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Abstract

Transcriptional regulators recognize specific DNA sequences. Because these sequences are embedded in the background of
genomic DNA, it is hard to identify the key cis-regulatory elements that determine disparate patterns of gene expression.
The detection of the intra- and inter-species differences among these sequences is crucial for understanding the molecular
basis of both differential gene expression and evolution. Here, we address this problem by investigating the target
promoters controlled by the DNA-binding PhoP protein, which governs virulence and Mg2+ homeostasis in several bacterial
species. PhoP is particularly interesting; it is highly conserved in different gamma/enterobacteria, regulating not only
ancestral genes but also governing the expression of dozens of horizontally acquired genes that differ from species to
species. Our approach consists of decomposing the DNA binding site sequences for a given regulator into families of motifs
(i.e., termed submotifs) using a machine learning method inspired by the ‘‘Divide & Conquer’’ strategy. By partitioning a
motif into sub-patterns, computational advantages for classification were produced, resulting in the discovery of new
members of a regulon, and alleviating the problem of distinguishing functional sites in chromatin immunoprecipitation and
DNA microarray genome-wide analysis. Moreover, we found that certain partitions were useful in revealing biological
properties of binding site sequences, including modular gains and losses of PhoP binding sites through evolutionary
turnover events, as well as conservation in distant species. The high conservation of PhoP submotifs within gamma/
enterobacteria, as well as the regulatory protein that recognizes them, suggests that the major cause of divergence
between related species is not due to the binding sites, as was previously suggested for other regulators. Instead, the
divergence may be attributed to the fast evolution of orthologous target genes and/or the promoter architectures resulting
from the interaction of those binding sites with the RNA polymerase.
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Introduction

Whole genome sequences, as well as microarray and chromatin

inmunoprecipitation with array hybridization (ChIP-chip) data

provide the raw material for the characterization and understand-

ing of the underlying regulatory systems. It is still challenging,

however, to discern the sequence elements relevant to differential

gene expression, such as those corresponding to the binding sites

(BSs) of transcriptional factors (TFs) and RNA polymerase

(RNAP), when they are embedded in the background of genomic

DNA sequences that do not play a role in gene expression [1].

This raises the question: how does a single regulator distinguish

promoter sequences when affinity is a major determinant of

differential expression? Also, how does a regulator evolve given

that there appears to be a non-monotonic co-evolution of

regulators and targets [2–4]?

Methods that look for matching to a consensus pattern have been

successfully used to identify BSs in promoters controlled by particular

TFs [5–7]. Tools for motif discovery are designed to find unknown,

relatively short sequence patterns located primarily in the promoter

regions of genomes [1]. Because these searches are performed in a

context of short signals embedded in high statistical noise, current

tools tend to discard a relevant number of samples that only weakly

resemble a consensus [8]. Moreover, the strict cutoffs used by these

methods, while increasing specificity, display lower sensitivity [6,9] to

weak but still functional BSs. Because the consensus motif reflects a

single pattern derived by averaging DNA sequences, it often conceals

sub-patterns that might define distinct regulatory mechanisms [10].

Overall, the use of consensuses tends to homogenize sequence motifs

among promoters and even across species [11,12], which hampers

the discovery of key features that distinguish co-regulated promoters

within and across species.

To circumvent the limitations of consensus methods [1], we

decomposed BS motifs into sub-patterns [13,14] by applying the

classical Divide & Conquer (D&C) strategy [15,16]. We then

compared different forms of decomposed BS motifs of a TF into
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families of motifs (i.e., ‘‘submotifs’’) from a computational

clustering perspective (Figure 1). In so doing, we extracted the

maximal amount of useful genomic information through the

effective handling of the biological and experimental variability

inherent in the data, and then combined them into an accurate

multi-classifier predictor [13,17]. Although there is a computa-

tional usefulness of the submotifs [13,14], it was not clear if these

families of motifs were just a computational artifact or if they could

provide insights into the regulatory process carried out by a

regulator and its targets.

To address this problem, we evaluated the ability of the

submotifs to characterize gene expression both within and across

genomes. First, we used submotifs to distinguish between

functional and non-functional BSs in genome-wide searches using

a combination of ChIP-chip and custom expression microarray

experiments (Nimblegen tiling arrays). Then, we determined the

evolutionary significance of the submotifs by calculating their rate

of evolution [18,19] and mapping the gain and loss events along

the phylogenetic tree of gamma/enterobacteria. The interspecies

variation of orthologous genes, the conservation of the regulatory

protein, as well as the cis-features conforming the promoter

architecture allowed us to evaluate the major causes of divergences

between species [4,20].

We applied our approach to analyze the genes regulated by the

PhoP/PhoQ two-component system, which mediates the adapta-

tion to low Mg2+ environments and/or virulence in several

bacteria species including Escherichia coli species, Salmonella species,

Shigella species, Erwinia species, Photorhabdus and Yersinia species

(See [21] for a review). Two-component systems represent the

primary signal transduction paradigm in prokaryotic organisms.

Although proteins encoded by these systems are often well

conserved throughout different bacterial species [2,3]), regulators

like PhoP differentially control the expression of many horizon-

tally-acquired genes, which constitute one of the major sources of

genomic variation [22].

Results

A single cluster of BS sequences for a TF cannot fully
describe the entire repertoire of BS recognition

A diverse collection of useful tools [1] have been developed to

analyze DNA sequences bound by a TF and to discover

recurrent patterns of nucleotides, termed motifs, that differ from

the genome’s background. These tools vary in their search

algorithms and measurements used to characterize a candidate

motif [6,23,24], which ultimately consists of a single cluster of

sequences [25]. Evaluation of three of these tools (i.e., Consensus

[9], MEME [24] and AlignACE [23]) demonstrated that a

single cluster is not sufficient to appropriately describe the

direct-repeat BSs of the PhoP protein (Table S1), which as a

global regulator either directly or indirectly controls ,5% of the

genes in the Gram-negative pathogen Salmonella enterica serovar

Typhimurium LT2 [26], including products with different

functions such as transcriptional regulation, Mg2+ transport,

and modification of membrane components [26]. Moreover,

these methods were not able to describe the inverted-repeat BSs

of the well known cyclic AMP receptor protein (CRP) regulon in

Escherichia coli, which is characterized by ca. 150 instances

collected in the RegulonDB database [27] (Table S2). This is

because searches for overrepresented sequences are performed

in a context of short signals embedded in high statistical noise. A

single cluster tends to discard the samples that only weakly

resemble its centroid, which is represented by a consensus

pattern [8].

Figure 1. Characterization of clustering methods. Generic data (red dots), clustering partitions (circle and ovals), and their membership scopes
as defined by their most characteristic distance metrics and algorithm are represented. A) Substractive clustering [30] applied to sparsely distributed
datasets. B) Crisp clustering [28] (e.g., K-means) applied to fuzzy datasets. C) Probabilistic [28] (e.g., Expectation-Maximization) or fuzzy clustering (e.g.,
C-means) [31] applied to datasets with several outliers. D) Hierarchical clustering [33] applied to datasets displaying many patterns with small extent.
E) Feature selection clustering [14,34] applied to datasets harboring patterns involving different sets of features.
doi:10.1371/journal.pcbi.1000862.g001

Author Summary

The diversity of life forms frequently results from small
changes in the regulatory systems that control gene
expression. These changes often occur in cis-elements
relevant to transcriptional regulation that are difficult to
discern, as they are short, and are embedded in a genomic
background that does not play a direct role in gene
expression, or that consists of disparate sequences such as
those from horizontally acquired genes. We devised a
machine-learning method that significantly improves the
identification of these elements, uncovering families of
binding site motifs (i.e., ‘‘submotifs’’), instead of a single
consensus recognized by a transcriptional regulator. The
method can also incorporate other cis-elements to fully
describe promoter architectures. Far from being just a
computational convenience, ChIP-chip and custom ex-
pression microarray experiments for the PhoP regulon
validated the high conservation and modular evolution of
submotifs throughout the gamma/enterobacteria. This
suggests that the major cause of divergence between
species is not due to the binding sites, as was previously
suggested for other regulators. Instead, the divergence
may be attributed to the fast evolution of orthologous and
horizontally-acquired target genes, and/or to the uncov-
ered promoter architectures governing the interaction
between the regulator and the RNA polymerase.

Deconstructing TFBS Motifs
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The decomposition of a TFBS into a family of motifs
overcomes limitations of a single cluster to describe a
regulon

Traditional clustering approaches (See [28] for a review),

involving multiple clusters, can be applied to find commonalities

among TFBS sequences, thus, circumventing the limitations of a

single motif cluster [25,29]. There are, however, several limitations

of the clustering methods that might be exacerbated by attempting

to group short and noisy DNA sequences together (Figure 1).

