Proposal
Authors presented a system for the IR of CT and intraopera-
tive ultrasound images for pedicle screw insertion during spinal 
surgery [48]. They compared different optimization strategies: 
three gradient-based IR algorithms and the covariance matrix 
adaptation evolution strategy (CMA-ES) [49]. From the con-
ducted experiments, large performance differences were 
observed between the optimization methods. Specifically, 
CMA-ES yielded the best results with regard to registration 
rate and precision. In fact, they mentioned that on a budget of 
ten thousand objective function evaluations, CMA-ES regis-
tered correctly in almost 100% of the tackled experiments. In 
addition, CMA-ES obtained outstanding results in recent con-
tributions facing other IR problems [50]. 

9) De Falco et al.’s DE-Based Proposal
Authors proposed a new IR method based on the DE EA [51]. 
DE is a parallel direct search method that has proved to be a 
promising candidate to solve real-valued optimization problems 

[52], [53]. DE combines simple arithmetic operators with the 
classical crossover, mutation, and selection genetic operators 
within an easy to implement scheme. It shows the advantage of 
considering few control parameters, named mutation factor (F) 
and recombination rate (CR). The fundamental idea of DE is a 
new scheme for generating trial solutions by adding the 
weighted differenced vector between two population members 
to a third one. The proposed method is applied to two 2D IR 
problems: mosaicking and changes in time of satellite images. 
Registration is carried out from the transformation parameters-
based approach searching for the most suitable affine transfor-
mation (given by eleven real-coded parameters) in terms of 
maximization of the MI similarity metric. 

E. State-of-the-Art IR Methods Based on Metaheuristics
Instead of considering EC, there are some other IR methods 
based on other MHs. Some of the most important ones are 
described in this section. 

1) Luck et al.’s ICP&SA-Based Proposal
In [54], the authors proposed the combination of the ICP algo-
rithm with a SA technique [55] to face pair-wise IR problems 
of range images. Specifically, each two-step iteration of the 
method involves subsequently applying the ICP algorithm, 
optimizing the solution generated with the SA procedure, and 
starting again a new iteration. The resulting hybrid algorithm is 
robust in finding the correct registration and efficient in terms 
of the number of iterations. The system uses a robust error 
function to handle outlier points. 

2) Wachowiak et al.’s TS-Based Proposal
In this contribution [56], the authors introduced an adapted TS 
[57] IR method to tackle 2D to 3D IR problems. Specifically, 
they adopted a transformation parameters-based approach and 
addressed medical IR problems considering 2D ultrasound 
scans (US) and 3D volumes of MRIs. They considered the 
maximum value of the overlap-invariant normalized MI [2] 
functional as Similarity metric. In their work, once the TS-
based IR method has identified a promising area of problem 
solutions, the affine shaker algorithm [58] is applied to locate 
the best point in each subarea. The shape of the promising area 
is thus adapted to include areas of the search space that may 
have been missed during diversification. Finally, an intensified 
search is conducted around the most promising point using the 
Nelder-Mead simplex algorithm [59]. 

3) Wachowiak et al.’s PSO-Based Proposal
The authors contributed with a broad study of the perfor-
mance of PSO algorithms [60], [61] for solving the IR prob-
lem in biomedical applications [62]. In particular, they consider 
registering single slices (2D images) of 3D volumes to whole 
3D volumes of medical images. In contrast to usual EAs which 
exploit the competitive characteristics of biological evolution 
(e.g., survival of the fittest), PSO exploits cooperative and social 
aspects, such as fish schooling, birds flocking, and insects 
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swarming. However, both EAs and PSO approaches are consid-
ered population-based schemes. In particular, PSO algorithms 
start with a random population (swarm) of individuals (parti-
cles) which iteratively change their search space location by 
performing movements based on a velocity vector. The authors 
addressed the IR problem from the transformation parameters-
based approach, considering a rigid transformation and the MI 
similarity metric as the objective function to be maximized. 
The variant called PSO7 is the one achieving the best perfor-
mance. It refers to a basic PSO with the following formulation 
for the velocity vector update: 

 ni 1 t 2 5x 3ni 1 t2 1 2 1w1m1 1pi2 xi 1 t2 1 22
 1w2m2 1 g2 xi 1 t2 1 2 24 (3)

being the optimization parameters k5 1.0, w15 2.1, 
w25 1.3, and the constriction coefficient x5 0.7298. 

