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Abstract—The classification of imbalanced data is a well-
studied topic in data mining. However, there is still a lack of
understanding of the factors that make the problem difficult.
In this work, we study the two main reasons that make
the classification of imbalanced datasets complex: overlapping
and data fracture. We present a Genetic Programming-based
feature extraction method driven by Rough Set Theory to
help visualize the data in a bidimensional graph, to better
understand how the presence of overlapping and data fractures
affect classification performance.
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I. INTRODUCTION

The classification of imbalanced data is a priority issue
in the literature nowadays [1], [2]. Most of the approaches
presented are based on preprocessing the data, whether it
is by oversampling the minority class or undersampling the
majority one. Excellent accuracy results have been obtained,
but there is still room to improve.

This contribution does not seek to better the classification
performance obtained by existing proposals, but rather to
analyze the two main factors where the real complexity of
the problems lies:
• Overlapping: The examples of the minority class share

a region with the majority one, where all the examples
are intertwined. This is a problem intrinsic to the data.
This issue has been studied in [3], [4].

• Data Fracture: There is a change in data distribution
between the training and test sets, often in the minority
class. The incidence of this issue depends on the
partitioning of the data. The problem of data fracture
(or dataset shift, as some authors call it) is relatively
new [5], [6], [7], [8], and we are not aware of any
studies regarding imbalanced datasets published so far.

To help perform a visual analysis of the data, we propose
the ‘Genetic Programming-based feature extraction using
Rough Set Theory’ algorithm (GP-RST), which is based on
the application of the GP paradigm [9] as a feature extraction
tool, using RST [10] techniques to estimate the fitness of
individuals. It obtains a transformation from the original
feature space into a bidimensional one where the classes are
as separated as possible; serving both as a visualization tool

and as a competitive preprocessing technique for imbalanced
datasets. GP-RST is more suitable for the visualization of
imbalanced domains than other feature extraction techniques
because the fitness is calculated for each class and then ag-
gregated, being therefore independent of the class imbalance
in the training set.

The application of GP-RST has permitted the discovery
of three possible situations, which are all easily visualizable
in the bidimensional feature space it extracts:

1 The dataset presents a low amount of overlapping and
data fracture, resulting in a good behavior both in
terms of training and test classifier performance.

2 The dataset presents a high amount of overlapping,
resulting in a poor classifier performance both in
training and test.

3 There is a significant amount of data fracture, which
produces an overfitting issue leading to a big gap
between training and test set performance.

This contribution is organized as follows: We begin with
some notation specifications in section II. In section III
we briefly introduce the relevant concepts of RST. Section
IV includes a description of the GP-RST algorithm, while
section V shows the experimental procedure and classifier
performance results. Section VI presents a visual analysis in
terms of overlap and data fracture. Lastly, some concluding
remarks are made in section VII.

II. NOTATION

A classification problem is considered with:
• A set of input attributes A = {ai/i = 1, ..., nv}, where
nv is the number of features of the problem.

• A set of values for the target variable (class) C =
{Cj/j = {1, · · · , nc}}, where nc is the number of
different values for the class variable.

• A set of examples E = {eh = (eh
1 , ..., e

h
nv
, Ch)/h =

1, · · · , ne}, where Ch is the class label for the example
eh, and ne is the number of examples.

• The range of a variable i is defined as rangei = (em
i )−

(en
i )/∀h:(em

i >= eh
i & en

i <= eh
i ).

• The number of examples of class Cj in E is noted as
n

Cj
e .



When applying GP-RST to obtain new features,
• The set of new features is noted as Y = {y1, y2},
• The new features are functional mappings of A, repre-

sented as

Y = {f1(A), f2(A)/fi(A) = fi(a1, · · · , anv
)}

• The result of applying a function fi to a sample eh is
denoted as fi(eh) = fi(eh

1 , · · · , eh
nv

).
• E

′
results of applying f1, f2 to a set of examples E:

E
′
= {e

′h = (f1(eh), f2(eh), Ch)/h = 1, · · · , ne}

III. INTRODUCTION TO ROUGH SET THEORY

This section includes the definition of the RST concepts
that are relevant to this work. For an in-depth study of the
topic, see [10].
• Information System and Decision System: Let a set

of attributes A = {a1, a2, . . . , anv} and a non-empty,
finite set called the universe U , with instances described
using the attributes ai; Information System is the name
given to the pair (U,A). If a new attribute d called
decision is attached to each element of U , indicating the
decision made in that state or situation, then a Decision
System is created (U,A ∪ {d}), where d /∈ A is the
decision attribute.