Those limitations may include retrieving redundant sub-patterns

when applying substractive clustering [30] to sparsely distributed

data (Figure 1A), because sequentially retrieved clusters, having

similar centroids, may reflect the same pattern supported by a

decreasing number of instances; sub-patterns that contain

unrelated data when applying crisp clustering [31] to datasets

displaying fuzzy patterns (Figure 1B), because instances are forced

to belong to one and only one cluster even if they substantially

differ from the cluster centroid or partially match with more than

one cluster; vague or incorrect number of sub-patterns when

applying probabilistic or fuzzy clustering [28] to data containing

outliers (Figure 1C), because the sum of membership of an

instance to one or more clusters must equal to one even if it

partially belongs to one cluster (i.e., membership ,1) and does not

belong to any other complementary cluster (i.e., possibilistic

clustering [28,32]); many sub-patterns with small extent [33], as

it is easier to explain smaller data subsets than those that constitute

a significant portion of the dataset, when using a non-hierarchical

clustering organization (Figure 1D); or finally, global sub-patterns

identified by the full set of features [14,34] when different features

might be relevant for distinct clusters (Figure 1E).

We applied these clustering methods to characterize the BSs of a

TF and established that different clustering methods recover

distinct position-dependent sub-patterns. For example, the well

characterized TFBSs of the CRP regulator [27,35] exhibit

different variants of its canonical BS motif (Text S1 and Figure

S1). Despite their differences, the clustering methods improved the

classification of the PhoP (Table S1) and CRP regulons (Text S2

and Tables S2, S3), even when they were integrated into a simple

classifier (See Materials and Methods).

A Divide & Conquer approach designed to identify
biologically meaningful BSs

We used a machine learning method, inspired by the classical

D&C approach [15], that integrates the advantages and

overcomes some of the limitation of the methods described above

(Figure 2). First, we grouped DNA sequences using a possibilistic

fuzzy clustering method [28,32]. The fuzzy-based algorithm allows

a DNA sequence to belong to, or be aligned with, more than one

Figure 2. A Divide & Conquer method to clarify transcription factor binding sites. D&C consists of 4 phases. 1) Divide BS sequences into
submotifs by using the possibilistic implementation of the fuzzy clustering method, and then organizing them hierarchically. The submotifs are
encoded into PWMs (i.e., Consensus, Meme and AlignAce) and the distances from a TFBS to the RNAP into distributions represented as fuzzy sets. 2)
Combine PWMs from submotifs into a multi-classifier. 3) Optimize the accuracy and complexity of the multi-classifier by using genetic algorithms. 4)
Fuse different cis-features into fuzzy IF THEN rules, where the antecedents are the conjunction of the individual features, and the consequents are the
prediction of a TFBS.
doi:10.1371/journal.pcbi.1000862.g002
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cluster of sequences with distinct degrees of membership (i.e.,

mi sð Þ [ 0,1½ �, where s is a DNA sequence and i is a cluster), but uses

the probabilistic constraint that states that the sum of membership

degrees of each data sequence equals to one (i.e.,
P

i

mi sð Þ~1).

Because outliers, as well as membership degrees generated by the

fuzzy-based algorithms sometimes deviate the original dissimilar-

ities among observations, we applied a fuzzy clustering variant

termed ‘‘possibilistic’’ that permits a sequence to partially belong

to one cluster (i.e., mi sð Þv1)), and not to the others (i.e.,P
i

mi sð Þƒ1). Second, we hierarchically organized them as families

[36]. Third, we encoded these groups into submotifs using position

weight matrix (PWM) methods [1]. Fourth, we combined them

into a voting multi-classifier [17], which characterizes a DNA

sequence as a TFBS by utilizing the combined strength in terms of

specificity and sensitivity of the submotifs.

The individual and cooperative contribution of each submotifs

to the multi-classifier are optimized using Genetic Algorithms (GA)

[37]. This multi-objective [38] optimization involves the identifi-

cation of thresholds that increases the sensitivity to weak sites

without losing specificity, as well as minimizing the number of

submotifs, thus reducing the complexity of the final classifier. In

addition to combining submotifs, the classifier is versatile enough

to incorporate other cis-promoter features constraints (e.g., genome

location and orientation with resperc to the RNAP BS [39–41]).

Scrutinizing the PhoP regulon
We studied the PhoP BSs found in E. coli K-12 and S. typhimurium

that have been reported in the literature [26,42], as well as our previous

work [41]. As a result, we collected 69 DNA sequences corresponding

to PhoP BSs, where 31 are BSs from 25 E. coli genes and 38 are BSs

from 28 Salmonella genes. Some promoters have more than one BS, and

14 genes are orthologous among these two species [43]. BSs

corresponding to promoters for orthologous genes are considered as

independent examples, where every sequence instance is considered

equally important. For example, the sequences corresponding to the

PhoP BSs in the promoters of the E. coli and Salmonella phoP orthologous

genes are similar to each other [42,44], and both sequences belong to

the same submotif (Figure 3). In contrast, the PhoP BS sequences in the

promoters of the E. coli and Salmonella slyB genes are grouped into

different submotifs (Figure 3), despite the orthology of the genes [44].

Furthermore, PhoP binds to the promoter of the Salmonella ugd gene,

but it does not bind to the corresponding promoter in the E. coli ugd

gene, despite these genes being 88% identical [45,46].

We applied a hierarchical possibilistic clustering as described

above, and identified 12 PhoP submotifs organized into families

(Figure 3). For example, the sequences assigned to submotif S01, were

also assigned to more specific submotifs S02, S03, and S04, which

correspond to different sub-patterns (Figure 3). The logo represen-

tation illustrates the differences between sub-patterns. For example,

submotif S05, present in the proP, ybjX and mig-14 promoters, has a

strong pattern for the second tandem that differs from the canonical

S01 submotif, present in the mgtA and phoP promoters, which harbors

a strong pattern in both direct repeats. Because alignments of short

DNA sequences are ambiguous [6], we allow a BS sequence to be

aligned with, or belong to more than one submotif (i.e., fuzzy

clustering). Therefore, redundant (similar) sequences do not bias the

alignment toward their own features, because there are multiple

submotifs instead of an unique-alignment/motif [47].

Submotifs improve the classification performance of
PhoP BSs

We encoded the 12 submotifs into a computational predictor

termed ‘‘multi-classifier’’ [17], where the classification of a

sequence as a TFBS is derived from its similarity to one or more

submotifs. To calculate the performance of the multi-classifier we

considered 772 BS of other TFs as negatives examples in promoter

sequences reported in the RegulonDB database [27]. The multi-

classifier was optimized for best global Correlation Coefficient

(CC), or its modified version Standardized Correlation Coefficient

(SCC) for unbalanced numbers of positive and negative examples

[1], by adjusting the individual thresholds of the PWMs

corresponding to the submotifs. Encoding the submotifs by

Consensus improved SCC by 29% (i.e., 0.835 vs. 0.547, F-statistic

p-value,3.91e-05), and CC by 23% (i.e., 0.885 vs. 0.653, F-statistic

p-value,1.84e-06) compared to those obtained by the single motif

model. This enhancement is due to the recovery of 25 BSs that

were not detected by the single motif approach (i.e., 57 vs. 32 BSs)

while predicting only one additional false positive.

Separately, we tested our results utilizing the same number of

negative examples, but derived from random sequences generated

according to a Markov model based on intergenic sequences of E.

coli and Salmonella genomes [48]. The SCC and CC obtained by

the multi-classifier in a random background model were improved

by an additional 7% (i.e., 36%) and 4% (i.e., 27%), respectively. (In

the following, we use BSs of other TFs as negative examples

because it is a more stringent criterion than using random

sequences). In addition, the multi-classifier was able to capture

more than one BS per gene (Figure 3), which are located upstream

of, overlapping with, or downstream of the RNA polymerase

binding site [27,42]. This suggests a possible combination of

activation and repression PhoP boxes within the same PhoP-

regulated promoters [49].

We obtained similar results encoding submotifs by MEME,

improving SCC by 50% (i.e., 0.924 vs. 0.613, F-statistic p-

value,3.40e-04) and CC by 31% (i.e., 0.928 vs. 0.707, F-statistic p-

value,6.47e-04). Similarly, by using AlignACE, we observed an

improvement of 25% for the SCC (i.e., 0.883 vs. 0.708, F-statistic

p-value,3.81e-04) and 21% for the CC (i.e., 0.870 vs. 0.718, F-

statistic p-value,0.006). (See Text S3 and Table S4 for cross-

validation analysis). These results include the evaluation of

different clustering methods (‘‘Divide phase’’) (Figure S2), which

suggest that all clustering methods examined improved the

classification of BSs, even with a simple integration into a classifier

(‘‘Conquer phase’’). However, the hierarchical possibilistic clus-

tering demonstrates the best encoding (i.e., minimizes the

differences among the information content of the submotifs) and

the most interpretable model (Figure 3 and Figure S3). (See Text

S2, and Tables S2, S3 for similar results for the CRP regulon).