However, the performance of the method is dependent on 
the initial orientation of the images to be registered that should 
be provided by the user. 

4) Cordón and Damas’ ILS-Based Proposal
In [33], the authors used the ILS MH [4] for tackling the IR 
problem from the matching-based approach, making use of 
image-specific information to guide the search and proposing a 
new representation of solutions based on the use of a permuta-
tion. Hence, a combinatorial optimization problem is tackled. It 
exploits problem dependent information by taking into 
account the curvature information extracted from synthetic 
and MR images. The main novelty of this feature-based IR 
method is that the heuristic values of the features are used to 
guide the matching. In particular, it exploits the information 
relative to local curvature characterizing the set of crest-lines 
points [18] extracted as relevant features of the scene and 
model images. Thus, the authors propose an advanced coding 
scheme where a given point matching is represented as a per-
mutation. Besides, they define a function merror 1 #2evaluating the 
accuracy of the matching stored in a given solution, p, by 
using the said curvature values: 

 merror 1p2 5Dk11Dk2, Dkj5 a
r

i51
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Dk1 and Dk2 measure the error associated to the matching of 
scene and model points with different values for the first and 
second principal curvatures, respectively. 

Meanwhile, the objective function of this IR method will 
include both information regarding the usual IR measure 
g 1p 2 (MSE of the registration transformation resulting from 
the point matching encoded in p) and the previous criterion 
as follows: F 1p2  5  w1

# g 1p2  1   w2
# merror 1p2 , where w1, w2 

are weighting coefficients defining the relative importance of 
each term. Specifically, similarity transformations were con-
sidered, where a rotation, a translation and uniform scaling is 
numerically derived from the point-matching coded in the 
solution. 

5) Cordón et al.’s SS-Based Proposal
The main idea behind SS [63] is a systematic combination 
between solutions (instead of a randomized one like that usual-
ly done in GAs) taken from a considerably reduced and evolved 
pool of solutions named Reference Set (between five and ten 
times lower than usual GA population sizes). The fact that the 
mechanisms within SS are not restricted to a single uniform 
design allowed the authors the exploration and design of strate-
gic possibilities that demonstrated to be effective tackling point-
matching IR problems [34]. Furthermore, new designs for three 
of the five SS components – the generator of diverse solutions, 
the improvement, and the combination methods – were pro-
posed to develop a method outperforming the state-of-the-art 
point matching approaches. In particular, the authors adopted 
the same feature-based approach and the same representation of 
solutions based on permutations previously proposed in [33] 
(see Subsection III-E4). Similarity transformations present in 
3D MRIs of human brains and 3D CTs of human wrists were 
also considered in this work. In particular, they succeeded at 
dealing with significant transformations between the two regis-
tered images, one of the ICP’s pitfalls (see Section II-D). 

