
86 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 42, NO. 1, JANUARY 2012
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Abstract—The nearest neighbor (NN) rule is one of the most
successfully used techniques to resolve classification and pattern
recognition tasks. Despite its high classification accuracy, this rule
suffers from several shortcomings in time response, noise sensitiv-
ity, and high storage requirements. These weaknesses have been
tackled by many different approaches, including a good and well-
known solution that we can find in the literature, which consists
of the reduction of the data used for the classification rule (train-
ing data). Prototype reduction techniques can be divided into two
different approaches, which are known as prototype selection and
prototype generation (PG) or abstraction. The former process con-
sists of choosing a subset of the original training data, whereas PG
builds new artificial prototypes to increase the accuracy of the NN
classification. In this paper, we provide a survey of PG methods
specifically designed for the NN rule. From a theoretical point of
view, we propose a taxonomy based on the main characteristics
presented in them. Furthermore, from an empirical point of view,
we conduct a wide experimental study that involves small and large
datasets to measure their performance in terms of accuracy and
reduction capabilities. The results are contrasted through non-
parametrical statistical tests. Several remarks are made to under-
stand which PG models are appropriate for application to different
datasets.

Index Terms—Classification, learning vector quantization
(LVQ), nearest neighbor (NN), prototype generation (PG),
taxonomy.

I. INTRODUCTION

THE nearest neighbor (NN) algorithm [1] and its deriva-
tives have been shown to perform well, like a nonparamet-

ric classifier, in machine-learning and data-mining (DM) tasks
[2]–[4]. It is included in a more specific field of DM known
as lazy learning [5], which refers to the set of methods that
predicts the class label from raw training data and does not ob-
tain learning models. Although NN is a simple technique, it has
demonstrated itself to be one of the most interesting and effec-
tive algorithms in DM [6] and pattern recognition [7], and it has
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been considered one of the top ten methods in DM [8]. A wide
range of new real problems have been stated as classifications
problems [9], [10], where NN has been a great support for them,
for instance, [11] and [12].

The most intuitive approach to pattern classification is based
on the concept of similarity [13]–[15]; obviously, patterns that
are similar, in some sense, have to be assigned to the same
class. The classification process involves partitioning samples
into training and testing categories. Let xp be a training sample
from n available samples in the training set. Let xt be a test
sample, ω be the true class of a training sample, and ω̂ be the
predicted class for a test sample (ω, ω̂ = 1, 2, . . . ,Ω). Here, Ω
is the total number of classes. During the training process, we
use only the true class ω of each training sample to train the
classifier, while during testing, we predict the class ω̂ of each
test sample. With the 1NN rule, the predicted class of test sample
xt is set equal to the true class ω of its NN, where nnt is an NN
to xt , if the distance

d(nnt ,xt) = mini{d(nni ,xt)}.

For NN, the predicted class of test sample xt is set equal to the
most frequent true class among k nearest training samples. This
forms the decision rule D : xt → ω̂.

Despite its high classification accuracy, it is well known that
NN suffers from several drawbacks [4]. Four weaknesses could
be mentioned as the main causes that prevent the successful
application of this classifier. The first one is the necessity of
high storage requirements in order to retain the set of examples
that defines the decision rule. Furthermore, the storage of all of
the data instances also leads to high computational costs during
the calculation of the decision rule, which is caused by multiple
computations of similarities between the test and training sam-
ples. Regarding the third one, NN (especially 1NN) presents
low tolerance to noise because of the fact that it considers all
data relevant, even when the training set may contain incorrect
data. Finally, NN makes predictions over existing data, and it as-
sumes that input data perfectly delimits the decision boundaries
among classes.

Several approaches have been suggested and studied in order
to tackle the aforementioned drawbacks [16]. The research on
similarity measures to improve the effectiveness of NN (and
other related techniques based on similarities) is very extensive
in the literature [15], [17], [18]. Other techniques reduce over-
lapping between classes [19] based on local probability centers,
thus increasing the tolerance to noise. Researchers also inves-
tigate about distance functions that are suitable for use under
high dimensionality conditions [20].
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A successful technique that simultaneously tackles the com-
putational complexity, storage requirements, and noise tolerance
of NN is based on data reduction [21], [22]. These techniques
aim to obtain a representative training set with a lower size
compared to the original one and with a similar or even higher
classification accuracy for new incoming data. In the litera-
ture, these are known as reduction techniques [21], instance
selection [23]–[25], prototype selection (PS) [26], and proto-
type generation (PG) [22], [27], [28] (which are also known as
prototype abstraction methods [29], [30]). Although the PS and
PG problems are frequently confused and considered to be the
same problem, each of them relate to different problems. PS
methods concern the identification of an optimal subset of rep-
resentative objects from the original training data by discarding
noisy and redundant examples. PG methods, by contrast, be-
sides selecting data, can generate and replace the original data
with new artificial data [27]. This process allows it to fill regions
in the domain of the problem, which have no representative ex-
amples in original data. Thus, PS methods assume that the best
representative examples can be obtained from a subset of the
original data, whereas PG methods generate new representative
examples if needed, thus tackling also the fourth weakness of
NN mentioned earlier.

