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a b s t r a c t

In supervised classification, we often encounter many real world problems in which the data do not have
an equitable distribution among the different classes of the problem. In such cases, we are dealing with
the so-called imbalanced data sets. One of the most used techniques to deal with this problem consists of
preprocessing the data previously to the learning process. This paper proposes a method belonging to the
family of the nested generalized exemplar that accomplishes learning by storing objects in Euclidean
n-space. Classification of new data is performed by computing their distance to the nearest generalized
exemplar. The method is optimized by the selection of the most suitable generalized exemplars based on
evolutionary algorithms. An experimental analysis is carried out over a wide range of highly imbalanced
data sets and uses the statistical tests suggested in the specialized literature. The results obtained show
that our evolutionary proposal outperforms other classic and recent models in accuracy and requires to
store a lower number of generalized examples.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

The class imbalance classification problem is one of the current
challenges in data mining [49]. It appears when the number of
instances of one class is much lower than the instances of the other
class(es) [11]. Since standard learning algorithms are developed to
minimize the global measure of error, which is independent of the
class distribution, in this context this causes a bias towards the
majority class in the training of classifiers and results in a lower
sensitivity in detecting the minority class examples. Imbalance in
class distribution is pervasive in a variety of real-world applica-
tions, including but not limited to telecommunications, WWW,
finance, biology and medicine [39].

A large number of approaches have been previously proposed to
deal with this problem [32], which can be mainly categorized into
two groups: the internal approaches which create new algorithms
or modify existing ones to take the class imbalance problem into
consideration [41,30,19] and external approaches which pre-
process the data in order to diminish the effect caused by their
class imbalance [5,10]. Imbalanced classification is also very
related to cost-sensitive classification [10,50].

Exemplar-based learning was originally proposed by Medin and
Schaffer [40] and revisited by Aha et al. [1] and considers a set of
ll rights reserved.
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methods widely used in machine learning and data mining [34].
A similar scheme for learning from examples is based on the
Nested Generalized Exemplar (NGE) theory. It was introduced by
Salzberg [43] and makes several significant modifications to the
exemplar-based learning model. The most important one is that
it retains the notion of storing verbatim examples in memory but
also allows examples to be generalized. They are strongly related
to the nearest neighbor classifier (NN) [13] and were proposed in
order to extend it.

In NGE theory, generalizations take the form of hyperrectangles
in an Euclidean n-space [35]. Several works argue the benefits of
using generalized instances together with instances to form the
classification rule [48,16,38]. With respect to instance-based clas-
sification [1], the use of generalizations increases the comprehen-
sion of the data stored to perform classification of unseen data
and the achievement of a substantial compression of the data,
reducing the storage requirements. Considering rule induction
[23,20], the ability of modeling decision surfaces by hybridizations
between distance-based methods (Voronoi diagrams) and parallel
axis separators could improve the performance of the models in
domains with clusters of exemplars or exemplars strung out along
a curve. In addition, NGE learning allows to capture generalizations
with exceptions.

A main process in data mining is the one known as data reduc-
tion [42]. In classification, it aims to reduce the size of the training
set mainly to increase the efficiency of the training phase (by
removing redundant data) and even to reduce the classification
error rate (by removing noisy data). Instance Selection (IS) is
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one of the most known data reduction techniques in data mining
[37].

The problem of yielding an optimal number of generalized
examples for classifying a set of points is NP-hard. A large but finite
subset of them can be easily obtained following a simple heuristic
algorithm acting over the training data. However, almost all gener-
alized examples produced could be irrelevant and, as a result, the
most influential ones must be distinguished. Evolutionary
Algorithms (EAs) [17] have been used in data mining with
promising results [22]. They have been successfully used for
descriptive [8] and predictive tasks [2], nearest neighbor classifica-
tion [47,46], feature selection [31,44,36], IS [7,24], simultaneous
instance and feature selection [15] and under-sampling for imbal-
anced learning [25,29]. NGE is also directly related to clustering
and EAs have been extensively used for this problem [33].

In this paper, we propose the use of EAs for generalized in-
stances selection in imbalanced classification domains. Our objec-
tive is to increase the accuracy of this type of representation by
means of selecting the best suitable set of generalized examples
to enhance its classification performance over imbalanced do-
mains. We compare our approach with the most representative
models of NGE learning: BNGE [48], RISE [16] and INNER [38],
and two well-known rule induction learning methods: RIPPER
[12] and PART [21].

We have selected a large collection of imbalanced data sets
from KEEL-dataset repository1 [3] for developing our experimental
analysis. In order to deal with the problem of imbalanced data sets
we will include an study that involves the use of a preprocessing
technique, the ‘‘Synthetic Minority Over-sampling Technique’’
(SMOTE) [9], to balance the distribution of training examples in both
classes. The empirical study has been checked via non-parametrical
statistical testing [14,28,27], and the results show an improvement
of accuracy for our approach whereas the number of generalized
examples stored in the final subset is much lower.

The rest of this paper is organized as follows: Section 2 gives an
explanation of NGE learning. In Section 3, we introduce some
issues of imbalanced classification: the SMOTE pre-processing
technique and the evaluation metric used for this scenario. Section
4 explains all topics concerning the approach proposed to tackle
the imbalanced classification problem. Sections 5 and 6 describe
the experimental framework used and the analysis of results,
respectively. Finally, in Section 7, we point out the conclusions
achieved.
2. NGE learning

NGE is a learning paradigm based on class exemplars, where an
induced hypothesis has the graphical shape of a set of hyperrectan-
gles in an M-dimensional Euclidean space. Exemplars of classes are
either hyperrectangles or single instances [43]. The input of an NGE
system is a set of training examples, each described as a vector of
pairs numeric_attribute/value and an associated class. Attributes
can either be numerical or categorical. Numerical attributes are
usually normalized in the [0, 1] interval.

In NGE, an initial set of points given in the M-dimensional
Euclidean space set is generalized into a smaller set of hyperrec-
tangles in terms of the elements that it contains. Choosing which
hyperrectangle is generalized from a subset of points or other
hyperrectangles and how it is generalized depends on the concrete
NGE algorithm employed.

In the next subsections we describe the essential concepts to
understand the NGE learning model, as well as the algorithms used
in this study. First, we explain the necessary concepts to under-
1 http://www.keel.es/dataset.php.
stand the classification rule followed by this type of method
(Section 2.1). After this, in Section 2.2, the two classical proposals
of hyperrectangle learning will be briefly described, BNGE in
Section 2.2.1 and RISE in Section 2.2.2, followed by the advanced
approach INNER in Section 2.2.3.