6) Santamaría et al.’s SS-Based Proposal
After their successful IR approach tackling 3D synthetic and 
MR images [10], the authors provided several extensions of 
their SS-based method to tackle a real-world application 
focused on the 3D reconstruction of forensic objects from 
range images [36], [64]. In both contributions, the transfor-
mation parameters-based approach dealing with rigid trans-
formations was used. In this case, they adopted a similarity 
metric based on the median square error with the aim of 
tackling data sets of range images with a significantly low 
overlapping between adjacent images (acquired considering 
40 degrees of rotation of the turn table). The GCP data struc-
ture is used in order to speed up the computation of the clos-
est point rule (see Section II-C). The authors specifically 
performed a broad study about the performance capabilities 
of different memetic-based IR methods based on SS [36]. 
MAs are the result of the conjunction of the global search 
capabilities of EAs and the local search behavior of other low-
cost heuristic procedures [39], [65]. Besides, MAs have been 
successfully applied to other image analysis tasks [66]. In [36], 
the authors considered three existing EC-based IR methods 
as the baseline algorithm: SS [10], CHC [11], and DE-based 
[51] IR methods. For each of the previous three techniques, 
they considered the use of several local search algorithms 
(XLS [67], Solis&Wets [68], and Powell [69]) as improvement 
method. Two different criteria (deterministic and probabilis-
tic) were taken for the application of the local search, and dif-
ferent search intensity levels were tested. Thus, eighteen 
different variants were developed for each of the three EAs, 
fifty seven different memetic IR method designs overall. The 
obtained experimental results in the 3D reconstruction of dif-
ferent human skull models, supported by a complementary 
non-parametric statistical test, revealed that the SS variant that 
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made use of the deterministic local search  application criteri-
on and the XLS local search algorithm offered the best per-
formance among all the developed memetic-based IR 
methods. It also outperformed the authors’ previous methods 
based on the CHC [11] and SS algorithms [10], [64]. 

7) Queirolo et al.’s SA-Based Proposal
In [70], the authors proposed a new IR method based on SA 
and the SIM as similarity metric to face 3D face recognition 
problems. One of the main goals of the proposed method was 
to overcome the run time limitation of their previous GA-
based contribution [46] tackling pair-wise IR problems using 
range images (see Section III-D5). However, they performed an 
experiment to verify whether the recognition rate could be 
improved if the time constraint is avoided and it was shown that 
the SA-based IR method achieved the best results when using 
a larger number of iterations. Nevertheless, they showed the 
potential of the SIM as similarity score for 3D face recognition. 

IV. Experimental Study

A. Medical Image Data Sets
We use a first data set from the BrainWeb public repository2 of 
the McConnell Brain Imaging Centre [17]. The BrainWeb 
repository is a Simulated Brain Database (SBD) providing syn-
thetic MRI data computationally generated. Such MRIs have 
been extensively used by the neuroimaging community to 
evaluate the performance of different methods [62], [71]–[73]. 
In particular, Wachowiak et al. [62] generated a T1 MRI vol-
ume of a normal brain with the BrainWeb system in order to 
register single 2D-slices with respect to the whole 3D volume. 
The SBD provides MRI data based on two anatomical models: 
normal and multiple sclerosis (MS). Full 3D data volumes have 

been simulated for both models using three sequences (T1-, 
T2-, or proton-density- (PD) weighted) and a variety of slice 
thickness, noise levels, and levels of intensity non-uniformity 
(RF). Table 1 describes the particular settings considered to 
generate every BrainWeb image of our study (named BW1, 
BW2, and BW3). 

The second data set (kindly provided by the Rhode-Island 
Hospital in the United States) corresponds to real-world CT 
data of two human wrists from a volunteer with no history of 
wrist injury or chronic disease that might affect the wrists [74]. 
Both wrists (named Wrist(1) and Wrist(2)) were imaged simul-
taneously with a GE HiSpeed Advantage CT scanner (GE 
Medical, Milwaukee, WI). Contiguous, 1.0 mm, transverse slices 
of the entire carpus were acquired at a resolution between 0.2 
and 0.4 mm. The functional neutral wrist position was imaged 
while the subject was comfortably grasping a rubber bicycle 
handle in neutral supination-pronation. 

We extracted the isosurface and select crest-lines points 
with relevant curvature information from the original images 
using a 3D crest-line edge detector [18]. The resulting data sets 
comprise around five hundred points (see Figure 4). Table 2 
details the nature of every medical image of each data set. 