The submotifs identified are necessary to describe the
PhoP BSs fully

We evaluated whether the families of submotifs identified in this

work were necessary to describe the PhoP regulon, and

determined that both general (S01, S05, S08 and S09) and

specific (S02–S04, S06–S07, S10–12) submotifs contributed to the

classification of the PhoP BSs. For example, the S01 is a

generalization of its dependent submotifs (Figure 3), but its

PWM does not recover BSs for the Salmonella iraP, nagA and ybjX

promoters, which are detected by the more specific PWMs of the

S02, S03 and S04 submotifs, respectively. Similarly, the PWM of

the S05 submotif recognizes neither the PhoP BSs in the Salmonella

mgtC and virK promoters nor the BSs in the ybjX promoter of E. coli,

which are only recovered by the more specific PWMs of the S06

and S07 submotifs (Figure 3). An iterative leave-one-submotif-out

analysis [50] showed that the families of submotifs identified in this

work are necessary to describe the PhoP regulon (Figure 4A and

Table S5). For example, the BSs recognized by the PWMs of the

Deconstructing TFBS Motifs
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S08 family of motifs are not retrieved by any other family of motifs

(Figure 4A). Remarkably, and despite the non-significant overlap

among submotifs (Hypergeometric test [51], p-value.0.05), few

BSs originally grouped together by one family of submotifs were

recognized by another family, as witnessed in fuzzy clustering

(Figure 4A).

The sensitivity and specificity of the multi-classifier depends not

only on the thresholds of the individual submotifs, but also on its

complexity, which is determined by the number of submotifs used.

Because the more complex the classifier the greater the chances of

overfitting the data, we incorporated another constraint into the

optimization process to minimize the complexity of the multi-

classifier (i.e., multi-objective optimization [38]). This resulted in

several optimal configurations of the multi-classifier (See Text S3

and Figure S4 for a detailed analysis of the optimization process).

Notably, all optimal configurations for all PWM methods preserve

at least one member of each family of submotifs (Figure 4B and

Figure S5).

Submotifs distinguish functional PhoP BSs in genome-
wide analysis

We investigated the ability of the proposed multi-classifier that

encodes families of submotifs to detect PhoP BSs in whole genome

sequences by screening the intergenic and coding regions of the S.

typhimurium strain LT2 genome. We used the data described above

to perform a genome wide prediction of the PhoP regulation in

Salmonella, including its binding in promoter and coding regions, as

well as the corresponding gene transcription. Our analysis

considered each gene harboring an .20 bp intergenic region, as

well as the head of its corresponding operon (generously predicted

in Salmonella and provided by H. Salgado, RegulonDB [52]), as

possible binding targets of the PhoP protein. In the same fashion,

we used Yersinia pestis KIM as a test organism.

To evaluate our predictions, gene expression was measured by

microarray assays of wild-type and phoP mutated strains, while

promoter occupancy of the PhoP protein was measured by a

ChIP-chip assay. Based on these experimental results, we

subdivided the genes into three subsets: expressed genes harboring

a significant peak (i.e., Log2-ratio of the ChIP-chip signal intensity

detected using a 500 bp sliding window) in the intergenic region

corresponding to promoter binding by the PhoP protein; expressed

genes without such a peak; and genes harboring a peak without

exhibiting significant expression (Table S6).

We detected PhoP BSs in 34 genes displaying significant expression

and ChIP scores (Figure 5 and Table S7). We did not detect BSs in 54

of the total 70 expressed genes without significant ChIP peaks. Of

these 54 most are members of operons whose first gene harbors a

PhoP BS or are genes known to be indirectly regulated by PhoP

[53,54] (See Text S4). However, we did find BSs in the remaining 16

genes (Figure 5). Although most of thees 16 genes have been proposed

to be indirectly regulated by PhoP via another regulatory protein(s)

[55], we demonstrated that PhoP directly bound to these promoters

[41], even though ChIP gives negative results. Overall, we identify 50

genes whose promoters harbor PhoP binding sites with detectable

effects upon transcription.

We did not detect PhoP BSs in the intergenic regions adjacent

to 57 genes (Figure 5 and Table S7) that harbor ChIP peaks but

give no evidence of PhoP-dependent transcription. At this point

we do not know if PhoP binds at these sites. Moreover, we did not

find PhoP BSs in 95% of the 266 significant ChIP peaks located in

coding regions of 121 genes (Peaks with even slightly different

interval positions from three replicas of the ChIP-chip assay were

considered to be different). Further experiments will be required to

determine if the 5% of the genes that did contain sequences

resembling submotifs with corresponding ChIP peaks are indeed

bound by PhoP [8] (See Text S4 for a detailed analysis) and the

function of the PhoP binding, if any [8,35]. In addition, our multi-

classifier did not find PhoP BSs in the 99% of the .20 bp

intergenic regions corresponding to 3327 genes without PhoP-

promoted transcription and without ChIP peaks, thus the False

Discovery Rate (FDR) of the method is 1% [56] (Figure 5 and

Table S7).

At least 14 promoters appear to harbor more than one PhoP

BS. These BSs usually correspond to the S05, S08 and S09

families of motifs. Most of these promoters drive the transcription

of horizontally-acquired genes in Salmonella (Figure 3). We found

that at least 27 of 34 of these BSs are functionally associated with

PhoP–activated genes (data not shown), and they are rarely

detected by the single motif approach (i.e., only 5% of them). 13 of

the BSs are located closer together than the minimum length of a

ChIP-chip peak, and thus, they are hard to detect by that

technique. In sum, the use of submotifs improves the identification

of members of the PhoP regulon, and to provide a snapshot of the

PhoP regulation in the whole Salmonella genome.

Evolution of PhoP submotifs among gamma/
enterobacteria

Based on theoretical grounds, it has been suggested that the rate

of evolution at each position in a BS motif of a regulatory protein

is a function of the frequencies in the corresponding PWM

[18,19]. An actual functional binding site must remain recogniz-

able by the regulatory protein, and therefore is constrained from

freely mutating and would therefore evolve slower than the

surrounding sequence [18,19], provided that the regulatory

protein is not changing as well (the DNA-binding helix in the

PhoP protein, like other regulators of two-component systems [2],

has not changed significantly (e-value,1E-5, expected number of

false positives in a reciprocal BLAST search [43])) (Figure S6). In

other words, one would expect that functional submotifs in non-

coding regions to evolve slower among the gamma/enterobacteria

than ‘‘background’’ DNA sequences [18,19].

We inferred the relative rate of nucleotide substitutions at each

position in the PhoP submotifs using the model of Halpern and

Bruno [19,57] and then compared them to each other as well as

against the rates of a set of aligned random non-coding regions (see

Materials and Methods) (Figure 6). We found that the number of

substitutions per site and the information content of the submotifs

revealed a correspondence between positions of high information

content and slower rates of evolution (Figure 6A–C), as expected.

We also found that distinct submotifs have different rates of

evolution (Figure 6A–B). For example, S01 exhibits a slower rate

of evolution than S05, which is the most mutable submotif

(Figure 6A–B) (i.e., 0.03 vs. 0.01 Mean Square Difference (MSD),

see Materials and Methods).

Figure 3. Families of PhoP BSs submotifs in E. coli K-12 and S. typhimurium. The tree represents the hierarchical organization of PhoP
submotifs; which are represented by their logos (three nucleotides between the direct repeat tandems are omitted). The root corresponds to the
consensus (single) motif (left panel), while general and specific submotifs are ordered from left to right. Sequences conforming to each specific
submotifs (gray boxes) and their genomic source are listed on the right panel. The information content of each submotif is displayed below the logos
(i.e., the higher the more informative).
doi:10.1371/journal.pcbi.1000862.g003
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Figure 4. Sensitivity analysis of D&C parameters. A) Leave-one-submotif-out cross-validation of the PhoP BSs. Each color bar represents a
different submotif, and its height shows the number of BSs that it recognizes. Shaded in yellow at the back edge, the height of each bar indicates the
number of BSs originally clustered in the corresponding submotif. The inner bars for a given submotif indicate the number of its BSs that are also
recognized by other submotifs (e.g., S09 was originally composed by 17 BSs, 1 of these BSs is also recovered S01 (black circle); 2 BSs are also
recovered by S05; and 1 BS is also recovered by S10). The diagonal was omitted in its corresponding place for clarity purposes, but drawn in the back
as blue bars. The number of BSs recognized by multiple submotifs (i.e., intersections among submotifs) is low as shown by the low height of the inner
bars (Table S5). B) Optimal configurations of submotifs encoded by Consensus PWMs obtained from GA optimization of the number and thresholds
of submotifs (CF). The fitness function was calculated by either SCC or CC measurements (OO). Different selection pressures (SN) where used as initial
constrains (See r2 parameter in Materials and Methods). TP/TN and FP/FN stand for true/negative and positive/negative predicted values,
respectively. #Sub indicates the number of submotifs effectively employed, columns S1 to S12 represent the submotifs organized as families. Dots at
the columns (black: general submotif; white: specific submotif) indicate that the corresponding submotif was selected by the optimization process for
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Given that different submotifs have different rates of evolution,

there is a possibility that those submotifs with higher rates of

evolution are more likely to eventually disappear [18,19].

Interestingly, the S05 family of motifs is found primarily in

promoters derived from horizontally-acquired genes, while the

S01 family of submotif is mostly found in ancestral promoters. The

difference between S01 and S05 families is emphasized (Figure 6A–

B vs. Figure 6C–D) when these submotifs are evaluated in an AT

rich background, which is the typical background of horizontally-

acquired genes (Figure 6D–E) (i.e., 0.09 vs. 0.03 MSD).