2.1. Matching and classification

The matching process is one of the central features in NGE
learning and it allows some customization, if desired. Generally
speaking, this process computes the distance between a new
example and an exemplar memory object (a generalized example).
For the remainder of this paper, we will refer to the example to be
classified as E and the generalized example as G, independently of
whether G is formed by a single point or it has some volume.

The model computes a match score between E and G by measur-
ing the Euclidean distance between two objects. The Euclidean
distance is well-known when G is a single point. Otherwise, the dis-
tance is computed as follows (considering numerical attributes):

DEG ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXM

i¼1

difi

maxi �mini

� �2
vuut ;

difi ¼
Efi
� Gupper when Efi

> Gupper;

Glower � Efi
when Efi

< Glower;

0 otherwise;

8><
>:

where M is the number of attributes of the data, Efi is the value of
the ith attribute of the example, Gupper and Glower are the upper
and lower values of G for a specific attribute and maxi and mini

are the maximum and minimum values for ith attribute in training
data, respectively.

The distance measure represents the length of a line dropped
perpendicularly from the point Efi to the nearest surface, edge or
corner of G. Note that internal points to a hyperrectangle have dis-
tance 0 to that rectangle. In the case of overlapping rectangles, sev-
eral strategies could be followed, but usually is accepted a point
falling in the overlapping area belongs to the smaller rectangle
(the size of a hyperrectangle is defined in terms of volume). The
volume is computed following the indications given in [48]. In
nominal attributes, the distance is 0 when two attributes have
the same categorical label, and 1 on the contrary.

2.2. Proposals for NGE learning

EACH, BNGE and RISE are the pioneer proposals for NGE learn-
ing. EACH is not considered in this paper because the authors of
BNGE demonstrated that their proposal clearly outperforms EACH.
INNER is a more recent approach also introduced in this section.

2.2.1. BNGE: Batch nested generalized exemplar
BNGE is a batch version of the first model of NGE (also known as

EACH [43]) and it is proposed to alleviate some drawbacks pre-
sented in it [48]. The generalization of examples is done by
expanding their boundaries just to cover the desired example
merging generalized instances only if the new generalized example
does not cover (or overlap with) any stored example from a differ-
ent class. It does not permit overlapping or nesting.

2.2.2. RISE: Unifying instance-based and rule-based induction
RISE [16] is an approach proposed to overcome some of the

limitations of instance-based learning and rule induction by unify-
ing the two. It follows similar guidelines explained above, but it
furthermore introduces some improvements regarding distance
computations and selection of the best rule using the Laplace

http://www.keel.es/dataset.php
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Fig. 2. Example of an ROC plot. Two classifiers are represented: the solid line is a
good performing classifier whereas the dashed line represents a random classifier.
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correction, present in many existing rule-induction techniques
[23].

2.2.3. INNER: Inflating examples to obtain rules
INNER [38] starts by selecting a small random subset of exam-

ples, which are iteratively inflated in order to cover the surround-
ings with examples of the same class. Then, it applies a set of
elastic transformations over the rules, to finally obtain a concise
and accurate rule set to classify.

3. Imbalanced data sets in classification

In this section, we address some important issues related to
imbalanced classification by describing the pre-processing tech-
nique applied to deal with the imbalance problem: the SMOTE
algorithm [9]. Also, we will present the evaluation metric mainly
used for this type of classification problem.

3.1. Pre-processing imbalanced data sets. The SMOTE algorithm

As mentioned before, applying a pre-processing step in order to
balance the class distribution is a suitable solution to the imbal-
anced data set problem [5]. Specifically, in this work we have cho-
sen an over-sampling method which is widely used in this area:
the SMOTE algorithm [9].

In this approach, the positive class is over-sampled by taking
each minority class sample and introducing synthetic examples
along the line segments joining any/all of the k minority class
nearest neighbors. This process is illustrated in Fig. 1, where xi is
the selected point, xi1 to xi4 are some selected nearest neighbors
and r1 to r4 are the synthetic data points created by the randomized
interpolation procedure.

Synthetic samples are generated in the following way: Take the
difference between the feature vector (sample) under consider-
ation and its nearest neighbor. Multiply this difference by a ran-
dom number between 0 and 1, and add it to the feature vector
under consideration. This causes the selection of a random point
along the line segment between two specific features. This ap-
proach effectively forces the decision region of the minority class
to become more general.

3.2. Evaluation in imbalanced domains

One appropriate metric that could be used to measure the per-
formance of classification over imbalanced data sets is the Receiver
Operating Characteristic (ROC) graphics [6]. In these graphics, the
tradeoff between the benefits and costs can be visualized, and
acknowledges the fact that the capacity of any classifier cannot in-
crease the number of true positives without also increasing the
false positives. The Area Under the ROC Curve (AUC) corresponds
to the probability of correctly identifying which of the two stimuli
is noise and which is signal plus noise. AUC provides a single-num-
ber summary for the performance of learning algorithms.
Fig. 1. An illustration of how to create the synthetic data points in the SMOTE
algorithm.
The way to build the ROC space is to plot on a two-dimensional
chart the true positive rate (Y axis) against the false positive rate (X
axis) as shown in Fig. 2. The points (0,0) and (1,1) are trivial clas-
sifiers in which the output class is always predicted as negative
and positive respectively, while the point (0,1) represents perfect
classification. To compute the AUC we just need to obtain the area
of the graphic as:

AUC ¼ 1þ True Positive Rate� False Positive Rate
2

: ð1Þ
4. Evolutionary selection of generalized examples for
imbalanced classification

The approach proposed in this paper, named Evolutionary
Generalized Instance Selection by CHC (EGIS-CHC), is fully
explained in this section. Firstly, we introduce the CHC model used
as an EA to perform generalized instance selection in Section 4.1.
Secondly, the specific issues regarding representation and fitness
function are specified in Section 4.2. Finally, Section 4.3 describes
the process for generating the initial set of generalized examples.

4.1. CHC model

As an evolutionary computation method, we have used the CHC
model [18]. CHC is a classical evolutionary model that introduces
different features to obtain a trade-off between exploration and
exploitation; such as incest prevention, reinitialization of the
search process when it becomes blocked and the competition
among parents and offspring into the replacement process. We
have selected CHC due to the fact that it has been widely studied,
being now a well-known algorithm on evolutionary computation.
Furthermore, previous studies like [7,25] support the fact that it
can perform well on data reduction problems.