B. Experimental Design
We considered the following thirteen methods reviewed in 
Section III: 

 ❏ Evolutionary-based IR methods: Yamany-GABinary [6] 
(EV1); He-GA [7] (EV2); Chow-GA [9] (EV3); Silva-GA 
[46] (EV4); Lomonosov-GA [12] (EV5); Cordón-CHCBinary 
[47] (EV6); Cordón-CHC [11] (EV7); and DeFalco-DE 
[51] (EV8). 

 ❏ Metaheuristic-based IR methods: Luck-ICP&SA [54] 
(MH1); Wachowiak-PSO [62] (MH2); Cordón-ILS [33] 
(MH3); Cordón-SS [34] (MH4); and Santamaría-SS [36] 
(MH5).

(a) (b) (c) (d) (e) (f)

FIGURE 4 From (a)–(f): the original medical image, the corresponding extracted isosurface, and the crest-lines extracted from the isosurface. 
Images from the BrainWeb and Wrist data sets, respectively.

TABLE 1 Detailed description of the BrainWeb image data set generated by the on-line SBD system 
(http://mouldy.bic.mni.mcgill.ca/brainweb/).

BW IMAGE 
ANATOMICAL 
MODEL MODALITY 

SLICE 
THICKNESS (MM) 

LEVEL 
OF NOISE PROTOCOL RF (%) 

BW1 NORMAL T1 3 0 ICBM 20 
BW2 MILD MS T1 3 1 AI 20 
BW3 MILD MS T1 3 5 AI 20 

2Available at http://www2.bic.mni.mcgill.ca
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Moreover, our study includes two classical gradient-based IR 
methods frequently studied. Foremost, we considered a more 
recent version of the original ICP algorithm by Liu [25] Liu- 
ICP (LICP) which tries to overcome the drawbacks of the first 
ICP proposal [24]. Then, we included a method based on Pow-
ell’s contribution [69] (PW) which is one of the standard base-
line algorithms in IR [27]. 

The justification to selecting those methods based on EC 
and other MHs is two-fold. Firstly they can be considered as 
good representatives of the wide spectrum of techniques that 
lay their foundations on those two disciplines. Secondly we 
have taken the search strategy approach adopted into account 
(see Section II-D) in order to select outstanding methods fol-
lowing both a matching-based approach (MH1, MH3, MH4, 
and LICP) and a transformation parameters-based approach 
(EV1 to EV8, MH2, MH5, and PW). These fifteen IR methods 
have been implemented in C++ and compiled with GNU/
g++. We used a computer with an Intel Pentium IV 2.6 MHz 
processor and 2GB RAM. 

We considered the parameter values originally proposed 
by the authors in every contribution (see Table 3). Never-
theless, we have adapted the majority of the methods by 
using the same objective function in order to carry out a fair 
comparison. First, according to the geometric transforma-
tions relating the medical images we considered, Eq. 2 was 
taken as the objective function. Moreover, we utilized the 
GCP data structure (see Section II-C) to speed up the clos-
est point computation for every method in both IR applica-
tions. The only exceptions to the latter are Cordón-ILS and 
Cordón-SS IR methods because their specific objective 
function designs are strongly interrelated to the structure of 
the optimization algorithms. Thus, we maintained their 
original objective functions. 

A feature-based IR approach [1, 14] has been considered 
for both medical applications. It aims to reduce the huge 
amount of data of the original images in order to speed up 
and guide the optimization procedure. Feature extraction is 
considered as a preprocessing step, prior to the application of 
the IR method. It is based on the selection of a small subset 
of truly representative characteristics of the images to be reg-
istered. We used a 3D crest lines algorithm [18] to obtain fea-
ture points from both medical image domains considered: 
MRIs and CTs. These preprocessed images are the ones that 
will be used by every IR method to estimate the registration 
transformation. Once the IR method has finished, the raw 
images are considered to measure the quality of the final 
results. 