To test if some submotif families are better conserved than

others, we examined their distribution among the gamma/

enterobacteria. We first identified the presence of the submotifs

in the intergenic regions of orthologous E. coli K-12 and S.

typhimurium genes regulated by PhoP in the gamma/enterobacteria

(e-value,1E-5 [43]) (Figure 7A). We found that the frequency of

PhoP submotifs across the genomes is correlated (F-statistic; p-

value = 2.10E-10) with the number of orthologous genes. (It should

be noted that some Yersinia genes are xenologs rather than

orthologs to those of E. coli or Salmonella, because they seem to have

been acquired independently by the E. coli/Salmonella and Yersinia

lineages [44]). This raises the possibility that more distantly related

species do harbor PhoP submotif families and, consequently, genes

directly regulated by PhoP that would not be detectable by a one-

way search of orthologous genes.

We therefore identified PhoP-regulated genes in Y. pestis, which

is a more distantly related species, by using ChIP-chip and custom

expression microarray experiments [58] (Table S8). Then, we

searched for PhoP submotifs in the intergenic regions of the

identified PhoP-regulated genes (Figure 7B). In this process we

recognized the S02 and S03 submotifs in two Salmonella

orthologous PhoP-regulated genes in Yersinia (Figure 7A), and also

identified the S01 and the S08–S12 submotifs that would be

missed by simply using a one-way search (Figure 7B and

Figure 8A). However, both searches completely lacked the S05

family of submotifs (Figure 7A–B and Table S8), like the other

Yersinias. These were genuine PhoP BSs, as was validated

experimentally by DNase I footprinting analysis [58] (Figure 8B).

By doing both forward (i.e., orthologous E. coli and Salmonella genes

regulated by PhoP) and reverse (i.e., orthologous Yersinia genes

Figure 5. Genome-wide analysis of the S. typhimurium sequences using PhoP submotifs. Four categories (Y axis) of genes were identified
based on the presence or absence of PhoP promoted expression as measured by the tiling array, and the presence or absence of PhoP binding as
measured by ChIP experiments. The fifth category corresponds to the presence of ChIP peaks in coding regions corresponding to non-expressed
genes. The height of the bars represents the percentage of presence or absence of PhoP BSs identified by the submotifs (X axis), as well as by the
need of further validation of the results (See Text S4 for details), within the intergenic regions of genes belonging to the first four categories, and the
coding regions corresponding to the fifth category. The analysis performed on the first four categories considered each gene harboring an intergenic
region with .20 bp, and/or the head of its corresponding operon as possible binding targets of the PhoP protein. (See Table S7 for gene/operon
numeric data).
doi:10.1371/journal.pcbi.1000862.g005

that configuration (rows). Min Th. corresponds to the minimum learned threshold. SM shows the results obtained by the single motif (See Figure S5
for similar results using MEME and AlignACE methods).
doi:10.1371/journal.pcbi.1000862.g004
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regulated by PhoP) searches we believe we have a complete

catalog of the submotifs families among these species. As in the

Salmonella genome, there is a set of PhoP-regulated promoters in

Yersinia harboring more than one BS (Figure 8B). These BSs were

predicted by the multi-classifier based on submotifs and validated

as described above [58] (Figure 8B and Table S8).

We found that the S01 family of submotifs, including the S02,

S03, and S04 submotifs, is conserved in most of the analyzed

species, and most of its representative submotifs are also present in

the distantly-related Yersinia genomes (Figure 7), as was predicted

by its low evolution rate (Figure 6B and Figure 6E). In contrast, the

S05 family of submotifs, harboring higher rates of evolution

(Figure 6A and Figure 6D), is not found in Klebsiella, Erwinia,

Shewanella, Photorhabdus, and Yersinia (Figure 7). Thus, the S01

family that has a low mutation rate persists throughout the

gamma/enterobacteria in contrast to the S05 family that has high

mutation rate which is not present in Yersinia (Figure 7). In fact, if

we look at species closer to Salmonella we see that the S05 family of

motifs is also more prone to loss. The S05 family, which includes

the more specific S06 and S07 submotifs, is present in most of the

Salmonella species evaluated here, but only the S07 submotif is

conserved in the closely-related E. coli and Shigella strains/species

(Figure 7).

It is conceivable that instead of the mutation rate being the

dominant factor, it is the rate of loss or gain of horizontally-

acquired genes that determine the fate of the submotif families. If

this is the case, we would expect random loss of the submotif

families. This is not what we observe when analyzing families of

submotifs throughout the gamma/enterobacteria (Figure 7). Yet,

there are some differences in the occurrences of individual

submotifs between and within close-related species (Figure 7).

For example, all the submotifs are found in E. coli K-12, whereas

the promoters of the E. coli UTI89, CFT073 and APEC 01

ortholog genes do not contain submotif S02. The promoters of E.

Figure 6. A model of evolution of the PhoP BSs based on submotifs. Rate of evolution calculated by nucleotide substitutions at each
position of the PWMs corresponding to submotifs using the HB model (blue) [18,19], compared with the background distributions using the HKY
model (red) [18,19] based on randomly selected non-coding sequences from E. coli K-12 and S. typhimurium genomes. The information content
(green) is inversely correlated to the rate of evolution of submotifs. A) Low rates of evolution of the S01 submotif. B) High rates of evolution of S05
submotif. C) Rates of evolution of single motif. D) Same as in A), but using an AT rich non-coding intergenic regions in the background model. E)
Same as B), but using an AT rich non-coding intergenic regions in the background model. F) Same as C), but using an AT rich non-coding intergenic
regions in the background model.
doi:10.1371/journal.pcbi.1000862.g006
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coli O157-H7 genes do harbor this submotif but lack submotifs S08

and S10 (Figure 7). This is also true within Salmonella, where we see

the different extent of conservation of the S04 submotif (Figure 7A),

as well as the lack of the S09 submotif in S. typhi and S. choleraesuis

(Figure 7B). Because submotifs with slow (e.g., S02) and slightly

faster (e.g., S08) rates of evolution are implicated in differences

between closely-related species and even within strains of the same

species, it is possible that a model based on the rates of evolution

could be partially obscured by the frequent and different patterns

of horizontal gene acquisition among closely-related species.

The PhoP submotif and its distance from the RNA
polymerase binding site differentiates species-specific
PhoP-activated promoters

TFs recognize specific sequences in promoters to activate or

repress gene transcription by RNAP. The distances between these

TF binding sites with respect to the RNAP BSs revealed non-

random distributions in the E. coli genome [10,27,41], which

indicate different classes of interactions between the two regulatory

elements [4,10]. Thus, we explored the possibility that the

locations of PhoP BS in PhoP-activated promoters are different

between E. coli K-12 and S. typhimurium.

We examined the distances between the PhoP BSs and the

RNAP BSs within a region from 290 bp upstream and 10 bp

downstream of the transcription start site (TSS). We distinguished

three sets of distances: close, medium and far from the TSS (Figure 9).

The location of the close set peaks at 234 bp from the TSS, the

medium set peaks at 244 bp from the TSS, and the far set peaks at

268 bp from the TSS. Then, we incorporated the distances

between the PhoP and the RNAP BSs to the single motif classifier

by using fuzzy AND/OR IF-THEN rules. These rules improved

SCC by 21% (i.e., 0.63 vs 0.83) for recognizing PhoP BSs

compared to the single motif model (Figure S7). Again, the use of

submotifs instead of a single motif resulted in a multi-classifier

employing 24 of the 36 possible rules (Figure 9A; the optimization

of the number of rules was analogous to that performed with the

submotifs), improved SCC by 45% (i.e., 0.63 vs. 0.91). This

improvement was also seen when analyzing other regulators like

CRP (See Text S5, Tables S9, S10, and Figure S8).

Three of the associations between submotifs and distances (i.e.,

IF-THEN rules) are shared by the E. coli and Salmonella genomes

(i.e., S01 and close, S08 & S09 and close; and S08 & S09 and medium

(Figure 9A)). We did identify one subset of rules that is E. coli

specific (i.e., S05 and close) and three subsets of rules that are

Salmonella specific (S01 and medium; S05 and far; and S08 & S09

and far) (Figure 9B). These results suggest that the distance

between PhoP and the RNAP provides insights into species-

specific promoter architectures in closely-related genomes.

We extended our analysis by comparing the distances between

PhoP BSs and the RNAP BSs in the more distantly-related Yersinia

genomes. In addition to the lack of the S05 family of submotifs, we

found that Y. pestis does not have PhoP BSs at far distances from

the RNAP BS (Figure 9C). (These were genuine sites and inferred

distances, as was validated experimentally by S1 mapping analysis

[58] (Figure 8B)). Interestingly, the PhoP BS in the Salmonella

xenolog mgtC promoter [58] was located closer to the RNAP in

Yersinia than in it’s far position in the Salmonella genome. Moreover,

the PhoP BS in the Salmonella mgtC promoter is in the reverse

orientation, located at half-integral turns of the DNA helix from

the 210 region of the RNAP, whereas this promoter in Yersinia is

in the direct orientation and at an integral turn of the helix from

the 210 region of the RNAP. Overall, the identified rules encode

both similar and different organizations of cis-elements, reflecting

promoter architectures that remain conserved or that change

during evolution [58].