During each generation the CHC develops the following steps:

� It uses a parent population of size N to generate an intermediate
population of N individuals, which are randomly paired and
used to generate N potential offspring.
� Then, a survival competition is held where the best N chromo-

somes from the parent and offspring populations are selected
to form the next generation.

CHC also implements HUX recombination operator. HUX ex-
changes half of the bits that differ between parents, where the
bit position to be exchanged is randomly determined. It also em-
ploys a method of incest prevention: Before applying HUX to two
parents, the Hamming distance between them is measured. Only
those parents who differ from each other by some number of bits
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(mating threshold) are mated. If no offspring is inserted into the
new population then the threshold is reduced.

No mutation is applied during the recombination phase. In-
stead, when the search stops making progress the population is
reinitialized to introduce new diversity. The chromosome repre-
senting the best solution found is used as a template to re-seed
the population, randomly changing 35% of the bits in the template
chromosome to form each of the other chromosomes in the
population.

4.2. Representation and fitness function

Let us assume that there is a training set TR with P instances and
each one of them has M input attributes. Let us also assume that
there is a set of generalized instances GS with N generalized in-
stances and each one of the N generalized instances has M condi-
tions which can be numeric conditions, expressed in terms of
minimum and maximum values in interval [0,1]; or they can be
categorical conditions, assuming that there are v different values
for each attribute. Let S # GS be the subset of selected generalized
instances resulted in the run of a generalized instances selection
algorithm.

Generalized instance selection can be considered as a search
problem in which EAs can be applied. We take into account two
important issues: the specification of the representation of the
solutions and the definition of the fitness function.

� Representation: The search space associated is constituted by all
the subsets of GS. This is accomplished by using a binary repre-
Table 1
Description for imbalanced data sets.

Data sets #Ex. #Atts. Class (min., maj.)

glass1 214 9 (build-win-non-float-proc, remain
Ecoli0vs1 220 7 (im, cp)
wisconsin 683 9 (malignant, benign)
pima 768 8 (tested-positive, tested-negative)
iris0 150 4 (iris-setosa, remainder)
glass0 214 9 (build-win-float-proc, remainder)
yeast1 1484 8 (nuc, remainder)
vehicle2 846 18 (bus, remainder)
vehicle3 846 18 (opel, remainder)
haberman 306 3 (die, survive)
glass0123vs456 214 9 (non-window glass, remainder)
vehicle0 846 18 (van, remainder)
ecoli1 336 7 (im, remainder)
new-thyroid2 215 5 (hypo, remainder)
new-thyroid1 215 5 (hyper, remainder)
ecoli2 336 7 (pp, remainder)
segment0 2308 19 (brickface, remainder)
glass6 214 9 (headlamps, remainder)
yeast3 1484 8 (me3, remainder)
ecoli3 336 7 (imU, remainder)
yeast2vs4 514 8 (cyt, me2)
yeast05679vs4 528 8 (me2, mit, me3, exc, vac, erl)
vowel0 988 13 (hid, remainder)
glass016vs2 192 9 (ve-win-float-proc, build-win-floa

build-win-non-float-proc, headla
glass2 214 9 (ve-win-float-proc, remainder)
ecoli4 336 7 (om, remainder)
yeast1vs7 459 8 (vac, nuc)
shuttle0vs4 1829 9 (rad-flow, bypass)
abalone9vs18 731 8 (18,9)
glass016vs5 184 9 (tableware, build-win-float-proc,
shuttle2vs4 129 9 (fpv Open, Bypass)
yeast1458vs7 693 8 (vac, nuc, me2, me3, pox)
yeast4 1484 8 (me2, remainder)
ecoli0137vs26 281 7 (pp, imL, cp, im, imU, imS)
yeast6 1484 8 (exc, remainder)
abalone19 4174 8 (19, remainder)
sentation. A chromosome consists of N genes (one for each sam-
ple in GS) with two possible states: 0 and 1. If the gene is 1, its
associated generalized example is included in the subset of GS
represented by the chromosome. If it is 0, this does not occur.
� Fitness Function: Let S be a subset of samples of GS and be coded

by a chromosome. We define a fitness function based on AUC
evaluated over TR through the rule described in Section 2.1.
der)

t-proc,
mps)

build-w
FitnessðSÞ ¼ a � AUC þ ð1� aÞ � red rate;
where AUC denotes the computation of the AUC measure from TR
using S. red_rate denotes the ratio of generalized examples selected.
The objective of the EAs is to maximize the fitness function defined.
We preserve the value of a = 0.5 used in previous works related to IS
[7].
In order to perform the classification of an unseen example, our
approach uses the mechanism described in [43]. In short, they are:

� If no hyperrectangle covers the example, the class of the nearest
hyperrectangle defines the prediction.
� If various hyperrectangles cover the example, the one with low-

est volume is the chosen to predict the class, allowing excep-
tions within generalizations.

4.3. Obtention of the initial set of hyperrectangles

In our approach, the initial set of hyperrectangles is computed
using a simple and fast heuristic which obtains good results. It
yields a generalization from each example in the training set,
finding, or each one, the K � 1 nearest neighbors being the Kth
%Class (min., maj.) IR

(35.51,64.49) 1.82
(35.00,65.00) 1.86
(35.00,65.00) 1.86
(34.84,66.16) 1.90
(33.33,66.67) 2.00
(32.71,67.29) 2.06
(28.91,71.09) 2.46
(28.37,71.63) 2.52
(28.37,71.63) 2.52
(27.42,73.58) 2.68
(23.83,76.17) 3.19
(23.64,76.36) 3.23
(22.92,77.08) 3.36
(16.89,83.11) 4.92
(16.28,83.72) 5.14
(15.48,84.52) 5.46
(14.26,85.74) 6.01
(13.55,86.45) 6.38
(10.98,89.02) 8.11
(10.88,89.12) 8.19

(9.92,90.08) 9.08
(9.66, 90.34) 9.35
(9.01,90.99) 10.10
(8.89,91.11) 10.29

(8.78,91.22) 10.39
(6.74,93.26) 13.84
(6.72,93.28) 13.87
(6.72, 93.28) 13.87
(5.65,94.25) 16.68

in-non-float-proc, headlamps) (4.89,95.11) 19.44
(4.65,95.35) 20.5
(4.33,95.67) 22.10
(3.43,96.57) 28.41
(2.49,97.51) 39.15
(2.49,97.51) 39.15
(0.77,99.23) 128.87
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neighbor an example of a different class. Then, each example is ex-
panded considering these K � 1 neighbors by using, in the case of
numerical attributes, the minimal and maximal values as the limits
of the interval defined, or getting all the different categorical val-
ues, in the case of nominal attributes, to form a subset of possible
values from them.