• The attribute of decision d induces a partition of the ob-
ject universe U . Let a set of integer numbers{1, . . . , l},
Xi = {x ∈ U : d (x) = i}, then {X1, . . . Xl} is a col-
lection of equivalence classes, called decision classes,
where two objects belong to the same class if they have
the same decision attribute value. In the case of this
contribution, d corresponds to the class variable.

• The novelty of the RST are the lower and upper
approximations of a subset X ⊆ U . These concepts
were originally introduced in reference to an indis-
cernibility relation R. In classical RST, R is defined
as an equivalence relation. This approach is extended
by accepting that objects that are not indiscernible but
sufficiently close or similar can be grouped into the
same class. The aim is to construct a similarity relation
R

′
from the indiscernibility relation R by relaxing the

original conditions for indiscernibility.
• The similarity relation used in this work is defined as

R
′
(x, y) =

{
1 ∀i(|xi − yi| < 0.1 ∗ rangei)
0 otherwise

(1)

• The approximation of the set X ⊂ U , using the similar-
ity relation R

′
, has been induced as a pair of sets called

lower approximation of X and upper approximation of
X . The lower approximation B∗(X) of X is defined
as shown in equation 2.

B∗(X) = {x ∈ X : R
′
(x) ⊆ X} (2)

• Within RST, the meaning of the lower approximation
of a decision system is of great interest for the analysis
of new feature spaces. It consists of the objects that
with absolute certainty belong to one class or another,
guaranteeing that these instances are free of noise.

• Taking into account the equation defined in 2, the
quality of the approximation of X is defined for the
relation R

′
as:

γ(X) =
|B∗(X)|
|X|

(3)

IV. A GENETIC PROGRAMMING-BASED FEATURE
EXTRACTION METHOD DRIVEN BY ROUGH SET

THEORY(GP-RST)

In this section we first present a formal expression of
the problem at hand in subsection IV-A, followed by a
general description of the GP-RST method in subsection
IV-B, and we finish with a detailed explanation of the fitness
calculation procedure in subsection IV-C.

A. Formal definition of the problem

The problem we are attempting to solve is, given a
classification problem with a set of attributes A, and a
set of examples E, obtain f1(A) and f2(A) such that
fitness(f1(E), f2(E)) is maximized. The fitness calcula-
tion is based on the estimation of the separability between
the classes through the maximization of the quality of
approximation (Equation 3) for each class.

B. General description of GP-RST

Genetic Programming is an evolutionary computation
technique that evolves expressions defined by a context-free
grammar, by generating a starting population and applying
crossover and mutation operators over it repeatedly, selecting
on each generation the best potential solutions (expressions)
according to a given fitness evaluation formula.

The GP-RST algorithm is a simple extension of a standard
GP procedure with the following tweaks:
• It simultaneously evolves two trees, one for each di-

mension in the new feature space.
• It uses {x1, ..., xnv , e} as its terminal set, effectively

evolving functional mappings of X.
• It uses {+,−,×,÷} as its function set.

C. Fitness evaluation

The fitness evaluation procedure, as has been expressed
before, is based upon RST, more specifically it is associated
to the quality of approximation of each of the classes.

V. EXPERIMENTAL FRAMEWORK AND RESULTS

This section begins with a general description of the
experimental procedure, followed by an enumeration of the
datasets used in subsection V-A, then the specific parameters
chosen for the experimentation can be seen in subsection



Algorithm 1 Fitness evaluation procedure
1. Obtain E′ = {e′h = (f1(eh), f2(eh), Ch)/h = 1, ..., ne},

where f1 and f2 are the expressions encoded on
each of the trees of the individual being evaluated.