We designed several IR problem instances, taking into 
account similarity transformations (rotation, translation, and 
uniform scaling) for medical applications, thus coping with 
the specific characteristics of this application domain. For 
each problem instance tackled by the fifteen IR methods, 
thirty different runs are performed. Each run considers a 
different similarity transformation. In order to perform a fair 
comparison among the methods included in this study, we 
considered CPU time as the stop criterion. In our opinions, 
that is the best choice because we aim to compare the per-
formance of methods with heterogeneous designs. After a 
preliminary study, we noticed that twenty seconds was a 
suitable stop criterion to allow all the algorithms to con-
verge properly. 

The way a particular run is performed is as follows: a ran-
dom (similarity) transformation is applied to the ground-truth 
image and then the IR method estimates the unknown inverse 
transformation. Thus, ground-truth registration is available 
for both medical applications. In particular, similarity 

TABLE 2 Detailed description of the medical image data sets.

DATA SET LESION NOISE
CREST-LINE 
POINTS DATA SET LESION NOISE

CREST-LINE 
POINTS

BW(1) – – 583 WRIST(1) – – 575 
BW(2) YES 1% 348 WRIST(2) – – 412 
BW(3) YES 5% 284 

TABLE 3 Parameter settings. Methods with “*” were manually tuned due to the lack of information in their description.

EVOLUTIONARY-BASED METHODS METAHEURISTIC-BASED METHODS

METHOD PARAMETERS METHOD PARAMETERS
EV1* *POPULATION = 100 BIT-LENGTH / GENE = 15 MH1* ICP #ITERS = 40 SA #ITERS = 20 

CROSSOVER = 0.6 MUTATION = 0.1 SA MAX. TRIALS = 40 SA m = 0.3 
EV2 POPULATION = 41 CROSSOVER = 0.9 SA f = 0.3 SA TOLERANCE = 0.1 

MUTATION = 0.1 MH2 SWARM SIZE = 35 k5 1.0 
EV3 POPULATION = 500 CROSSOVER = 0.583 (w1, w2) = (2.1, 1.3) x5 0.7298 

MUTATION = 0.1666 MH3 (v1, v2) = (0.1, 0.9) PERTURBATION = 50% 
EV4 POPULATION = 100 CROSSOVER = 0.9 TIME = 5% (INNER LOOP) + 95% (OUTER LOOP)

MUTATION = 0.02 MH4 (v1, v2) = (0.5, 0.5) PSIZE = 80 
EV5 POPULATION = 500 CROSSOVER = 0.9 (b1, b2 ) = (7, 3) LS #ITERS = 80 

MUTATION = 0.5 MH5 PSIZE = 100 (b1, b2) = (8, 0)
EV6 POPULATION = 100 BIT-LENGTH / GENE = 15 BLX-a = 0.3 XLS #ITERS = 100 
EV7 POPULATION = 100 BLX-a = 0.3 
EV8 POPULATION = 30 (CR, F) = (0.5, 0.7) 
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 transformations are randomly generated following a uniform 
probability distribution as follows: each of the three rotation 
axis  parameters will be in the range 321, 1 4; the rotation angle 
will range in 30°, 360°4; the three translation parameters in 3240 mm, 40 mm 4; and the uniform scaling ranges in 30.5, 2.0 4. The quality of the final IR result is evaluated using 
the image estimated by the IR method and its counterpart 
ground-truth (both images in their original/raw versions, i.e. 
previous to the application of the feature extraction) as follows: 

 MSE5
a

r

i51
7 f 1xSi 2 2 xSir 7 2

r , (5)

where f 1 xSi 2  refers to the scene image’s ith point transformed 
by the estimated similarity transformation f, r is the scene 
image size, and x

S
ir is the latter x

S
i scene point considering in 

its ground-truth coordinates. It is clear that this procedure 
cannot be used in situations where ground-truth is not avail-
able. It is only a mean to accomplish an accurate evaluation of 
the performance of the IR methods considered. 

C. Results
Our results correspond to a number of medical IR problem 
instances for the 3D medical images presented in Table 2. 
The four IR scenarios we consider are: BW(1)-BW(2), 

TABLE 4 Medical IR results. Each entry corresponds to the minimum (top), mean (bottom), and standard deviation (in parentheses) 
MSE values obtained from the thirty different runs. The best minimum and mean MSE values are in bold.