Once all the generalized examples are obtained, the duplicated
ones are removed. Hence jGSj 6 jTRj.
5. Experimental framework

This section describes the methodology followed in the experi-
mental study of the generalized examples based learning ap-
proaches. We will explain the configuration of the experiment:
imbalanced data sets used and parameters for the algorithms.
Table 2
Parameters considered for the algorithms.

Algorithm Parameters

EGIS-CHC Pop.Size = 50, Num.Eval. = 10000, a = 0.5
BNGE It has not parameters to be fixed
RISE Q = 1, S = 2
INNER Initial Instances = 10, MaxCycles = 5, Min Coverage = 0.95, Min

Presentations = 3000,
Iterations to Regularize = 50, Select Threshold = �50.0

RIPPER Grow_pct = 0.66, K = 2
PART Level of Conficende = 0.25, Items per Leaf = 2

Table 3
AUC in test data resulted from the run of the approaches over the data sets considered.

EGIS-CHC 1NN BNGE R

AUC SD AUC SD AUC SD A

glass1 0.7521 0.0530 0.7888 0.0253 0.6956 0.0165 0
ecoli0vs1 0.9667 0.0263 0.9626 0.0186 0.9764 0.0138 0
wisconsin 0.9608 0.0104 0.9551 0.0115 0.9685 0.0099 0
pima 0.7278 0.0312 0.6643 0.0180 0.7005 0.0188 0
iris0 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 0
glass0 0.7404 0.0547 0.8270 0.0226 0.7403 0.0188 0
yeast1 0.6929 0.0248 0.6340 0.0137 0.6522 0.0113 0
haberman 0.5882 0.0741 0.5473 0.0185 0.5244 0.0259 0
vehicle2 0.9219 0.0333 0.9404 0.0141 0.8183 0.0228 0
vehicle3 0.7298 0.0387 0.6695 0.0180 0.5751 0.0162 0
glass0123vs456 0.9210 0.0255 0.9124 0.0114 0.8834 0.0211 0
vehicle0 0.9145 0.0131 0.9112 0.0118 0.6156 0.0194 0
ecoli1 0.8865 0.0358 0.7969 0.0214 0.7904 0.0176 0
new-thyroid1 0.9944 0.0076 0.9774 0.0102 0.9857 0.0102 0
new-thyroid2 0.9861 0.0170 0.9802 0.0113 0.9258 0.0139 0
ecoli2 0.8618 0.1152 0.9062 0.0195 0.8429 0.0156 0
segment0 0.9851 0.0083 0.9952 0.0060 0.9453 0.0073 0
glass6 0.8803 0.1144 0.8713 0.0161 0.8546 0.0022 0
yeast3 0.8890 0.0193 0.8181 0.0081 0.7616 0.0119 0
ecoli3 0.8436 0.0637 0.7448 0.0131 0.7295 0.0129 0
yeast2vs4 0.8609 0.0705 0.8521 0.0133 0.7824 0.0103 0
yeast05679vs4 0.7558 0.0445 0.7023 0.0125 0.6159 0.0103 0
vowel0 0.9489 0.0659 1.0000 0.0000 0.8378 0.0124 0
glass016vs2 0.6593 0.1588 0.5767 0.0288 0.5000 0.0114 0
glass2 0.6242 0.1205 0.6008 0.0244 0.5000 0.0112 0
shuttle0vs4 0.9960 0.0089 0.9960 0.0035 0.9960 0.0035 0
yeast1vs7 0.6895 0.0928 0.6457 0.0161 0.5775 0.0142 0
ecoli4 0.9374 0.0684 0.8702 0.0091 0.8000 0.0141 0
abalone9vs18 0.7235 0.0930 0.6037 0.0101 0.6096 0.0158 0
glass016vs5 0.7300 0.2433 0.8357 0.0176 0.6471 0.0176 0
shuttle2vs4 0.9500 0.1118 0.9500 0.0131 0.9500 0.0131 0
yeast1458vs7 0.6169 0.0903 0.5735 0.0099 0.5000 0.0013 0
yeast4 0.8018 0.0604 0.6671 0.0104 0.5280 0.0071 0
ecoli0137vs26 0.8445 0.2216 0.8427 0.0122 0.7500 0.0099 0
yeast6 0.8566 0.1034 0.7482 0.0094 0.5986 0.0067 0
abalone19 0.5268 0.1232 0.4963 0.0057 0.4999 0.0026 0
average 0.8268 0.0679 0.8018 0.0135 0.7411 0.0124 0
5.1. Data sets and parameters

In this study, EGIS-CHC is applied to thirty-six binary data sets
from the KEEL-dataset repository [3] with different imbalance ra-
tios (IR) [41]. Table 1 summarises the data selected in this study
and shows, for each data set, the number of examples (#Ex.), num-
ber of attributes (#Atts.), class name of each class (minority and
majority), class attribute distribution and IR. This table is ordered
by the IR, from low to high imbalanced data sets.

The data sets considered are partitioned using the five fold cross-
validation (5-fcv) procedure. The parameters of the used algorithms
are presented in Table 2. All the methods were run using KEEL soft-
ware [4], following the recommended parameter values given in
the KEEL platform to configure the methods, which also correspond
to the settings used in the bibliography of these methods. Stochas-
tic methods have been run three times with different random
number seeds.