The PG methods that we study in this survey are those specifi-
cally designed to enhance NN classification. Nevertheless, many
other techniques could be used for the same goal as PG methods
that are out of the scope of this survey. For instance, clustering
techniques allow us to obtain a representative subset of proto-
types or cluster centers, but they are obtained for more general
purposes. A very good review of clustering can be found in [31].

Nowadays, there is no general categorization for PG meth-
ods. In the literature, a brief taxonomy for prototype reduction
schemes was proposed in [22]. It includes both PS and PG meth-
ods and compares them in terms of classification accuracy and
reduction rate. In this paper, the authors divide the prototype re-
duction schemes into creative (PG) and selecting methods (PS),
but it is not exclusively focused on PG methods, and especially,
on studying the similarities among them. Furthermore, a consid-
erable number of PG algorithms have been proposed and some
of them are rather unknown. The first approach we can find in
the literature called PNN [32] is based on merging prototypes.
One of the most important families of methods is that based
on learning vector quantization (LVQ) [33]. Other methods are
based on splitting the dimensional space [34], and even evolu-
tionary algorithms and particle swarm optimization [35] have
also been used to tackle this problem [36], [37].

Because of the absence of a focused taxonomy in the liter-
ature, we have observed that the new algorithms proposed are
usually compared with only a subset of the complete family of
PG methods and, in most of the studies, no rigorous analysis
has been carried out.

These are the reasons that motivate the global purpose of this
paper, which can be divided into three objectives.

1) To propose a new and complete taxonomy based on the
main properties observed in the PG methods. The taxon-
omy will allow us to know the advantages and drawbacks
from a theoretical point of view.

2) To make an empirical study that analyzes the PG algo-
rithms in terms of accuracy, reduction capabilities, and
time complexity. Our goal is to identify the best meth-
ods in each family, depending on the size and type of the
datasets, and to stress the relevant properties of each one.

3) To illustrate through graphical representations the trend of
generation performed by the schemes studied in order to
justify the results obtained in the experiments.

The experimental study will include a statistical analysis
based on nonparametric tests, and we will conduct experiments
that involve a total of 24 PG methods, and 59 small- and large-
size datasets. The graphical representations of selected data will
be done by using a two-dimensional (2-D) dataset called banana
with moderate complexity features.

This paper is organized as follows. A description of the prop-
erties and an enumeration of the methods, as well as related
and advanced work on PG, are given in Section II. Section III
presents the taxonomy proposed. In Section IV, we describe the
experimental framework, and Section V examines the results
obtained in the empirical study and presents a discussion of
them. Graphical representations of generated data by PG meth-
ods are illustrated in Section VI. Finally, Section VII concludes
the paper.

II. PROTOTYPE GENERATION: BACKGROUND

PG builds new artificial examples from the training set; a
formal specification of the problem is the following: Let xp be
an instance, where xp = (xp1 ,xp2 , . . . ,xpm ,xpω ), with xp be-
longing to a class ω given by xpω , and a m-dimensional space in
which Xpi is the value of the ith feature of the pth sample. Then,
let us assume that there is a training set TR, which consists of
n instances xp , and a test set TS composed of s instances xt ,
with xtω unknown. The purpose of PG is to obtain a proto-
type generate set TG, which consists of r, r < n, prototypes,
which are either selected or generated from the examples of TR.
The prototypes of the generated set are determined to represent
efficiently the distributions of the classes and to discriminate
well when used to classify the training objects. Their cardinal-
ity should be sufficiently small to reduce both the storage and
evaluation time spent by a NN classifier. In this paper, we will
focus on the use of the NN rule, with k = 1, to classify the
examples of TR and TS by using the TG as reference.

This section presents an overview of the PG problem. Three
main topics will be discussed in the following.