Discussion

Distinguishing properties of the D&C method
We have described a flexible computational framework that

improves the recognition of functional BS, differentiating them

from a background of variable DNA sequences that do not play a

direct role in gene regulation. The proposed method partitions BSs

sequences into families of submotifs by employing a hierarchical,

possibilistic clustering approach, extracting maximal information

from the typically short BS sequences. It encodes submotifs into

PWMs employing any of several available methods. Then, it

integrates the submotifs into a multi-classifier optimized by multi-

objective constraints, including accuracy and complexity.

We showed that the multi-classifier outperforms single cluster

motif methods in identifying PhoP BSs, independent of the metrics

used to characterize the performance [1]. Sensitivity analysis of the

method revealed that the approach is robust, with minimum

dependence on the method-specific parameters. The performance

of the proposed framework can be further improved by the

incorporation of other cis-acting features, such as the distance of

the regulator BS from the RNAP BS. The existence of rules that

associate specific submotifs with discrete distances to the RNAP

BS suggests that these features are not independently organized in

the promoter. This should not be surprising, given that a TF must

interact with the RNAP to regulate gene expression. Thus, a

comprehensive understanding of the regulatory elements govern-

ing transcription initiation would treat them together.

Biological significance of the results provided by the D&C
method

In addition to the computational utility of the submotifs used in

a multi-classifier to accurately identify PhoP and other regulators

BSs, we showed that the submotif approach can complement

experimental assays in genome-wide analyses. (It helped identify

PhoP BSs that had a detectable effect on transcription, even

though the ChIP-chip technique gave negative results). Our

approach was devoted to solve, at least in part, the previously

reported incongruence between experimental and computational

recognition of TF BSs [8,35]. This was done by using families of

submotifs, in contrast to the single consensus motif, thereby

increasing the sensitivity for the BSs without losing specificity.

We also demonstrated that the families of submotifs add a novel

component to characterize the evolution of the PhoP regulon. This

evolution depends at least on the co-evolution of the target genes

(i.e., orthologs); the changes in the regulatory protein; and the BSs

used by the protein to bind its target promoters. Despite the

proposal that differences among BS motifs are the major causes of

divergence between species [29], we have demonstrated by use of

a two-way analysis of orthologous genes regulated by PhoP within

gamma/enterobacteria that this is not universally the case: we

Figure 7. Evolution of the PhoP regulon analyzed by PhoP BSs submotifs. A) Distributions of submotifs identified in promoter regions of E.
coli K-12 and S. typhimurium orthologous PhoP targets (left panel, green: 1, red: 6 BSs). The number of orthologous genes in each species (right panel,
white: 3, black: 41 genes). B) Same as in A) but considering Y. pestis orthologous PhoP targets (left panel, green: 1, red: 8 BSs). The number of
orthologous genes in each species (right panel, white: 4, black: 25 genes).
doi:10.1371/journal.pcbi.1000862.g007
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observed that families of submotifs disappeared in distantly-related

species like Yersinia, and that this loss is due to their high rate of

evolution. In contrast, we observed that families of submotifs

present in most of the gamma/enterobacteria analyzed harbor a

significantly lower rate of evolution. We also found that some

individual submotifs have a sporadic occurrence even among

closely-related species/strains, which suggests that their rate of

evolution could be partially obscured by frequent and different

patterns of horizontal gene acquisition in these species [59]. Thus,

the binding motifs are not the major cause of divergence between

species in the studied system, but rather, the gain and loss of

groups of genes and changes in the promoter architecture through

evolutionary turnover events represent a significant source of inter-

species variation.

We uncovered at least three different promoter architectures

characterized by the distance between TF BSs and the RNAP.

Most transcription factors activate transcription by making contact

with either the a subunit (specifically, its C-terminal domain

[CTD]) or the s70 subunit (the most commonly used s factor) of

RNAP, both of which can bind DNA [60]. The location of the close

set of promoters, a characteristic position of Class II promoters

[10], display PhoP BSs completely overlapping the 235 region.

This configuration is found in promoters lacking sequences with

good matches to the 235 region, which are typically bound by a

particular s70 subdomain [10,58], as has been reported for

promoters activated by the regulatory proteins PhoB and VanR

[61,62]. These promoters primarily display PhoP boxes of the S01

family of motifs, located in a direct orientation with respect to the

RNAP binding site.

The medium set of promoters locates the PhoP BS slightly

upstream of 235 region. This small difference, often ignored in

traditional phylogenetic footprinting approaches [12], may suggest

a different promoter architecture that might correspond to a

distinct regulatory mechanism [8]. For example, the crcA and the

pagP genes of E. coli and Salmonella, respectively, are orthologous

genes encoding proteins that are 84% identical [63]. However, the

PhoP BS at the crcA promoter is of the S10 submotif and is located

at 32 bp from the TSS [42], while the PhoP BS at the pagP

promoter is of the S03 and is located 44 bp from the TSS.

The far set of promoters often corresponds to Class I promoters

[10]. The PhoP protein appears to interact with the a-CTD in

these promoters. The PhoP box in these promoters does not

overlap with the RNAP binding site, and the a-CTD subunit of

RNAP is required to promote transcription of the pagC gene in vitro

[58]. These promoters often display PhoP boxes of the S05 family

of motifs, which are primarily located in the reverse orientation

with respect to the RNAP BS. The overrepresentation of this

promoter architecture in Salmonella suggests that it is not an

arbitrary association of cis-acting elements, but a reflection of the

fact that most of these genes were horizontally-acquired in this

genome (Hypergeometric test, p-value,0.01). These results suggest

that the promoter architecture is a key feature that can be used to

differentiate between species-specific gene regulation.

Overall, we can conclude that the PhoP protein recognizes a

constrained set of sequences, which are well characterized by the

families of submotifs presented in this work, and that these

submotifs are not fortuitous computational constructs. The

evolutionary dynamic of the submotifs, associated with turnover

of both coding and/or non-coding sequences (e.g., horizontally-

acquired genome regions), supports the biological significance of

the submotifs, and thus, provides a model of target gene evolution

based on their BSs.

Perspectives of the D&C approach
Our findings argue that understanding a cell’s behavior in terms

of differential expression of genes controlled by a TF requires a

detailed analysis of the cis-acting promoter features. This is even

more evident in complex scenarios, such as those of eukaryotic

regulatory systems [29], where TF BSs are even shorter than those

found in prokaryotes, located in wider promoter regions, and often

require several TFs to activate target genes [50]. The strategy of

deconstruction and re-synthesis presented here may help to tackle

the diversity inherently found in these regulatory systems. We

believe that by considering multiple models of the cis-acting

elements (as opposed to the relying on a single consensus) it will be

possible to detect and uncover similarities, as well as subtle

differences between regulatory targets, providing a greater

understanding of co-regulated promoter’s behaviors.

Materials and Methods

Divide: Clustering TFBS sequences
Hierarchical clustering [64]. We transform nucleotides

from BS sequences into dummy variables [65] and calculate the

Euclidean distance matrix to create a dendrogram by employing

the single linkage method (i.e., nearest-neighbor). We use the

inconsistency index implemented in the Statistic Toolbox of

Matlab (V6.0) to detect the clusters that maximize the similarity.

Subtractive clustering [30]. This method iteratively selects

submotifs that exhibit the highest density of sequences recovered

by a PWM tool (e.g., Consensus, MEME, AlignAce). The retrieved

true positives sequences (i.e., those above a threshold optimized by

the SCC/CC measures) are removed from the training set to

conform a cluster. This process is exhausted while the used

measure is above 0.5.

Hierarchical possibilistic clustering. We use the Xie-Beni

validity index (see below) to learn the number of clusters (n) that

produce the optimal partition of the PhoP BSs dataset. Because

there are more than one optimal partition of the dataset (m), we

select all of their corresponding number of cluster N~ n1,::, nmf g.
We apply the possibilistic fuzzy c-means algorithm (see below),

initializing the number of clusters for each n [ N, and generatingP
ni clusters. We organize the resulting clusters into a hierarchy

by applying the hypergeometric test (see below) as a coincidence

index among clusters [51].