Regarding the use of the SMOTE pre-processing method [9], we
consider only the 1-nearest neighbor (using the euclidean dis-
tance) to generate the synthetic samples, and we balance both
classes to the 50% distribution.
5.2. Statistical tests for evaluation

In this paper, we use the hypothesis testing techniques to pro-
vide statistical support to the analysis of the results [26]. Specifi-
cally, we will use non-parametric tests due to the fact that the
initial conditions that guarantee the reliability of the parametric
ISE INNER RIPPER PART

UC SD AUC SD AUC SD AUC SD

.6899 0.0785 0.6657 0.0205 0.7396 0.0858 0.6651 0.0369

.9205 0.0425 0.9867 0.0112 0.9582 0.0149 0.9832 0.0238

.9289 0.0146 0.9449 0.0109 0.9638 0.0099 0.9518 0.0276

.6583 0.0416 0.6081 0.0161 0.6966 0.0467 0.7118 0.0055

.9900 0.0224 1.0000 0.0000 0.9789 0.0472 0.9900 0.0224

.7754 0.0528 0.5581 0.0211 0.7680 0.0637 0.8161 0.0601

.6134 0.0341 0.6110 0.0149 0.6772 0.0259 0.6825 0.0339

.5397 0.0722 0.5920 0.0202 0.5554 0.0373 0.5588 0.0479

.9168 0.0457 0.5613 0.0190 0.9533 0.0253 0.9521 0.0063

.6578 0.0258 0.5000 0.0054 0.7101 0.0508 0.5934 0.0342

.9130 0.0488 0.8660 0.0139 0.9053 0.0490 0.8757 0.0573

.8235 0.0265 0.5000 0.0051 0.9088 0.0435 0.9348 0.0268

.8500 0.0684 0.8477 0.0204 0.9152 0.0404 0.8536 0.0546

.9571 0.0391 0.9087 0.0163 0.9288 0.0641 0.9317 0.0697

.9286 0.0714 0.9179 0.0163 0.9275 0.0340 0.9345 0.0384

.8566 0.0385 0.8616 0.0217 0.8618 0.0701 0.8288 0.0710

.9500 0.0276 0.8272 0.0191 0.9882 0.0108 0.9848 0.0064

.8546 0.0994 0.7746 0.0222 0.8449 0.0989 0.8505 0.0877

.7521 0.0590 0.8278 0.0141 0.9181 0.0268 0.8169 0.0918

.6867 0.0609 0.6438 0.0204 0.8069 0.0990 0.6631 0.0689

.8657 0.0392 0.6710 0.0093 0.8947 0.0601 0.8139 0.0732

.6693 0.0800 0.6986 0.0134 0.7828 0.0741 0.6678 0.0714

.9472 0.0483 0.6444 0.0148 0.9573 0.0637 0.9244 0.0555

.6631 0.1227 0.5000 0.0114 0.6407 0.1325 0.6767 0.1088

.5437 0.1053 0.5650 0.0331 0.3666 0.3551 0.6611 0.1762

.9950 0.0038 0.9880 0.0061 0.9997 0.0007 0.9997 0.0007

.6898 0.0827 0.5143 0.0069 0.6770 0.0965 0.5895 0.0694

.7734 0.1051 0.7250 0.0139 0.8841 0.0560 0.8405 0.0924

.7307 0.1555 0.5763 0.0136 0.5337 0.1339 0.5421 0.0237

.8471 0.2292 0.5000 0.0108 0.8414 0.1384 0.8943 0.2205

.9500 0.1118 0.9500 0.0131 0.8500 0.2236 0.9500 0.1118

.5053 0.0363 0.5000 0.0013 0.6744 0.1245 0.5000 0.0000

.6426 0.0508 0.5260 0.0112 0.6382 0.0991 0.6412 0.0858

.7482 0.2500 0.7482 0.0111 0.8372 0.2181 0.8481 0.2247

.6847 0.1080 0.5656 0.0142 0.7999 0.1747 0.7809 0.1323

.4928 0.0047 0.5000 0.0026 0.2320 0.2122 0.5000 0.0000

.7781 0.0695 0.6993 0.0138 0.7949 0.0863 0.7892 0.0644
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tests may not be satisfied, causing the statistical analysis to lose
credibility with these parametric tests [45].

We will use the Wilcoxon signed-rank test [14] as a non-
parametric statistical procedure for performing pairwise compari-
sons between two algorithms. For multiple comparisons we use
the Friedman test [26,27] to detect statistical differences among
a group of results, and the Holm post hoc test [27] in order to find
which algorithms are distinctive among a 1 � n comparison.

The post hoc procedure allows us to know whether a hypothesis
of comparison of means could be rejected at a specified level of sig-
nificance a. However, it is very interesting to compute the p-value
associated to each comparison, which represents the lowest level
of significance of a hypothesis that results in a rejection. It is the
adjusted p-value (APV). Furthermore, we consider the average
ranking of the algorithms in order to measure how good a method
is with respect to its partners. This ranking is obtained by assigning
a position to each algorithm depending on its performance for each
data set. The algorithm which achieves the best accuracy on a
specific data set will have the first ranking (value 1); then, the algo-
rithm with the second best accuracy is assigned rank 2, and so
forth. This task is carried out for all data sets and finally an average
ranking is computed as the mean value of all rankings.

These tests are suggested in the studies presented in
[14,28,26,27], where their use in the field of machine learning is
Table 4
Average Friedman rankings of and APVs using Holm’s procedure in AUC: data sets
without preprocessing.

Algorithm AUC ranking AUC APV

EGIS-CHC 2.208 –
1NN 3.278 0.03570
RIPPER 3.528 0.01912
PART 3.779 0.00616
RISE 4.472 0.00003
BNGE 5.000 2.0941�10�7

INNER 5.736 2.5534�10�11

Fig. 3. Comparison of results between EGIS-CH
highly recommended. For a wider description of the use of these
tests, please refer to the Website http://sci2s.ugr.es/sicidm/.
6. Results and analysis

In this section we will carry out a complete experimental anal-
ysis in order to show three important issues:

� First, the performance of the algorithms when they are applied
over the original data sets (Section 6.1).
� Secondly, the comparison of using or not SMOTE previous to

EGIS-CHC and the performance of the algorithms when they
are applied over SMOTE-processed data sets (Section 6.2).
� Then, the analysis of complexity of the models obtained by

means of the computation of the number of generalized
instances or rules produced by each algorithm (Section 6.3).

Finally, Section 6.4 will present a summary of the analysis of
results.

6.1. Performance analysis without pre-processing (original data sets)

Following, we analyze the performance of the methods consid-
ering all the original, without pre-processing, data sets. The com-
plete table of results for all the algorithms used in this study is
shown in Table 3, where the reader can observe the full test results,
with their associated standard deviation (SD), in order to compare
the performance of each approach. The best case in each data set is
highlighted in bold. We must emphasize the good results achieved
by EGIS-CHC, as it obtains the highest AUC value among all algo-
rithms, but we are aware that the average AUC can be very biased
and next we will analyze these results by nonparametric statistical
tests.