CODE IR METHOD 
BW(1)-
BW(2) 

BW(1)-
BW(3) 

BW(2)-
BW(3) WRISTS AVERAGE 

IR Methods Based on Classical Methods

  796.1 796.1 791.6 199.9 646.0 
 PW POWELL [69] 4085.6 

(62089.4) 
4085.6 
(62089.4) 

3788.8 
(61892.4) 

1476.5 
(6747.3) 

3359.1 
(61093.7) 

  0.279 0.046 0.042 0.002 0.092 
 LICP LIU-ICP [25] 2788 

(62364) 
3009 
(62279) 

2929 
(62094) 

25 
(622) 

2187 
(61251) 

Evolutionary-Based IR Methods

  0.010 0.017 0.017 0.009 0.013 
 EV1 YAMANY-GABinary [6] 1678 

(62876) 
2517 
(63463) 

1868 
(62931) 

13 
(621) 

1519 
(6923) 

  0.466 1 0.342 0.021 0.457 
 EV2 HE-GA [7] 1214 

(62794) 
718 
(62182) 

2014 
(63158) 

2 
(66) 

987 
(6732) 

  19 19 18 5 15 
 EV3 CHOW-GA [9] 4261 

(63417) 
3604 
(63351) 

2398 
(62667) 

38 
(616) 

2575 
(61610) 

  0.030 0.009 0.013 0.004 0.014 
 EV4 SILVA-GA [46] 2209 

(62920) 
2647 
(63571) 

1751 
(62507) 

12 
(622) 

1654 
(6999) 

  1 0.516 1 0.168 0.671 
 EV5 LOMONOSOV-GA [12] 838 

(62422) 
830 
(62426) 

179 
(6857) 

21 
(623) 

467 
(6371) 

  0.021 0.012 0.024 0.007 0.016 
 EV6 CORDÓN-CHCBinary [47] 1935 

(63056) 
2352 
(63123) 

1397 
(62072) 

13 
(622) 

1424 
(6882) 

  0.001 0.007 0.008 0.002 0.005 
 EV7 CORDÓN-CHC [11] 1124 

(62338) 
1910 
(63283) 

1865 
(62998) 

3 
(612) 

1225 
(6771) 

  0.001 0.006 0.024 0.001 0.008 
 EV8 DEFALCO-DE [51] 132 

(6708) 
0.013 
(60.002) 

0.026 
(60.001) 

0.003 
(60.001) 

33 
(657) 

Metaheuristic-Based IR Methods

  0.001 0.004 0.004 0.001 0.003 
 MH1 LUCK-ICP&SA [54] 2863 

(62549) 
2579 
(62276) 

2463 
(62162) 

25 
(622) 

1982 
(61139) 

  0.018 0.160 0.347 0.008 0.133 
 MH2 WACHOWIAK-PSO [62] 681 

(61817) 
1060 
(62496) 

645 
(61908) 

27 
(618) 

603 
(6370) 

  2 20 41 0.335 15 
 MH3 CORDÓN-ILS [33] 3687 

(62627) 
3868 
(63183) 

3688 
(62518) 

32 
(619) 

2818 
(61610) 

  0.200 17 34 0.089 13
 MH4 CORDÓN-SS [34] 577 

(61715) 
743 
(61596) 

1133 
(61785) 

11 
(618) 

616 
(6403) 

  0.001 0.005 0.021 0.001 0.007 
 MH5 SANTAMARÍA-SS [36] 0.003 

(60.001) 
0.011 
(60.003) 

0.028 
(60.004) 

0.004 
(60.001) 

0.012 
(60.010)
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BW(1)-BW(3), BW(2)-BW(3), and Wrist(1)-Wrist(2), each 
one considering a randomly generated similarity transforma-
tion in every of the thirty runs performed. Thus one hundred 
and twenty different IR problem instances are addressed by 
every IR method. 