2. For each class label Ci ∈ C : i = 1, ..., nc,
2.1 Build a rough set Xi containing all the elements of

class Ci.
2.2 Calculate the lower approximation of Xi, B∗(Xi).
2.3 The fitness of the chromosome for class Ci is

estimated as the quality of the approximation over
Xi, γ(Xi).

3. The fitness of the chromosome is the geometric mean of
the ones obtained for each class:

fitness = nc
√∏nc

i=1 γ(Xi).

V-B. Finally, the classifier performance results are presented
in subsection V-C.

The effectiveness of the preprocessing methods was mea-
sured in terms of classifier performance. Since the classical
accuracy measures are not suitable to highly imbalanced
domains, the performance was measured using the geometric
mean of the accuracies per class [11]:

ClassifierPerformance =

√
TP

TP + FN
∗ TN

TN + FP
(4)

where TP, TN,FP and FN stand for True Positives, True
Negatives, False Positives and False Negatives respectively.
The classifier used for all experiments was C4.5 [12], since
it is a fast and efficient classifier that has been commonly
used in the literature regarding imbalanced datasets. In any
case, the choice of classifier does not have any influence in
the visual analysis.

The testing procedure utilized was the standard in the
literature, using a 5-fold cross validation technique where
only the training set was used to do the preprocessing. We
tested three different cases:
• The original dataset with no preprocessing, denoted as

‘None’.
• The bidimensional dataset that results from applying

GP-RST.
• SMOTE with ENN cleaning [13], a hybrid preprocess-

ing method that first oversamples the minority class
using SMOTE [14], and then cleans up the borders
using the Edited Nearest Neighbor rule.

A schematic representation of the experimental procedure
can be found in Figure 1. The GP implementation was
based on the Open Beagle library [15], and we used the
KEEL software [16] to carry out all the experiments and
the statistical tests.

A. Datasets
The datasets used in this study were obtained from the

KEEL dataset repository [17], which are in turn variations
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Figure 1. Schematic representation of the experimental procedure

of well known UCI datasets [18]. Table I presents the
datasets, detailing the number of samples ns, number of vari-
ables nv and Imbalance Ratio (IR), which is calculated as
nmajorityClass

s

nminorityClass
s

. All the datasets used are binary classification
problems, but the GP-RST algorithm is capable of working
with multiclass problems without any modifications.

Table I
DATASETS USED FOR THE EXPERIMENTAL STUDY

Dataset IR nv ns

ecoli 0137v26 39.14 7 281
yeast 2v8 23.10 8 482
glass 5 22.78 9 214
shuttle 2v4 20.50 9 129
glass 016v5 19.44 9 184
pageblocks 13v4 15.86 10 472
ecoli 4 15.80 7 336
glass 4 15.46 9 214
yeast 1v7 14.30 7 459
glass 2 11.59 9 214
glass 016v2 10.29 9 192
yeast 2v4 9.08 8 516

B. Parameters

This subsection presents the parameter values chosen for
the GP evolution. In this work, we decided not to squeeze
the maximum performance from the method but to focus
on the interpretation of the visual results, so most of the
parameters were fixed to common default values.

The specific values for the parameters are presented in
Table II.

C. Classifier performance results

This subsection presents the results obtained by the differ-
ent preprocessed datasets, in terms of the test-set classifier
performance (see Equation 4) obtained by the C4.5 classifier.
They are shown in Table III.

To check whether the differences in performance are
significant, we performed a statistical analysis of the results
by means of a non-parametric test.