In order to analyze these results, Table 4 shows the average
ranking computed for all approaches according to the AUC metric
and the APV computed by the Holm test [27] reported between
C with and without SMOTE preprocessing.

http://sci2s.ugr.es/sicidm/
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our approach and the algorithm included in each row. We can ob-
serve that EGIS-CHC has obtained the lowest value in the ranking
and therefore it is the best algorithm. Moreover, since all APVs
are lower than a standard used level of significance of a = 0.05,
the null-hypothesis of equality is rejected in all cases, which sup-
ports the conclusion that EGIS-CHC outperforms the remaining
algorithms when the original data sets are used. Note that EGIS-
CHC is the only method that specifically optimized AUC instead
of global measure of accuracy. Next, we will study the effects of
SMOTE as preprocessing step of all the methods considered.

6.2. Analysis of the significance of the pre-processing mechanism: Use
of SMOTE

In this part of the experimental study, we use SMOTE to prepro-
cess the data sets used in this paper to obtain balanced distribution
of classes. In imbalanced classification, SMOTE has proved to be an
excellent preprocessing step suitable to improve almost ant learn-
ing algorithm and it is considered a standard in the topic.

First of all, we focus on checking whether or not our approach
improves its behavior when SMOTE is previously used. Fig. 3 plots
a star graphic that represents the AUC metric obtained for each
data set and allows us to see in a easier way how both algorithms
behave in the same domains. We can observe that the use of
SMOTE previous to EGIS-CHC affects negatively to the performance
in most of data sets. In fact, if we conduct the Wilcoxon test using
the results obtained by the two algorithms, the test informs us that
EGIS-CHC without SMOTE outperforms EGIS-CHC with SMOTE
Table 5
AUC in test data resulted from the run of the approaches over the data sets considered pr

EGIS-CHC SMOTE + 1NN SMOTE + BNGE S

AUC SD AUC SD AUC SD A

glass1 0.7521 0.0530 0.7738 0.0561 0.6632 0.0968 0
ecoli0vs1 0.9667 0.0263 0.9626 0.0302 0.9729 0.0281 0
wisconsin 0.9608 0.0104 0.9624 0.0177 0.9727 0.0106 0
pima 0.7278 0.0312 0.6808 0.0505 0.7186 0.0689 0
iris0 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1
glass0 0.7404 0.0547 0.8595 0.0598 0.7554 0.0925 0
yeast1 0.6929 0.0248 0.6533 0.0318 0.7032 0.0314 0
haberman 0.5882 0.0741 0.5394 0.0525 0.6071 0.0621 0
vehicle2 0.9219 0.0333 0.9539 0.0202 0.9358 0.0125 0
vehicle3 0.7298 0.0387 0.6835 0.0235 0.6919 0.0641 0
glass0123vs456 0.9210 0.0255 0.9224 0.0154 0.9354 0.0337 0
vehicle0 0.9145 0.0131 0.9106 0.0191 0.8843 0.0296 0
ecoli1 0.8865 0.0358 0.8298 0.0783 0.8398 0.0476 0
new-thyroid1 0.9944 0.0076 0.9774 0.0279 0.9944 0.0076 0
new-thyroid2 0.9861 0.0170 0.9774 0.0279 0.9829 0.0310 0
ecoli2 0.8618 0.1152 0.9343 0.0505 0.8870 0.0291 0
segment0 0.9851 0.0083 0.9949 0.0066 0.9828 0.0209 0
glass6 0.8803 0.1144 0.8686 0.0867 0.8659 0.0587 0
yeast3 0.8890 0.0193 0.8607 0.0134 0.8824 0.0294 0
ecoli3 0.8436 0.0637 0.7777 0.0482 0.8491 0.0908 0
yeast2vs4 0.8609 0.0705 0.8807 0.0655 0.8814 0.0495 0
yeast05679vs4 0.7558 0.0445 0.7753 0.0599 0.7691 0.1226 0
vowel0 0.9489 0.0659 1.0000 0.0000 0.9705 0.0368 0
glass016vs2 0.6593 0.1588 0.6814 0.1793 0.5924 0.1476 0
glass2 0.6242 0.1205 0.6447 0.0987 0.5687 0.1716 0
shuttle0vs4 0.9960 0.0089 0.9960 0.0089 0.9960 0.0089 0
yeast1vs7 0.6895 0.0928 0.5000 0.0000 0.6754 0.1067 0
ecoli4 0.9374 0.0684 0.9171 0.0689 0.8921 0.0956 0
abalone9vs18 0.7235 0.0930 0.6820 0.0814 0.6896 0.1093 0
glass016vs5 0.7300 0.2433 0.8771 0.2191 0.8443 0.2229 0
shuttle2vs4 0.9500 0.1118 1.0000 0.0000 0.9877 0.0185 0
yeast1458vs7 0.6169 0.0903 0.6390 0.0778 0.5524 0.0806 0
yeast4 0.8018 0.0604 0.7242 0.0593 0.7820 0.0665 0
ecoli0137vs26 0.8445 0.2216 0.8281 0.2087 0.7336 0.2414 0
yeast6 0.8566 0.1034 0.7998 0.1200 0.8315 0.1049 0
abalone19 0.5268 0.1232 0.5176 0.0385 0.5166 0.0585 0
Average 0.8268 0.0679 0.8218 0.0556 0.8169 0.0691 0
with a p-value of 0.03, thus the use of SMOTE in EGIS-CHC is not
recommendable.

Two main reasons support the conclusion achieved before. The
first one is the increase of instances in training data, which pro-
duces a subsequent increase in the number of genes codified by
a chromosome. It is well-known that the size of chromosome influ-
ences the performance and the tradeoff between exploration–
exploitation capabilities of an EA. The second reason is the addition
of noisy instances by the interpolation mechanism of SMOTE.
SMOTE generates artificial data within decision boundaries and it
could cause problems to the initialization process of generalized
instances used by EGIS-CHC (producing irrelevant generalized in-
stances and increasing the number of them).

In this case, the complete table of results with the application of
the SMOTE pre-processing technique, except in our approach, is
shown in Table 5, which follows the same structure than the pre-
vious one. Also in this case the EGIS-CHC approach again achieves
the highest result in test among all the algorithms compared in this
analysis.