Since we are performing thirty runs per IR problem and 
method, we can analyze the distribution of the registration error 
during the said runs. Table 4 shows statistical results computed 
from the MSE (Eq. 5) of the fifteen IR methods included in 
our study. Every entry of the table refers to the minimum, 
mean, and standard deviation (in brackets) MSE values in the 
thirty runs. The best minimum and mean MSE values in each 
IR problem are highlighted using bold font. The code included 
in the first column of the table will be used to refer to every 
method from now on. The last column averages the mean MSE 
values along the four considered IR scenarios. The unit length 
of the data in this table is in squared millimeters. 

Figures 5 and 6 include four box-plots derived from the 
MSE values of the thirty different runs3. Every box-plot 
includes 15 boxes corresponding to each IR method consid-
ered. In each box, the minimum and maximum MSE values are 
the lowest and highest lines, the upper and lower ends of the 
box are the upper and lower quartiles, and a thick line within 
the box shows the median. In data with no dispersion, all the 
quartiles are grouped together and the box turns into a single 
line. Circles represent outliers. 

The right chart of Figure 6 shows the ranking of the IR 
methods regarding to the average performance tackling the 

BW 1 2  and Wrist 1 2  medical data sets (see the last column of 
Table 4). 

D. Discussion
We first aim to compare the averaged performance of the 
methods in Table 4 (column 7). According to minimum MSE 
values, the four most accurate methods are: Luck-ICP&SA
(MH1), Cordón-CHC (EV7), Santamaría-SS (MH5), and 
DeFalco-DE (EV8). Their minimum MSE values range [0.003, 
0.008]. While the latter three methods follow the transforma-
tion parameters-based IR approach, Luck-ICP&SA (MH1) is a 
hybrid method combining both the matching and the transfor-
mation parameters approaches. 

We also aim to analyze the robustness of the methods in the 
IR problems considered. Beyond the minimal result that one 
method could achieve in one of the thirty different runs, we 
will summarize the behavior of every method in those runs 
analyzing mean and median MSE in Table 4 and Figure 5, 
respectively. For the mean MSE values in Table 4 (columns 
3–7), we note the following facts: 

 ❏ The poor performance obtained by the Powell’s method 
(PW) demonstrates the low effectiveness of general-purpose 
gradient based methods without a good initial starting point 
for the search. 

 ❏ Liu-ICP (LICP) is another gradient based method. It out-
performs Powell’s method in all the problems because LICP 
is specifically designed to tackle IR. Nevertheless, the high 
mean MSE values obtained by LICP reflect it is still trapped 
in local optima. 

 ❏ Nine of the thirteen methods based on EC and other MHs 
outperform LICP in the four scenarios. Only the mean 
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FIGURE 5 Box-plots (a)–(c) highlighting the MSE distribution during the 30 runs of all the IR methods tackling the BrainWeb data set.

3The error of the Wrists CT data set (box-plot of Figure 6, left) is in logarithmic 
 scaling to ease the comparison of the methods’ performance.
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MSE values by Cordón-ILS (MH3) are worse than those by 
LICP in all the problems. 

 ❏ DeFalco-DE (EV8) and Santamaría-SS (MH5) achieve the 
best performance in all the considered medical IR prob-
lems. Both methods follow the transformation parameters-
based IR approach. 

This behavior is corroborated in the box-plots of Figure 5 and 
6 reflecting the MSE distribution along the thirty runs. 
According to the median MSE values, we can assert that: 

 ❏ PW always reports the worst median MSE values. 
 ❏ LICP outperforms PW in all the IR problems. 
 ❏ Nine of the thirteen methods based on EC and other MHs 
outperform LICP in the four problems. Only the median 
MSE values by Cordón-ILS (MH3) are worse than those by 
LICP in all the problems.