Possibilistic fuzzy c-means. We transform nucleotides from

BS sequences into dummy variables [65] and then apply the following

algorithm [28,64]: (i) Initialize the clustering partition L0~

V1,::,Vc

� �
, where Vi is a cluster and Vi is its centroid; (ii) while

(s,S and Ls{Ls{1k kwe), where S is the maximum number of

iterations; (iii) calculate the membership Us of each observation xk to

each cluster Vi in Ls{1 as mik~ 1z xk{Vi

�� ��2
.

wi

� �1=m{1
� �{1

,

wi is the ‘‘bandwidth’’ of the fuzzy set, initialized as 1; m is the degree

Figure 8. The PhoP regulon in Yersinia pestis KIM. A) PhoP BSs detected in Y. pestis promoters based on E. coli K-12 and S. typhimurium (lefts
panel). Submotifs reconstructed from PhoP targets detected in Yersinia [44] (middle panel). Joined submotifs from E. coli, Salmonella, and Yersinia
PhoP BSs (right panel). B) Promoter architectures and submotifs identified in PhoP-activated promoters in Yersinia. Schematic based on DNase I
footprinting analysis [58] of the promoter regions for selected genes (blue: highest affinity; violet: lower affinity sites). BSs overlapping or downstream
the TSS correspond to repression sites. Close and medium distances between PhoP BSs and the RNAP BSs are highlighted by arrows.
doi:10.1371/journal.pcbi.1000862.g008
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of fuzzification which is initialized as 2; (iv) update Ls{1 to Ls

with Us and Vi~
Pn

k~1 mikxk

	Pn
k~1 mik; (v) iterate. (

Pc
j~1

mjk[R,

and it is not constrained to equal 1 [32]).

Xie-Beni validity index [28]. The minimization of this index

through different number of clusters (i.e., c~2 to c~
ffiffiffi
n
p

, where c is

the number of clusters and n the number of observations) detects

compact representations of Fuzzy c-means partitions:

XB U ,Lð Þ~

Pn
k~1

Pc
i~1

m2
i,k xk{Vi

�� ��2

n min
i=j

Vi{Vj

�� ��2
n o� � ð1Þ

Hyergeometic test [51]. The coincidence between clusters

of BSs is evaluated by using the hypergeometric distribution that

gives the chance probability (i.e., probability of intersection PI) of

observing at least p candidates BSs from a cluster Vi within

another cluster Vj of size n:

PI Vi,j

 �
~1{

Pp
q~0

h

q

� �
q{h

n{q

� �

g

h

� � ð2Þ

where h is the total number of elements within Vi, and g is the total

number of BSs, such that the lower the PI the better the

association.

Combine: Voting multi-classifier
Each submotif is encoded as PWM that classifies a query sequence

as positive TFBS if the corresponding score is above a threshold

learned by GA (see below). We use a single voting strategy, where

all PWMs vote, and one positive classification is sufficient to predict a

TFBS. This process is analogous to a hierarchical Naı̈ve Bayes

[56]: tMAP~ arg max
tj[TFBS

P tj

 �
P
i

P PWMi Dtj

 �
where tMAP (maximum

posterior probability) denotes the target output value of the Naı̈ve

Bayes classifier; tj corresponds to the TFBS class; and PWMi is by

itself a Naı̈ve Bayes classifier [14].

Optimize: Genetic algorithms (GA)
We implemented a method that optimizes the multi-classifier

[37] using GA to learn thresholds for the m PWMs composing it.

Each allele in the chromosome is implemented as a pair, where the

first element represents the presence/absence of a submotif (i.e.,

.0.5 or ,0.5), and the second element is its threshold defined in

the unit interval [66]. We employ the ‘‘Max Min arithmetical’’

crossover [67], which given two solutions Cv and Cw to be crossed

generates four offspring and picks the one with best fitness:

O1~aCwz 1{að ÞCv O2~aCvz 1{að ÞCw

O3~ o3,1,::::,o3,2mð Þ O4~ o4,1,::::,o4,2mð Þ
ð3Þ

where o
3i
~min cvi,cwif g, o

4i
~max cvi,cwif g, and a [ 0,1½ � is

chosen randomly following an uniform distribution. The mutation

operator in the first element of the pair switches from presence to

absence of a submotif, or viceversa, with probabilities p = 0.05 and

p = 0.005, respectively. The mutation operator in the second

element of the pair increases or decreases the corresponding

threshold up to 10% of its value. The fitness function evaluates the

CC or SCC (O1) (see below) measures for the set of submotifs

encoded in each chromosome. The multi-objective implementa-

tion includes the complexity of the model (O2) (i.e., number of used

submotifs/total number of submotifs) into the fitness function:

fitness~
r1O1zr2O2

r1zr2
ð4Þ

where r1,r2 are user-dependent parameters, which are simply

initialized as 1 if no preference exist among objectives [33,66]. We

use the Matlab implementation of GA (i.e., Genetic Algorithm and

Direct Search toolbox, Version 2.1), with the default values for the

remaining parameters. Other optimization methods can also be

used with lower performance (i.e., Matlab Optimization Toolbox

V3.1.1). (See Text S3, Figure S4, and Figure S9 for detailed

analysis of results of the optimization process).

Correlation coefficient (CC). This measure is based on the

Pearson product-moment coefficient of correlation that indicates

the relation between predicted and observed values, and is suitable

for balanced datasets:

CC~
TP|TNð Þ{ FP|FNð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TPzFPð Þ| TNzFNð Þ| TPzFNð Þ| TNzFPð Þ
p ð5Þ

where P = positive, N = negative, T = true and F = false [68].

Standardized correlation coefficient (SCC). The standar-

dized version considers the magnitude of the positive and negative

examples, resulting in an appropriate choice where the dataset

presents an unbalanced number of positive and negative examples. It

extends the CC (equation (5)) replacing its parameters:

TP0~
TP:100

TPzFN
TN 0~

TN:100

TNzFP

FP0~
FP:100

TNzFP
FN 0~

FN:100

TPzFN

ð6Þ

Fuse: Identifying and executing fuzzy IF-THEN rules
We combine different sources of knowledge, such as TFBS motifs

and their location relative to the RNAP BSs, by using a common

Figure 9. IF-THEN rules encompassing submotifs and distances between PhoP BSs and RNAP BSs. A) Cells correspond to IF-THEN rules.
The antecedent of the rules is composed of submotifs (vertical left panel) and the distances between PhoP BSs and RNAP BSs (horizontal panel). The
submotifs are encoded as fuzzy sets based on their score distributions. The distances are approximated by their distributions (close, medium, and far
distances from left to right panels), and also encoded by fuzzy sets. Both antecedents are combined a fuzzy AND operator (i.e., product). The
consequent of a rule classifies PhoP BSs in the unit interval as a function of the antecedents (1: high, 0: low). Rules are activated concurrently, when
they exceed each rule-specific threshold. The isobars show the degree of membership of the training set to the rules (white: none; red: high; blue:
low). B) Synthesis of the PhoP BSs recognized by the most representative IF-THEN rules that distinguish E. coli K-12 (green) from S. typhimurium (red)
genomes. The percentage of BSs recognized by each rule in each genome is represented by the height of the bars. Submotifs were compressed into
their most general families (i.e., S01, S05, and S08 & S09) for simplicity. Three subsets of rules (i.e., S01 and close, S08 & S09 and close; and S08 & S09
and medium) are similarly distributed in both genomes (grey boxes). Specific rules in E. coli (i.e., S05 and close, green boxes), and in Salmonella (S01
and medium; S05 and far; and S8 & S9 and far, red boxes) were also identified. C) Same as in B) but applying IF-THEN rules in Y. pestis. No rules were
identified for the S05 family of submotifs, as well as for far distances.
doi:10.1371/journal.pcbi.1000862.g009
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framework of fuzzy IF-THEN rules [66,69]. These rules provide

accurate predictive results, and more importantly, are easily

interpretable [66]. The fusion strategy consist of three phases: i)

Encoding distinct sources of knowledge into fuzzy sets [69]; ii)

Generating rules by connecting fuzzy sets from i) as their antecedents,

and formulating their corresponding consequents; and iii) Optimizing

the set of rules identified in ii), elimina-

ting their redundancy, and thus improving their classification power.

Encoding PWMs as fuzzy sets. We normalize the scores

provided by a PWM into the unit interval, where 1 indicates a

perfect match and 0 a mismatch. These scores can be interpreted

as the memberships to a fuzzy set, where the PWM is its centroid.

Formally, a dataset of sequences corresponding to BSs

X~ x1,:::,xnf g can be described by their memberships to a

fuzzy set mSi Xð Þ~ di1=x1,:::,din=xnf g, where di1,:::,dinf g[½0,1�
and represent the degree of matching between an observation of

the dataset and a fuzzy set. Thus, a family of n submotifs can be

represented by a collection of fuzzy sets mS~ mS1,:::,mSnf g.
Encoding distances between TF and RNAP BSs as

fuzzy sets: Fuzzy sets can be viewed as an approximation of a

data distribution, where the degree of matching between an

observation and those sets is calculated in the [0,1] scale by using

different membership functions [69]. Therefore, we uncover the

distribution of the distances between TFBS and RNAP by

representing them by as histograms. Then, we projected the

histograms onto the variable domains by simple regression and

minimum squared methods [65,70]. The degree of matching

between the set of distances Y~ y1,:::,ynf g is calculated by using a

triangular membership function:

mDj yð Þ~

0 if y v aj0 or ywaj2

y{aj0

 �	
aj1{aj0

 �
if y vaj1

aj2{y
	

aj2{aj1

 �
if ywaj1

1 otherwise

8>>><
>>>:

ð7Þ

where aj0,aj1 and aj2 parameters are learned from the projection

of the data into the variable domain.