1) In Section II-A, the main characteristics, which will de-
fine the categories of the taxonomy proposed in this paper,
will be outlined. They refer to the type of reduction, result-
ing generation set, generation mechanisms, and evaluation
of the search. Furthermore, some criteria to compare PG
methods are established.

2) In Section II-B, we briefly enumerate all the PG methods
proposed in the literature. The complete and abbreviated
names will be given together with the proposed reference.

3) Finally, Section II-C explores other areas related to PG
and gives an interesting summary of advanced work in
this research field.
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A. Main Characteristics in Prototype Generation Methods

This section establishes different properties of PG methods
that will be necessary for the definition of the taxonomy in the
following section. The issues discussed here include the type
of reduction, resulting generation set, generation mechanisms,
and evaluation of the search. Finally, some criteria will be set in
order to compare the PG methods.

1) Type of Reduction: PG methods search for a reduced set
TG of prototypes to represent the training set TR; there are also
a variety of schemes in which the size of TG can be established.

a) Incremental: An incremental reduction starts with an
empty reduced set TG or with only some representative
prototypes from each class. Then, a succession of additions
of new prototypes or modifications of earlier prototypes
occurs. One important advantage of this kind of reduction
is that these techniques can be faster and need less storage
during the learning phase than nonincremental algorithms.
Furthermore, this type of reduction allows the technique
to adequately establish the number of prototypes required
for each dataset. Nevertheless, this could obtain adverse
results due to the requirement of a high number of proto-
types to adjust TR, thus producing overfitting.

b) Decremental: The decremental reduction begins with
TG = TR, and then, the algorithm starts to reduce TG
or modify the prototypes in TG. It can be accomplished
by following different procedures, such as merging, mov-
ing or removing prototypes, and relabeling classes. One
advantage observed in decremental schemes is that all
training examples are available for examination to make a
decision. On the other hand, a shortcoming of these kinds
of methods is that they usually present a high computa-
tional cost.

c) Fixed: It is common to use a fixed reduction in PG. These
methods establish the final number of prototypes for TG
using a user’s previously defined parameter related to the
percentage of retention of TR. This is the main drawback
of this approach, apart from the fact that it is very depen-
dent on each dataset tackled. However, these techniques
only focus on increasing the classification accuracy.

d) Mixed: A mixed reduction begins with a preselected sub-
set TG, obtained either by random selection with fixed
reduction or by the run of a PS method, and then, addi-
tions, modifications, and removals of prototypes are done
in TG. This type of reduction combines the advantages
of the previously seen, thus allowing several rectifications
to solve the problem of fixed reduction. However, these
techniques are prone to overfit the data, and they usually
have high computational cost.

2) Resulting Generation Set: This factor refers to the result-
ing set generated by the technique, i.e., whether the final set will
retain border, central, or both types of points.

a) Condensation: This set includes the techniques, which
return a reduced set of prototypes that are closer to the
decision boundaries, that are also called border points.
The reason behind retaining border points is that internal
points do not affect the decision boundaries as much as

border points and, thus, can be removed with relatively lit-
tle effect on classification. The idea behind these methods
is to preserve the accuracy over the training set, but the
generalization accuracy over the test set can be negatively
affected. Nevertheless, the reduction capability of conden-
sation methods is normally high because of the fact that
border points are less than internal points in most of the
data.

b) Edition: These schemes instead seek to remove or modify
border points. They act over points that are noisy or do
not agree with their NNs, thus leaving smoother decision
boundaries behind. However, such algorithms do not re-
move internal points that do not necessarily contribute to
the decision boundaries. The effect obtained is related to
the improvement of generalization accuracy in test data,
although the reduction rate obtained is lower.

c) Hybrid: Hybrid methods try to find the smallest set TG,
which maintains or even increases the generalization ac-
curacy in test data. To achieve this, it allows modifica-
tions of internal and border points based on some spe-
cific criteria followed by the algorithm. The NN classi-
fier is highly adaptable to these methods, obtaining great
improvements, even with a very small reduced set of
prototypes.