In addition to the analysis of the median values, the box-plots 
also show that there are two methods providing outstanding 
results in terms of performance and robustness, i.e. very low 
error value and error dispersion in all the runs for all the prob-
lems. They are DeFalco-DE (EV8) and Santamaría-SS (MH5). 
Both methods show a very similar behavior. 

Among the thirteen evolutionary and MH-based IR meth-
ods in the right chart of Figure 6, only two of them (Cordón-
ILS and Chow-GA) obtain a lower overall performance than 
the baseline gradient-based IR methods, LICP and Powell 
(PW). While the bad behavior of Cordón-ILS is due to the 
lack of time to converge to a better solution, as this method is 
significantly slower than the remainder, the bad performance of 
Chow-GA is related to the restart strategy proposed by the 
authors, named dynamic boundary. Boundary constraints of range 
space progressively reduce the solution space of the last genera-

tion before convergence. Restart is applied after a predefined 
number of generations without improvement of the popula-
tion. That is a weak assumption if the search space is either 
complex or wide. Then the EA usually falls into local minima. 
It is thus a more appropriate fine-tuning IR method to refine 
the results achieved by a more robust procedure. 

Note that, the majority of the transformation parameters-
based IR methods achieve the best average performance, being 
the most robust techniques. Among them, real-coded methods 
obtain the best results nearly followed by the integer-coded 
Lomonosov-GA (EV5). The difference in performance with 
respect to the binary-coded approaches Yamany-GABinary (EV1) 
and Cordón-CHCBinary (EV6) is rather important. 

Besides, the high reliability of Cordón-SS (MH4) match-
ing-based approach is remarkable. In fact, it is the fifth method 
in the ranking. Surprisingly, Chow-GA (EV3) is the real-coded 
transformation parameters-based IR method with the lowest 
quality results in its category, even worse than some methods 
based on the point matching approach as Luck-ICP/&SA
(MH1) and Liu-ICP (LICP). As said, the bad performance of 
Chow-GA is related to the restart strategy proposed by the 
authors. 

Finally, Figure 7 graphically complements the latter analysis 
on the methods robustness. Unlike the high variability between 
the best and the worst solutions shown by the best gradient-
based method (LICP), the outstanding stability of the most 
robust method (MH5) along the thirty runs is remarkable. 

V. Conclusion
The large number of contributions related to IR shows the 
high relevance this topic has reached in the computer vision 
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area. Recently, the adoption of optimization techniques com-
ing from both the EC and MH communities have become a 
promising solution due to their behavior as global optimization 
techniques. They own a capability to perform robust search in 
complex and ill-defined spaces in order to overcome the draw-
backs of the traditional IR algorithms, with the ICP algorithm 
as the main exponent. 

Unlike traditional methods, IR methods based on EC and 
other MHs have demonstrated their good behavior handling 
this ill-conditioned problem in the last few years. The main dif-
ficulty to be tackled is to find a reliable/robust manner to 
escape from locally optimal registration solutions. None of the 
previous works reviewing the IR state-of-the-art ([1, 75]) 
addresses those IR contributions adopting an EA or any other 
MH in their optimization components in depth. With the aim 
of bridging this gap, in this work we have introduced an exper-
imental survey of the most relevant IR methods of the said 
optimization approaches. 

In order to establish a better comprehension of this family 
of methods, a broad experimentation using two case studies 
tackling a realistic and a real-world medical imaging application 
have been carried out. In particular, we adopted a feature-based 
IR approach and we considered a similarity transformation in 
order to better face the specific characteristics of both applica-
tions. Medical image data sets were carefully chosen to tackle 
different challenging IR problem instances according to differ-
ent criteria, e.g. frequency of use, presence of noise and ana-
tomic lesions, and different modalities, among others. From the 
results obtained we highlighted the high performance and 
accurate results offered by several of the reviewed IR methods 

against those achieved by the traditional ones, as the Powell’s 
method and the ICP algorithm. In particular, those IR meth-
ods based on EC and other MHs that consider the transforma-
tion parameters-based IR approach provided the most robust 
and globally accurate results. 
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