In order to analyze these results, Table 6 shows the average
ranking and APVs computed for all approaches following the same
scheme of Table 4. We can observe that EGIS-CHC obtains the low-
est value in the ranking and therefore it is the best algorithm. But
in this case, the pairwise comparisons conducted by the Holm test
indicate us that no differences between the methods compared can
be detected, except for the RISE algorithm. Hence, EGIS-CHC has a
similar performance using AUC metric than most of the other algo-
rithms combined with SMOTE.
eprocessed by SMOTE (except EGIS-CHC).

MOTE + RISE SMOTE + INNER SMOTE + RIPPER SMOTE + PART

UC SD AUC SD AUC SD AUC SD

.7042 0.0764 0.7415 0.1079 0.7326 0.0927 0.6927 0.0622

.9344 0.0384 0.9766 0.0368 0.9832 0.0238 0.9694 0.0305

.9475 0.0311 0.9397 0.0278 0.9636 0.0155 0.9584 0.0087

.6552 0.0278 0.7064 0.0556 0.7010 0.0546 0.7312 0.0311

.0000 0.0000 1.0000 0.0000 0.9800 0.0447 0.9900 0.0224

.7504 0.1039 0.7687 0.0415 0.7905 0.0738 0.7250 0.1205

.6072 0.0353 0.6793 0.0300 0.6967 0.0269 0.7049 0.0436

.5077 0.0915 0.6162 0.0422 0.5641 0.0619 0.6086 0.0799

.8715 0.0755 0.8408 0.0649 0.9469 0.0288 0.9628 0.0144

.6082 0.0350 0.6388 0.0347 0.7198 0.0347 0.7519 0.0360

.9076 0.0424 0.9159 0.0258 0.8969 0.0524 0.9104 0.0430

.8075 0.0532 0.8014 0.0375 0.9351 0.0395 0.9382 0.0254

.8482 0.0554 0.8968 0.0226 0.8607 0.0427 0.8923 0.0266

.9944 0.0124 0.9464 0.0419 0.9520 0.0488 0.9659 0.0612

.9571 0.0639 0.9520 0.0383 0.9718 0.0413 0.9516 0.0446

.8496 0.0874 0.8727 0.0385 0.8603 0.0469 0.8533 0.1051

.9469 0.0338 0.9815 0.0100 0.9866 0.0083 0.9911 0.0073

.8244 0.0327 0.8923 0.0600 0.8869 0.1097 0.9090 0.0547

.7140 0.0476 0.9122 0.0178 0.8911 0.0083 0.8966 0.0349

.5851 0.0638 0.8603 0.0746 0.8502 0.0977 0.8611 0.0264

.8787 0.0265 0.8920 0.0661 0.8703 0.0881 0.8762 0.0263

.7541 0.0644 0.8085 0.0776 0.7408 0.0521 0.7748 0.0747

.8878 0.0834 0.8883 0.0743 0.9578 0.0404 0.9228 0.0728

.6348 0.1527 0.6343 0.1596 0.6371 0.0851 0.5479 0.0493

.5206 0.0763 0.6190 0.1472 0.6217 0.1432 0.5878 0.1392

.9920 0.0110 0.9997 0.0007 0.9997 0.0007 0.9997 0.0007

.7196 0.1150 0.6773 0.0604 0.6583 0.0903 0.7576 0.0791

.8202 0.1138 0.8120 0.1317 0.8842 0.1046 0.8639 0.0889

.6177 0.0971 0.6657 0.1130 0.7063 0.0881 0.7006 0.0757

.9300 0.1008 0.8943 0.0412 0.9486 0.0217 0.9686 0.0235

.9877 0.0185 0.9875 0.0186 0.9958 0.0093 0.9917 0.0186

.6344 0.0959 0.5798 0.1053 0.6315 0.0962 0.5351 0.0873

.5941 0.0576 0.8217 0.0608 0.7642 0.0905 0.7486 0.0877

.7818 0.2700 0.8062 0.2028 0.8208 0.2099 0.8172 0.2013

.6704 0.0630 0.8539 0.0970 0.7922 0.0887 0.8008 0.1052

.4994 0.0755 0.6466 0.1201 0.5303 0.0454 0.5401 0.0449

.7762 0.0675 0.8202 0.0635 0.8258 0.0613 0.8249 0.0570



Table 6
Average Friedman Rankings of and APVs using Holm’s procedure in AUC: Data sets
preprocessed with SMOTE.

Algorithm AUC Ranking AUC APV

EGIS-CHC 3.500 —
SMOTE + PART 3.555 1.00000
SMOTE + 1NN 3.611 1.00000
SMOTE + RIPPER 3.722 1.00000
SMOTE + INNER 3.889 1.00000
SMOTE + BNGE 4.014 1.00000
SMOTE + RISE 5.708 0.00009
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6.3. Analysis of the complexity of the models obtained: number of
generalized examples and rules

Table 7 collects the average number of generalized examples, in
the case of EGIS-CHC, BNGE, RISE and INNER; and the average
number of rules, in the case of RIPPER and PART. Except for
EGIS-CHC, two columns are showed for each method. The column
denoted by none corresponds to the case in which no preprocessing
technique is used previous to the algorithm and the column
denoted by SMOTE corresponds to the combination of SMOTE with
the algorithm in question.

Observing Table 7, we can stress that the lowest number of gen-
eralized examples is achieved by EGIS-CHC, although the PART
algorithm obtains few rules. Usually, the use of SMOTE leads to in-
crease the number of generalized examples/rules, except in the
case of INNER.
Table 7
Number of generalized examples obtained by NGE approaches and number of rules produ