3) Generation Mechanisms: This factor describes the differ-
ent mechanisms adopted in the literature to build the final TG
set.

a) Class relabeling: This generation mechanism consists of
changing the class labels of samples from TR, which could
be suspicious of having errors, and belonging to other
different classes. Its purpose is to cope with all types of
imperfections in the training set (mislabeled, noisy, and
atypical cases). The effect obtained is closely related to
the improvement in generalization accuracy of the test
data, although the reduction rate is kept fixed.

b) Centroid based: These techniques are based on generat-
ing artificial prototypes by merging a set of similar ex-
amples. The merging process is usually made from the
computation of averaged attribute values over a selected
set, yielding the so-called centroids. The identification and
selection of the set of examples are the main concerns of
the algorithms that belong to this category. These methods
can obtain a high reduction rate, but they are also related
to accuracy rate losses.

c) Space splitting: This set includes the techniques based on
different heuristics to partition the feature space, along
with several mechanisms to define new prototypes. The
idea consists of dividing TR into some regions, which
will be replaced with representative examples establishing
the decision boundaries associated with the original TR.
This mechanism works on a space level because of the
fact that the partitions are found in order to discriminate,
as well as possible, a set of examples from others, whereas
centroid-based approaches work on the data level, which
mainly focuses on the optimal selection of only a set of
examples to be treated. The reduction capabilities of these
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techniques usually depend on the number of regions that
are needed to represent TR.

d) Positioning adjustment: The methods that belong to this
family aim to correct the position of a subset of prototypes
from the initial set by using an optimization procedure.
New positions of prototype can be obtained by using the
movement idea in the m-dimensional space, thus adding
or subtracting some quantities to the attribute values of the
prototypes. This mechanism is usually associated with a
fixed or mixed type of reduction.

4) Evaluation of Search: The NN itself is an appropriate
heuristic to guide the search of a PG method. The decisions
made by the heuristic must have an evaluation measure that
allows the comparison of different alternatives. The evaluation
of search criterion depends on the use or nonuse of NN in such
an evaluation.

a) Filter: We refer to filters techniques when they do not
use the NN rule during the evaluation phase. Different
heuristics are used to obtain the reduced set. They can be
faster than NN, but the performance in terms of accuracy
obtained could be worse.

b) Semiwrapper: NN is used for partial data to determine the
criteria of making a certain decision. Thus, NN perfor-
mance can be measured over localized data, which will
contain most of prototypes that will be influenced in mak-
ing a decision. It is an intermediate approach, where a
tradeoff between efficiency and accuracy is expected.

c) Wrapper: In this case, the NN rule fully guides the search
by using the complete training set with the leave-one-
out validation scheme. The conjunction, in the use of the
two mentioned factors, allows us to get a great estimator
of generalization accuracy, thus obtaining better accuracy
over test data. However, each decision involves a complete
computation of the NN rule over the training set and the
evaluation phase can be computationally expensive.

5) Criteria to Compare PG Methods: When comparing the
PG methods, there are a number of criteria that can be used
to compare the relative strengths and weaknesses of each algo-
rithm. These include storage reduction, noise tolerance, gener-
alization accuracy, and time requirements.

1) Storage reduction: One of the main goals of the PG meth-
ods is to reduce storage requirements. Furthermore, an-
other goal closely related to this is to speed up classifica-
tion. A reduction in the number of stored instances will
typically yield a corresponding reduction in the time it
takes to search through these examples and classify a new
input vector.

2) Noise tolerance: Two main problems may occur in the
presence of noise. The first is that very few instances will
be removed because many instances are needed to main-
tain the noisy decision boundaries. Second, the general-
ization accuracy can suffer, especially if noisy instances
are retained instead of good instances, or these are not
relabeled with the correct class.

3) Generalization accuracy: A successful algorithm will of-
ten be able to significantly reduce the size of the train-

TABLE I
PG METHODS REVIEWED

ing set without significantly reducing the generalization
accuracy.

4) Time requirements: Usually, the learning process is carried
out just once on a training set; therefore, it seems not to
be a very important evaluation method. However, if the
learning phase takes too long, it can become impractical
for real applications.

B. Prototype Generation Methods

More than 25 PG methods have been proposed in the litera-
ture. This section is devoted to enumerate and designate them
according to a standard that followed in this paper. For more
details on their implementations, the reader can visit the URL
http://sci2s.ugr.es/pgtax. Implementations of the algorithms in
java can be found in KEEL software [38].

Table I presents an enumeration of the PG methods reviewed
in this paper. The complete name, abbreviation, and reference
is provided for each one. In the case of there being more than
one method in a row, they were proposed together and the best
performing method (indicated by the respective authors) is de-
picted in bold. We will use the best representative method of
each proposed paper; therefore, only the methods in bold, when
more than one method is proposed, will be compared in the
experimental study.