This process is analogous to fitting a distribution, and assigning

probability values to the observations based on a density function

[65,70]. The learned distributions of distances are represented as m

fuzzy sets mD~ mD1,:::,mDnf g, and implemented using the Matlab

Fuzzy Logic Toolbox version V2.2.5.

Identifying fuzzy IF-THEN rules. A fuzzy rule is defined as

a conditional statement where both the antecedent and

consequent are fuzzy variables [28,69]. The antecedent of a rule

is a relation among the fuzzy sets characterizing the studied

variables, here termed ‘‘submotifs’’ and ‘‘distances from a TF and

RNAP BSs ’’. To identify significant fuzzy rules from the dataset

we calculated the Cartesian product among the fuzzy sets

describing the former variables mS|mD; evaluated the

probability of intersection of each pair by using the

hypergeometric test (equation (2)); and selected those related

pairs that showed a p-value,0.0001. The consequent of a rule is

the class C of the TFBS. Finally, a fuzzy IF-THEN rule is defined

as IF mSi Xð Þ AND mDj Yð Þ THEN C.

The inference process consists of determining a classification

value from the complete set of significant fuzzy rules. One rule is

activated to a certain degree th as a result of the conjunction of its

antecedent variables. Here we use the product as an AND operator

[28,69]. Then, the degrees of activation of the rules are combined

using a defuzzify-then-combine strategy [71] based on the

maximum operator [28,69]. Thus a sequence is predicted to be a

TFBS if at least one of these rules is satisfied. Again, this process

can be implemented as a hierarchical Bayesian classifier (see

above), but with less interpretability.

Optimizing fuzzy IF-THEN rules. We employed the GA

described above to optimize the fuzzy rules. Each allele in the

chromosome is implemented as a pair, where the first element

represents the presence/absence of a rule (i.e., .0.5 or ,0.5), and

the second element is the threshold of the rule (th).

Availability
The programs, scripts and datasets used in this work are available

at gps-tools2.wustl.edu, or can be requested to the authors.

Rate of evolution for BSs
We measured the rate of evolution in substitutions per site,

where site refers to a single nucleotide position in the BS of a TF.

To do so, and following procedures described in [18,19], we

employed the model of Halpern and Bruno (HB) [57] that gives

the rate of evolution R of base a to base b at position p as:

Rpab~Qabx
ln fpbQba

	
fpaQab

 �
1{fpaQab

	
fpbQba

ð8Þ

where Q is the position-independent mutation matrix, and f is the

PWM corresponding to a submotif. To estimate the evolutionary

distance (rate6time) measured in substitutions, we assume that the

time for all sites within one species are the same. Consequently, we

can infer differences in rates based on differences in distances [19].

We therefore set background non-coding evolutionary (distance)

model equal to Q, and estimated it employing the HYPHY

package [72]. Thus, we learned the background HKY85 model on

a set of aligned 1000 random sequences of 19 bp belonging to the

non-coding regions of Salmonella. We also learned this model using

the same number and length of random sequences from non-

coding regions corresponding to horizontally-acquired genes (i.e.,

AT rich regions). To predict the expected distance K at each

position we used Kp~
P

a

P
a=b fpaRpab for HB and

Kp~
P

a

P
a=b fpaQab for HKY85.

Gamma/enterobacteria orthologs
Given a gene or a list of genes from a query organism sequences

(E. coli, Salmonella and Y. pestis), and a reference taxon (gamma/

enterobacteria) we obtain the orthologous of the query gene(s) in

all the organisms belonging to the reference taxon [43] (http://

rsat.ulb.ac.be/rsat/get-orthologs_form.cgi).

RNA isolation and expression microarray analysis
S. typhimurium strain harboring a chromosomally-encoded HA-

tagged phoP gene, which was constructed previously in our lab. [73],

was grown at 37uC in N-minimal medium [74] buffered in 50 mM

Bis-Tris, pH 7.7, supplemented with 0.1% casamino acids, 38 mM

glycerol and 50 mM or 10 mM MgCl2. After overnight culture in

defined medium containing 10 mM MgSO4, S. typhimurium cells

were grown to exponential phase (A600,0.4) in same medium.

Then, 10ml cells were washed with Mg2+-free medium and grown

10 ml of medium containing 50 mM MgSO4 with vigorous shaking

for 1 hour. 5 ml of cell culture were collected, mixed with

RNAprotect Bacteria Reagent (Qiagen) and used to prepare total

RNA using RNeasy Mini Kit (Qiagen). RNA samples were treated

with Turbo DNA-free DNase (Ambion) and re-purified with the

RNeasy Mini Kit. S. typhimurium tiling arrays were manufactured by

NimbleGen Systems Inc (Madison). RNA labeling, array hybrid-

ization and data extraction were carried out according to standard

operating procedures by NimbleGen Systems Inc (Madison).
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Chromatin immunoprecipitation (ChIP) assay
Cells were grown in N-minimal medium containing 10 mM

MgCl2 to OD600,0.6. 10 ml of cell culture were washed with Mg2+-

free medium and inoculated into 20 ml of fresh medium containing

50 mM MgCl2. Cells were then grown with vigorous shaking at 37uC
for 20 min. ChIP assays were carried out as described [73] with the

following modifications: PhoP-HA-crosslinked DNA was immuno-

precipitated with anti-HA H6908 (Sigma) and the latter captured

with Protein G sepharose (GE Healthcare). After reversal of

crosslinking, the immunoprecipitated (IP) and input DNA were

purified using QIAquick columns (Qiagen) following manufacturer’s

instructions. To generate enough material for hybridization, two

rounds of genome amplification were carried out with the IP and

input DNA samples as described [75] using GenomePlex Complete

Whole Genome Amplification Kit (Sigma). We performed three

independent ChIP assays.

Microarray and ChIP-chip analysis
The experiments were conducted in triplicate to determine the

error due to technical aspects of the process. Systematic error [76]

was treated by a the Moderated t-Test [77], which is similar to the

Student’s t-Test in that it is used to compare the means of probe

expression values for replicates for a given gene. The Student’s t-

Test calculates variance from the data that is available for each

gene, while the Moderated t-Test uses information from all of the

selected probes to calculate variance.

To correct for multiple test (i.e., false positives within a large

dataset), we used the Benjamini Hochberg method [78], which is

not as conservative as the Bonferroni approach. This method

aims to reduce what is called the False Discovery Rate (FDR) and

is used when the objective is to reduce the number of false

positives and to increase the chances of identifying all the

differentially expressed genes. In this method, the p-values are first

sorted and ranked. The smallest value gets rank 1, the second

rank 2, and the largest gets rank N. Then, each p-value is

multiplied by N and divided by its assigned rank to give the

adjusted p-values. In order to restrict the false discovery rate to

0.05, all the probes with adjusted p-values less than 0.05 are

selected.

Probes that exhibit differential expression all through the six

experiments were selected. Overall, 1463, 1998, 2319 probes were

identified at 99%, 95%, and 90% of confidence, respectively; and

2285 and 1273 show 4 and 8 fold changes, respectively.

Altogether, 1195, 1263, 1268 probes at 99%, 95% and 90%

confidence exhibit 8-fold changes; and 1148, 1930 and 2072 99%,

95% and 90% confidence exhibit 4-fold changes. The significant

expressed ORFs were identified by collating the extracted probe

locations with the S. typhimurium genome.

The ChIP microarray (ChIP-chip) data were analyzed as

follows. Signal intensity data were extracted from the scanned

images of each array using NimbleScan. A scaled Log2-ratio of

the co-hybridized input and IP samples was calculated for each

tile on the array. This ratio was computed to center the ratio

data around zero. Scaling was performed by subtracting the bi-

weight mean for the log2-ratio values for all tiles on the array

from each Log2-ratio values. Peaks were detected by searching

for 4 or more tiles whose signals were above a cutoff value

(ranging from 90% to 15% of a hypothetical maximum defined

as the mean + 6 standard deviations) using 500 bp sliding

window. The ratio data was then randomized 20 times to

evaluate the false positive probability. Each peak was then

assigned a false discovery rate (FDR) score based on the

randomization.

Supporting Information

Text S1 Different clustering methods employed for the

‘‘divide’’ phase recover different position-dependent conserved

patterns.

Found at: doi:10.1371/journal.pcbi.1000862.s001 (0.07 MB

DOC)

Text S2 A multi-classifier based on submotifs outperforms the

single motif prediction of CRP BSs.

Found at: doi:10.1371/journal.pcbi.1000862.s002 (0.05 MB

DOC)

Text S3 Multi-objective optimization and performance evalua-

tion of the multi-classifier.

Found at: doi:10.1371/journal.pcbi.1000862.s003 (0.08 MB

DOC)

Text S4 Results that require further experiments to validate the

functionality of some of vague BSs.

Found at: doi:10.1371/journal.pcbi.1000862.s004 (0.07 MB

DOC)

Text S5 Combining cis-features and submotifs into a multi-

classifier that detects CRP BSs.