EGIS-CHC SMOTE + BNGE SMOTE + RISE

None None SMOTE None SMOTE

glass1 8.6 64.4 95.2 56.2 61.4
ecoli0vs1 2.8 8.6 9.4 49.8 55.2
wisconsin 3.0 52.4 83.0 135.0 193.8
pima 14.6 282.4 413.6 360.4 415.6
iris0 2.0 2.0 2.0 8.6 4.0
glass0 9.2 62.6 81.0 60.6 75.6
yeast1 14.8 711.2 1138.6 698.2 786.8
haberman 7.4 177.8 295.6 116.4 157.6
vehicle2 15.4 141.2 187.4 123.0 156.2
vehicle3 16.2 278.8 568.6 252.8 303.6
glass0123vs456 4.0 18.6 31.2 19.8 23.6
vehicle0 12.2 203.2 321.6 135.4 163.2
ecoli1 4.6 61.8 93.2 92.2 115.0
new-thyroid1 2.4 11.2 14.2 21.2 18.6
new-thyroid2 2.2 11.0 18.2 27.0 30.4
ecoli2 5.0 58.4 89.0 84.0 98.6
segment0 9.6 139.6 144.6 100.4 94.6
glass6 3.0 16.2 34.0 25.0 33.2
yeast3 11.4 245.2 538.8 597.8 652.2
ecoli3 4.4 43.8 93.8 62.4 72.0
yeast2vs4 5.2 39.2 164.0 155.6 214.4
yeast05679vs4 9.0 95.4 309.4 192.8 259.4
vowel0 14.2 58.4 118.2 25.6 62.6
glass016vs2 6.2 39.0 120.6 53.0 64.4
glass2 5.6 42.0 99.0 60.6 70.6
shuttle0vs4 2.0 2.0 3.6 2.0 67.6
yeast1vs7 5.8 80.8 686.4 182.6 686.4
ecoli4 3.0 19.6 38.2 35.0 49.6
abalone9vs18 18.8 115.0 425.0 125.4 180.4
glass016vs5 3.8 11.0 37.4 19.8 26.8
shuttle2vs4 2.4 2.0 9.4 4.0 11.4
yeast1458vs7 7.4 132.2 598.2 276.0 326.6
yeast4 6.6 178.8 794.6 531.6 597.8
ecoli0137vs26 2.0 15.8 40.0 29.4 61.4
yeast6 7.2 145.6 415.4 440.6 503.6
abalone19 13.0 338.8 2207.8 764.0 1035.4
Average 7.4 108.5 286.7 164.6 214.7
6.4. Global analysis of results

Finally, we can make a global analysis of results combining the
results offered by Tables from 3–7 and Fig. 3:

� Our proposal, EGIS-CHC, is the best performing one when the
data sets are no preprocessed. It outperforms the rest of meth-
ods and this hypothesis is confirmed by nonparametric statisti-
cal tests.
� The combination of SMOTE with EGIS-CHC produces negative

effects by reducing the accuracy in test. EGIS-CHC is a robust
algorithm capable to find accurate generalized examples from
the original data and it does not require to use preprocess data.
� When the data is treated with SMOTE in the rest of algorithms,

an improvement in accuracy is expected. However, they are not
able to outperform EGIS-CHC even when SMOTE is applied
before. In this sense, the hypotheses of equality cannot be sta-
tistically rejected indicating that EGIS-CHC obtains competitive
results.
� Considering that EGIS-CHC behaves similarly than other meth-

ods combined with SMOTE (1NN, BNGE, INNER, PART and RIP-
PER), we can emphasize that it requires a lower number of
generalized examples or rules than them. Thus, the complexity
of the models obtained is lesser assuming that we are measur-
ing it in terms of number generalization/rules. We known that
the complexity topic can be very subjective and we do not want
to go into detail of types of rules and representations.
� Finally, we can see curious behaviors in some NGE learning

methods when they are combined with SMOTE. Considering
ced by RIPPER and PART with and without SMOTE.

SMOTE + INNER SMOTE + RIPPER SMOTE + PART

None SMOTE None SMOTE None SMOTE

22.4 16.4 11.6 12.2 6.0 7.6
4.8 5.4 3.6 3.2 3.6 4.2
9.2 7.2 9.2 9.2 9.4 9.6

10.0 8.6 24.0 25.8 7.8 8.6
3.2 3.8 2.4 2.2 2.0 2.0

36.4 10.4 9.4 9.4 6.4 7.4
15.2 12.6 33.4 26.8 10.4 14.2
14.6 10.6 18.2 16.4 3.4 4.4
27.6 24.8 9.8 9.4 9.4 12.0
24.6 16.4 28.8 31.4 11.2 22.6

6.4 9.0 5.8 5.2 5.0 6.6
36.4 12.4 12.2 14.2 14.0 17.2
10.2 11.6 9.8 10.8 5.0 7.2

4.4 7.4 3.6 4.6 4.0 4.6
3.6 7.4 4.4 3.8 4.2 4.6

14.8 8.4 8.4 10.2 5.8 8.8
46.2 13.0 7.0 7.0 7.2 7.8
11.0 11.2 4.0 5.2 3.2 5.6
30.0 9.6 20.6 26.2 9.0 10.6
17.0 9.2 7.6 8.4 4.4 6.8
29.0 6.2 7.0 16.0 5.4 11.8
26.6 4.2 17.0 22.0 8.0 12.4
42.2 9.4 6.6 7.2 5.4 6.8

6.0 16.0 6.4 11.0 5.8 10.4
6.2 20.8 7.2 10.0 5.6 10.0

18.2 7.6 2.0 2.8 2.0 2.8
11.2 10.4 15.0 23.2 6.8 15.8

9.8 10.6 4.4 5.4 3.8 6.4
13.8 14.2 15.8 25.2 7.8 26.8

4.6 10.2 3.2 6.0 4.0 5.4
4.4 9.4 2.8 4.4 3.0 4.2
9.2 19.6 17.0 27.6 3.6 23.0

26.0 7.6 19.6 25.8 6.4 20.4
2.0 7.2 4.2 7.4 3.0 5.8

14.0 7.6 12.4 13.2 4.8 13.2
12.6 10.0 12.6 30.2 1.0 36.0
16.2 10.7 10.8 13.3 5.8 10.7
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RISE, the use of SMOTE does not offer any advantage in terms of
accuracy, but it makes difficult its operation and it has to get
more generalized examples. Otherwise, INNER is the worst
method in imbalanced problems when they are not prepro-
cessed, but the combination SMOTE + INNER offers excellent
results and even the number of generalized examples resulted
is lower in this last case.

7. Concluding remarks

The purpose of this paper is to present EGIS-CHC, an evolution-
ary model to improve imbalanced classification based on the
nested generalized example learning. The proposal performs an
optimized selection of previously defined generalized examples
obtained by a simple and fast heuristic.

The results show that the use of generalized exemplar selection
based on evolutionary algorithms can obtain promising results to
optimize the performance in imbalanced domains. It was com-
pared with classical (RISE and BNGE) and recent (INNER) nested
generalized learning approaches and two state-of-the-art rule
induction methods, RIPPER and PART. EGIS-CHC clearly outper-
forms all of them when data is not preprocessed. The paper also
shows the analysis of using SMOTE as data imbalanced preprocess-
ing and our approach offers similar results in accuracy to the ones
offered by the combination of SMOTE with the learning approaches
mentioned above, but it requires to retain a lower number of gen-
eralized examples, thus yielding simpler models.
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