C. Related and Advanced Work

Nowadays, much research to enhance the NN through data
preprocessing is common and highly demanded. PG could rep-
resent a feasible and promising technique to obtain expected
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results, which justifies its relationship to other methods and
problems. This section provides a brief review on other topics
closely related to PG, and describes other interesting work and
future trends, which have been studied over the past few years.

1) Prototype selection: With the same objective as PG, stor-
age reduction, and classification accuracy improvement,
these methods are limited only to select examples from
the training set. More than 50 methods can be found in
the literature. In general, three kinds of methods are usu-
ally differentiated, which are also based on edition [54],
condensation [55], or hybrid models [21], [56]. Advanced
proposals can be found in [24] and [57]–[59].

2) Instance and rule learning hybridizations: It includes all
the methods, which simultaneously use instances and rules
in order to compute the classification of a new object. If the
values of the object are within the range of a rule, its con-
sequent predicts the class; otherwise, if no rule matches
with the object, the most similar rule or instance stored
in the database is used to estimate the class. Similarity
is viewed as the closest rule or instance based on a dis-
tance measure. In short, these methods can generalize an
instance into a hyperrectangle or rule [60], [61].

3) Hyperspherical prototypes: This area [62] studies the use
of hyperspheres to cover the training patterns of each class.
The basic idea is to cluster the space into several objects,
each of them corresponding only to one class, and the
class of the nearest object is assigned to the test example.

4) Weighting: This task consists of applying weights to the
instances of the training set, thus modifying the distance
measure between them and any other instance. This tech-
nique could be integrated with the PS and PG meth-
ods [16], [63], [64], [65], [66] to improve the accuracy
in classification problems and to avoid overfitting. A com-
plete review dealing with this topic can be found in [67].

5) Distance functions: Several distance metrics have been
used with NN, especially when working with categorical
attributes [68]. Many different distance measures try to
optimize the performance of NN [15], [64], [69], [70],
and they have successfully increased the classification
accuracy. Advanced work is based on adaptive distance
functions [71].

6) Oversampling: This term is frequently used in learning
with imbalanced classes [72], [73], and is closely related
to undersampling [74]. Oversampling techniques repli-
cate and generate artificial examples that belong to the
minority classes in order to strengthen the presence of
minority samples and to increase the performance over
them. SMOTE [75] is the most well known oversampling
technique and it has been shown to be very effective in
many domains of application [76].

III. PROTOTYPE GENERATION: TAXONOMY

The main characteristics of the PG methods have been de-
scribed in Section II-A, and they can be used to categorize the
PG methods proposed in the literature. The type of reduction,
resulting generation set, generation mechanisms, and the evalu-

Fig. 1. Prototype generation map.

ation of the search constitute a set of properties that define each
PG method. This section presents the taxonomy of PG methods
based on these properties.

In Fig. 1, we show the PG map with the representative
methods proposed in each paper ordered in time. We refer
to representantive methods, which are preferred by the au-
thors or have reported the best results in the correspond-
ing proposal paper. Some interesting remarks can be seen in
Fig. 1.

1) Only two class-relabeling methods have been proposed
for PG algorithms. The reason is that both the methods
obtain great results for this approach in accuracy, but the
underlying concept of these methods does not achieve
high reduction rates, which is one of the most important
objectives of PG. Furthermore, it is important to point out
that both algorithms are based on decremental reduction,
and that they have noise filtering purposes.

2) The condensation techniques constitute a wide group.
They usually use a semiwrapper evaluation with any type
of reduction. It is considered a classic idea due to the fact
that, in recent years, hybrid models are preferred over con-
densation techniques, with few exceptions. ICPL2 was the
first PG method with a hybrid approach, combining edi-
tion, and condensation stages.

3) Recent efforts in proposing positioning adjustment algo-
rithms are noted for mixed reduction. Most of the methods
following this scheme are based on LVQ, and the recent
approaches try to alleviate the main drawback of the fixed
reduction.

4) There are many efforts in centroid-based techniques be-
cause they have reported a great synergy with the NN rule,
since the first algorithm PNN. Furthermore, many of them
are based on simple and intuitive heuristics, which allow
them to obtain a reduced set with high-quality accuracy.
By contrast, those with decremental and mixed reduction
are slow techniques.
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Fig. 2. Prototype generation hierarchy.

5) Wrapper evaluation appeared a few years ago and is only
presented in hybrid approaches. This evaluation search
is intended to optimize a selection, without taking into
account computational costs.