In [19], [20], [21], [22] a set of simple, safe and robust
non-parametric tests for statistical comparisons of classifiers



Table II
EVOLUTIONARY PARAMETERS FOR THE GP-RST PROCEDURE

Parameter Value
Number of trees 2
Population size 10000
Duration of the run 200 generations
Selection operator Tournament, no replacement
Tournament size 3
Crossover operator One-point crossover
Crossover probability 0.9
Mutation operator Replacement & Swap
Replacement mutation prob 0.001
Swap mutation prob 0.01
Max depth, swapped-in subtree 5

Table III
CLASSIFIER PERFORMANCE RESULTS

C4.5 performance
Dataset None GP-RST SMOTE-ENN
ecoli 0137v26 0.8436 0.8405 0.7462
yeast 2v8 0.2226 0.6635 0.7542
glass 5 0.8776 0.8798 0.9405
shuttle 2v4 0.9129 0.9877 1.0000
glass 016v5 0.7389 0.9320 0.9943
pageblocks 13v4 0.9989 0.9764 0.9989
ecoli 4 0.7985 0.8916 0.8563
glass 4 0.7228 0.8683 0.7746
yeast 1v7 0.5719 0.5464 0.4828
glass 2 0.2407 0.2394 0.6976
glass 016v2 0.0000 0.0000 0.5333
yeast 2v4 0.7921 0.7996 0.8770
Average 0.6434 0.7188 0.8046

are recommended. One of them is the Wilcoxon Signed-
Ranks Test [23], [24], which is the test that we have
selected to do the comparisons. A complete description of
the Wilcoxon Signed-Ranks Test and other non-parametric
tests for pairwise and multiple comparisons, together with
software for their use, can be found in the website available
at http://sci2s.ugr.es/sicidm/.

We evaluated the methods by performing all pairwise
comparisons among them, including the option of not do-
ing any preprocessing, denoted as ‘None’. The results are
presented in Table IV.

Table IV
WILCOXON SIGNED-RANKS TEST RESULTS

Comparison R+ R− p-value (two-tailed)
None v GP-RST 15 51 0.05372

None v SMOTE-ENN 13 53 0.0392
GP-RST v SMOTE-ENN 28 50 0.2005

From the results shown in Table IV, we can extract the
following conclusions:

• Both GP-RST and SMOTE-ENN significantly outper-
form not doing anything.

• GP-RST performs slightly worse than SMOTE-ENN,
but the difference is not statistically significant.

VI. GRAPHICAL ANALYSIS OF OVERLAPPING AND DATA
FRACTURE

In this section we present a set of sample visualizations
of the bidimensional datasets obtained by GP-RST.

A. Good behavior

Figure 2 shows a case where GP-RST succeeded in
finding a bidimensional mapping of the original features in
the ecoli4 dataset where both classes are easily separable in
the training set, and such a separation generalizes well to
the test set. This is the ideal case, one where a classifier
performs very well, both in training and test.

B. Overlap

Figure 3 presents a case where, due to the complex overlap
between classes in the original dataset, the GP-RST proce-
dure was not successful in finding a bidimensional mapping
where they were separable. The classifier performance on
the preprocessed dataset was as bad as it was without
preprocessing. This is the type of issue that was studied
by [3], [4].

C. Data fracture

Figure 4 shows a case where partial success was achieved
in the classification of the training set, but none of the
examples in the test set belong to the area where the classes
are separable.

This issue is the one we would like to raise awareness
about. Even though most authors know about the overlap
problem, the data fracture one is usually not considered,
and needs to be taken into account when analyzing the
performance of new methods in imbalanced domains.

VII. CONCLUSIONS

We have presented GP-RST, a GP-based feature extractor
that employs RST techniques to estimate the fitness of
individuals. We have shown GP-RST to be a competitive pre-
processing method for highly imbalanced datasets, with the
added advantage of providing bidimensional representations
of the datasets it preprocesses, which are easily intepreted.

We have, through the analysis of the visual representations
of the preprocessed datasets, observed a data fracture prob-
lem between training and test sets, specially in the minority
class, that is affecting the classification performance.

We believe this discovery is very relevant since it chal-
lenges the usual assumptions when experimenting with pre-
processing for highly imbalanced data. We intend to further
study the issue, to test the hypothesis that data fracture is
playing a major role in the complexity of classification in
imbalanced domains.
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Figure 2. Example of good behavior, dataset ecoli 4, 5th partition. Classifier performance in parenthesis.
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Figure 3. Example of bad behavior by overlap, dataset glass 016v2, 4th partition. Classifier performance in parenthesis.
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