Found at: doi:10.1371/journal.pcbi.1000862.s005 (0.07 MB

DOC)

Table S1 PhoP classifiers obtained by employing different

clustering methods. CC: Correlation Coefficient; SCC: Standard-

ized Correlation Coefficient.

Found at: doi:10.1371/journal.pcbi.1000862.s006 (0.04 MB PDF)

Table S2 Performance of the CRP Single Motif classifier P:

positive, N: negative, T: true and F: false; CC: Correlation

Coefficient; SCC: Standardized Correlation Coefficient; SP/SN

stands for specificity and sensitivity, respectively.

Found at: doi:10.1371/journal.pcbi.1000862.s007 (0.04 MB PDF)

Table S3 CRP classifiers obtained by employing different

clustering methods. (*) CC: Correlation Coeffient; SCC: Stan-

dardized Correlation Coefficient.

Found at: doi:10.1371/journal.pcbi.1000862.s008 (0.04 MB PDF)

Table S4 10-fold cross-validation for the Divide & Conquer

approach applied to the PhoP BSs. (*) CC: Correlation Coeffient;

SCC: Standardized Correlation Coefficient.

Found at: doi:10.1371/journal.pcbi.1000862.s009 (0.22 MB PDF)

Table S5 PhoP submotifs-leave-one-submotif out crossvalida-

tion. First line of each cell shows the number of BSs recoverd by

PWMs from other submotifs; and the second line the p-value

calculated by the hypergeometric test.

Found at: doi:10.1371/journal.pcbi.1000862.s010 (0.29 MB PDF)

Table S6 Genome-wide analysis of Salmonella using PhoP

submotifs.

Found at: doi:10.1371/journal.pcbi.1000862.s011 (0.13 MB PDF)

Table S7 Genome-wide analysis of the S. typhimurium sequences

using PhoP submotifs, gene expression and promoter occupancy of

the PhoP protein.

Found at: doi:10.1371/journal.pcbi.1000862.s012 (0.04 MB PDF)

Table S8 Genome-wide analysis of Y. pestis using PhoP submotifs

Found at: doi:10.1371/journal.pcbi.1000862.s013 (0.35 MB PDF)

Table S9 CRP classifier using single motif and distances

between CRP and RNAP BSs. (*) CC: Correlation Coeffient;

SCC: Standardized Correlation Coefficient.

Found at: doi:10.1371/journal.pcbi.1000862.s014 (0.14 MB PDF)
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Table S10 CRP classifier using submotifs and distances between

CRP and RNAP BSs. (*) CC: Correlation Coeffient; SCC:

Standardized Correlation Coefficient.

Found at: doi:10.1371/journal.pcbi.1000862.s015 (0.14 MB PDF)

Figure S1 Intrinsic properties of the clustering algorithms

recover distinct CRP Submotifs. A) The Subtractive Submotif 1

(SS1) groups 58 BSs that are assigned to two disjoint submotifs by

the hierarchical algorithm: HS1, which has a total of 47 BSs; and

HS2, which has a total of 32 BSs. Although there is a high degree

of inclusion between SS1 and HS1 (p-value = 8.40E-04) and

between SS1 and HS2 (p-value = 6.10E-03), the submotifs exhibit

different patterns. SS1 encodes a general pattern that shows a

balanced conservation between both tandems. In contrast the HS1

and HS2 exhibit more specific patterns with higher conservation

of the second and first tandems respectively. C) Hierarchical

possibilistic submotif 8 (HPS8) includes a mixture of 15 sequences

from HS1 (p-value = 0.59), 3 sequences from HS6 (p-value = 0.59),

and 3 sequences from HS7 (p-value = 0.53). Although the

intersection of HPS8 cluster to the above clusters is not significant,

its corresponding patterns shares with HS1 the second tandem,

with HS6 the ‘‘GTGA’’ sequence; and with HS7 the ‘‘TGT-A’’

sequence.

Found at: doi:10.1371/journal.pcbi.1000862.s016 (0.07 MB PDF)

Figure S2 PhoP submotifs learned by the subtractive clustering

method. Three PhoP submotifs generated by the subtractive

clustering. Their incorporation into a multi-classifier improved

SCC by 33% (i.e., 0.73 vs. 0.547) and CC by 25% (i.e., 0.822 vs.

0.653) with respect to the single motifs. Visually, the patterns

revealed slight differences among them, resulting in a decreasing

level of nucleotide conservation (i.e., 13.84; 9.72 and 6.76

information content, respectively). Only one significant (p-

value = 0.002) coincidence exist among the submotifs generated

by the subtractive and the hierarchical possibilistic clustering

methods (i.e., 6 of the 11 BSs forming the SS1 submotif coincide

with 6 of the 13 BSs forming the S03 submotif).

Found at: doi:10.1371/journal.pcbi.1000862.s017 (0.06 MB PDF)

Figure S3 Information content of PhoP submotifs. The four

most general submotifs detected by the hierarchical possibilistic

method (orange) exhibit a higher information content than those

learned by the subtractive (green) and the single motif method

(dashed blue).

Found at: doi:10.1371/journal.pcbi.1000862.s018 (0.06 MB PDF)

Figure S4 Comparison among of different clustering and PWM

methods uncovering CRP submotifs. Sets of submotifs generated

by different clustering (shapes) and PWM (colors) methods are

evaluated by their complexity (Y axis) and their performance,

where the SCC metric was displayed as 1-SCC across the X axis.

We identified all optimal solutions lying in the Pareto optimal

frontier [9]. This frontier is the collection of multi-objective optima

in the sense that its members are not worse than (i.e., dominated

by) other solutions in any of the objectives being considered.

Found at: doi:10.1371/journal.pcbi.1000862.s019 (0.07 MB PDF)

Figure S5 Optimal configurations of PhoP submotifs encoded

into PWM using A) MEME and B) AlignACE. GA optimization

was applied on the number and thresholds of submotifs (CF). The

fitness function was calculated by either SCC or CC measure-

ments (OO). Different selection pressures (SN) where used as

initial constrains (See parameter in Materials and Methods). TP/

TN and FP/FN stand for true/negative and positive/negative

predicted values, respectively. #Sub indicates the number of

submotifs effectively employed, columns S1 to S12 represent the

submotifs organized as families. Dots at the columns (black:

general submotif; white: specific submotif) indicate that the

corresponding submotif was selected by the optimization process

for that configuration (rows). Min Th. corresponds to the

minimum learned threshold. SM shows the results obtained by

the single motif.

Found at: doi:10.1371/journal.pcbi.1000862.s020 (0.06 MB PDF)

Figure S6 Evolution of the PhoP protein. A) Tree indicating the

phylogenetic relationship among the PhoP protein for members of

gama/enterobacterias. B) Alignment of the PhoP DNA-binding

domain.

Found at: doi:10.1371/journal.pcbi.1000862.s021 (0.56 MB PDF)

Figure S7 IF-THEN rules encompassing PhoP single motif and

distances between PhoP BSs and RNAP BSs in activated

promoters. Rows correspond to IF-THEN rules. The antecedent

of the rules is composed of a single motif (left panel) and the

distances between PhoP BSs and RNAP BSs (middle panel). The

single motif is encoded as a fuzzy set based on their score

distributions. The distances are approximated by their distribu-

tions (close, medium, and far distances from left to right panels),

and also encoded by fuzzy sets. Both antecedents are combined a

fuzzy AND operator (i.e., product). The consequent of a rule

classifies PhoP BSs in the unit interval as a function of the

antecedents (1: high, 0: low). Rules are activated concurrently,

when they exceed each rule-specific threshold. The isobars show

the degree of membership of the training set to the rules (red: high;

blue: low).

Found at: doi:10.1371/journal.pcbi.1000862.s022 (0.06 MB PDF)

Figure S8 IF-THEN rules encompassing CRP submotifs and

distances between CRP BSs and RNAP BSs. Rows correspond to

IF-THEN rules. The antecedent of the rules is composed of

submotifs (left panel) and the distances between PhoP BSs and

RNAP BSs (middle panel). The submotifs are encoded as fuzzy

sets based on their score distributions. The distances are

approximated by their distributions (close, medium, and far

distances from left to right panels), and also encoded by fuzzy sets.

Both antecedents are combined a fuzzy AND operator (i.e.,

product). The consequent of a rule classifies PhoP BSs in the unit

interval as a function of the antecedents (1: high, 0: low). Rules are

activated concurrently, when they exceed each rule-specific

threshold. The isobars show the degree of membership of the

training set to the rules (red: high; blue: low).

Found at: doi:10.1371/journal.pcbi.1000862.s023 (0.07 MB PDF)

Figure S9 ROC curves comparing the performance of classifiers

based on submotifs and single motif. ROC curves corresponding

to the single motif classifier (black line), and to multi-classifiers

using all submotifs (red line), the most specific set of submotifs (blue

line), and the most general set of submotifs (green line). The

performance of the single motif is outperformed by all multi-

classifiers using submotifs.

Found at: doi:10.1371/journal.pcbi.1000862.s024 (0.03 MB PDF)
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