Fig. 2 illustrates the categorization following a hierarchy
based on this order: generation mechanisms, resulting gener-
ation set, type of reduction, and finally, evaluation of the search.

The properties studied here can help to understand how the
PG algorithms work. In the following sections, we will estab-
lish which methods perform best, for each family, consider-
ing several metrics of performance with a wide experimental
framework.

IV. EXPERIMENTAL FRAMEWORK

In this section, we show the factors and issues related to
the experimental study. We provide the measures employed to
evaluate the performance of the algorithms (see Section IV-A),
details of the problems chosen for the experimentation (see
Section IV-B), parameters of the algorithms (see Section IV-C),
and finally, the statistical tests employed to contrast the results
obtained are described (see Section IV-D).

A. Performance Measures for Standard Classification

In this study, we deal with multiclass datasets. In these do-
mains, two measures are widely used because of their simplicity
and successful application. We refer to the classification rate
and Cohen’s kappa rate measures, which we will explain in the
following.

1) Classification rate: It is the number of successful hits (cor-
rect classifications) relative to the total number of classifi-
cations. It has been by far the most commonly used metric
to assess the performance of classifiers for years [2], [77].

2) Cohen’s Kappa (Kappa rate): It is an alternative measure
to the classification rate, since it compensates for ran-
dom hits [78]. In contrast to the classification rate, kappa
evaluates the portion of hits that can be attributed to the
classifier itself (i.e., not to mere chance), relative to all the
classifications that cannot be attributed to chance alone.
An easy way to compute the Cohen’s kappa is to makie
use of the resulting confusion matrix (see Table III) in a
classification task. With the following expression, we can
obtain Cohen’s kappa:

kappa =
n

∑Ω
i=1 hii −

∑Ω
i=1 TriTci

n2 −
∑Ω

i=1 TriTci

(1)

where hii is the cell count in the main diagonal (the num-
ber of true positives for each class), n is the number of
examples, Ω is the number of class labels, and Tri and
Tci are the rows’ and columns’ total counts, respectively
(Tri =

∑Ω
j=1 hij , Tci =

∑Ω
j=1 hji).

Cohen’s kappa ranges from −1 (total disagreement)
through 0 (random classification) to 1 (perfect agreement).
For multiclass problems, kappa is a very useful, yet sim-
ple, meter to measure a classifier’s classification rate while
compensating for random successes.
The main difference between the classification rate and
Cohen’s kappa is the scoring of the correct classifica-
tions. Classification rate scores all the successes over all
classes, whereas Cohen’s kappa scores the successes inde-
pendently for each class and aggregates them. The second
way of scoring is less sensitive to randomness caused by
a different number of examples in each class.

B. Datasets

In the experimental study, we selected 59 datasets from the
University of California, Irvine (UCI) repository [79] and KEEL
dataset1 [38]. Table II summarizes the properties of the selected
datasets. It shows, for each dataset, the number of examples
(#Ex.), the number of attributes (#Atts.), the number of numeri-
cal (#Num.) and nominal (#Nom.) attributes, and the number of
classes (#Cl.). The datasets are grouped into two categories de-
pending on the size they have. Small datasets have less than 2000
instances and large datasets have more than 2000 instances. The
datasets considered are partitioned by using the tenfold cross-
validation (10-fcv) procedure.

C. Parameters

Many different method configurations have been established
by the authors in each paper for the PG techniques. In our
experimental study, we have used the parameters defined in
the reference, where they were originally described, assuming
that the choice of the values of the parameters was optimally
chosen. The configuration parameters, which are common to all
problems, are shown in Table IV. Note that some PG methods
have no parameters to be fixed; therefore, they are not included
in this table.

1http://sci2s.ugr.es/keel/datasets.
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TABLE II
SUMMARY DESCRIPTION FOR CLASSIFICATION DATASETS

TABLE III
CONFUSION MATRIX FOR AN Ω-CLASS PROBLEM

In most of the techniques, Euclidean distance is used as the
similarity function, to decide which neighbors are closest. Fur-
thermore, to avoid problems with a large number of attributes
and distances, all datasets have been normalized between 0 and
1. This normalization process allows to apply all the PG methods
over each dataset, independent of the types of attributes.

D. Statistical Tests for Performance Comparison

In this paper, we use the hypothesis-testing techniques to
provide statistical support for the analysis of the results [80],
[81]. Specifically, we use nonparametric tests because of the

fact that the initial conditions that guarantee the reliability of the
parametric tests may not be satisfied, thus causing the statistical
analysis to lose credibility with these parametric tests. These
tests are suggested in the studies presented in [80] and [82]–
[84], where its use in the field of machine learning is highly
recommended.

The Wilcoxon test [82], [83] is adopted considering a level of
significance of α = 0.1. More information about statistical tests
and the results obtained can be found in the web site associated
with this paper (http://sci2s.ugr.es/pgtax).

E. Other Considerations

We want to outline that the implementations are based only on
the descriptions and specifications given by the respective au-
thors in their papers. No advanced data structures and enhance-
ments for improving the efficiency of PG methods have been
carried out. All methods are available in KEEL software [38].

V. ANALYSIS OF RESULTS

This section presents the average results collected in the ex-
perimental study and some discussions of them; the complete
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TABLE IV
PARAMETER SPECIFICATION FOR ALL THE METHODS EMPLOYED

IN THE EXPERIMENTATION

results can be found on the web page associated with this paper.
The study will be divided into two parts: analysis of the results
obtained over small-size datasets (see Section V-A) and over
large datasets (see Section V-B). Finally, a global analysis is
added in Section V-C.

A. Analysis and Empirical Results of Small-Size datasets

Table V presents the average results obtained by the PG meth-
ods over the 40 small-size datasets. Red. denotes reduction rate
achieved, train Acc. and train Kap. present the accuracy and
kappa obtained in the training data, respectively; on the other
hand, tst Acc. and tst Kap. present the accuracy and kappa ob-
tained over the test data. Finally, Time denotes the average time
elapsed in seconds to finish a run of PG method. The algorithms
are ordered from the best to the worst for each type of result.
Algorithms highlighted in bold are those which obtain the best
result in their corresponding family, according to the first level
of the hierarchy in Fig. 2.

Fig. 3 depicts a representation of an opposition between the
two objectives: reduction and test accuracy. Each algorithm lo-
cated inside the graphic gets its position from the average values
of each measure evaluated (exact position corresponding to the
beginning of the name of the algorithm). Across the graphic,
there is a line that represents the threshold of test accuracy
achieved by the 1NN algorithm without preprocessing. Note

that in Fig. 3(a), the names of some PG methods overlap, and
hence, Fig. 3(b) shows this overlapping zone.

To complete the set of results, the web site associated with
this paper contains the results of applying the Wilcoxon test
to all possible comparisons among all PG considered in small
datasets.

Observing Table V, Fig. 3, and the Wilcoxon Test, we can
point out some interesting facts as follows.

1) Some classical algorithms are at the top in accuracy and
kappa rate. For instance, GENN, GMCA, and MSE ob-
tain better results than other recent methods over test
data. However, these techniques usually have a poor as-
sociated reduction rate. We can observe this statement in
the Wilcoxon test, where classical methods significantly
overcome other recent approaches in terms of accuracy
and kappa rates. However, In terms of Acc. ∗ Red. and
Kap. ∗ Red. measures, typically, these methods do not
outperform recent techniques.

2) PSO and ENPC could be stressed from the positioning
adjustment family as the best performing methods. Each
one of them belongs to different subfamilies, fixed and
mixed reduction, respectively. PSO focuses on improving
the classification accuracy, and it obtains a good gener-
alization capability. On the other hand, ENPC has the
overfitting as the main drawback, which is clearly dis-
cernible from Table V. In general, LVQ-based approaches
obtain worse accuracy rates than 1NN, but the reduction
rate achieved by them is very high. MSE and HYB are the
most outstanding techniques belonging to the subgroup of
condensation and positioning adjustment.

3) With respect to class-relabeling methods, GENN obtains
better accuracy/kappa rates but worse reduction rates than
Depur. However, the statistical test informs that GENN
does not outperform to the Depur algorithm in terms of
accuracy and kappa rate. Furthermore, when the reduction
rate is taken into consideration, i.e., when the statistical test
is based on the Acc. ∗ Red. and Kap. ∗ Red. measures,
the Depur algorithm clearly outperforms GENN.

4) The decremental approaches belonging to the centroids
family require high computation times, but usually offer
good reduction rates. MCA and PNN tend to overfit the
data, but GMCA obtains excellent results.

5) In the whole centroids family, two methods deserve partic-
ular mention: ICPL2 and GMCA. Both generate a reduced
prototype set with good accuracy rates in test data. The
other approaches based on fixed and incremental reduction
are less appropriate to improve the effectiveness of 1NN,
but they are very fast and offer much reduced generated
sets.

6) Regarding space-splitting approaches, several differences
can be observed. RSP3 is an algorithm based on Chen’s
algorithm, but tries to avoid drastic changes in the form of
the decision boundaries, and it produces a good tradeoff
between reduction and accuracy. Although the POC algo-
rithm is a relatively modern technique, this does not obtain
great results. We can justify these results because the α-
parameter is very sensitive for each dataset. Furthermore,
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TABLE V
AVERAGE RESULTS OBTAINED BY THE PG METHODS OVER SMALL DATASETS

Fig. 3. Accuracy in test versus reduction in small datasets. (a) All PG methods. (b) Zoom in the overlapping reduction-rate zone.

it is quite slow when tackling datasets with more than two
classes.

7) The best methods in accuracy/kappa rates for each one of
the families are PSO, GENN, ICPL2, and RSP3, respec-
tively, and five methods outperform 1NN in accuracy.

8) In general, hybrid methods obtain the best result in terms
of accuracy and reduction rate.

9) Usually, there is no difference between the rankings ob-
tained with accuracy and kappa rates, except for some
concrete algorithms. For example, we can observe that
1NN obtains a lower ranking with the kappa measure; it
probably indicates that 1NN benefits from random hits.

Furthermore, in the web site associated with this paper, we can
find an analysis of the results depending on the type of attributes
of the datasets. We show the results in accuracy/kappa rate for
all PG methods differentiating between numerical, nominal, and
mixed datasets. In numerical and nominal datasets, all attributes
must be numerical and nominal, respectively, whereas in mixed
datasets, we include those datasets with numerical and nominal
attributes mixed. Observing these tables, we want to outline
different properties of the PG methods.

1) In general, there is no difference in performance between
numerical, nominal, and mixed datasets, except for some
concrete algorithms. For example, in mixed datasets, we
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TABLE VI
AVERAGE RESULTS OBTAINED BY THE PG METHODS OVER LARGE DATASETS

can see that a class-relabeling method, GENN, is on the top
because of the fact that it does not produce modifications
to the attributes. However, in numerical datasets, PSO
is the best performing method, indicating to us that the
positioning adjustment strategy is usually well adapted to
numerical datasets.

2) In fact, comparing these tables, we observe that some
representative techniques of the positioning adjustment
family, such as PSO, MSE, and ENPC, have an accu-
racy/kappa rate close to 1NN. However, over nominal and
mixed datasets, they decrease their accuracy rates.

3) ICPL2 and GMCA techniques obtain good accu-
racy/kappa rates independent of the type of input data.

Finally, we perform a study depending on the number of
classes of the datasets. In the web site associated with this paper,
we show the average results in accuracy/kappa rate differenti-
ating between binary and multiclass datasets. We can analyze
several details from the results collected, which are as follows.

1) Eight techniques outperform 1NN in accuracy when they
tackle binary datasets. However, over multiclass datasets,
there are only three techniques that are able to overcome
1NN.

2) Centroid-based techniques usually perform well when
dealing with multiclass datasets. For instance, we can
highlight the MCA, SGP, PNN, ICPL2, and GMCA tech-
niques, which increase their respective rankings with mul-
ticlass datasets.

3) GENN and ICPL2 techniques obtain good accu-
racy/kappa rates independent of the number of
classes.

4) PSCSA has a good behavior with binary datasets. How-
ever, over multiclass datasets, PSCSA decreases its per-
formance.

5) Some methods present significant differences between ac-
curacy and kappa measures when dealing with binary

datasets. We can stress MSE, Depur, Chen, and BTS3
like techniques penalized by the kappa measure.

B. Analysis and Empirical Results of Large-Size
Datasets

This section presents the study and analysis of large-size
datasets. The goal of this study is to analyze the effect of scaling
up the data in PG methods. For time complexity reasons, sev-
eral algorithms cannot be run over large datasets. PNN, MCA,
GMCA, ICPL2, and POC are extremely slow techniques, and
their time complexity quickly increases when the data scale up
or manage more than five classes.

Table VI shows the average results obtained, and Fig. 4 illus-
trates the comparison between the accuracy and reduction rates
of the PG methods over large-size datasets. Finally, the web
site associated with this paper contains the results of applying
the Wilcoxon test over all possible comparisons among all PG
considered in large datasets.

These tables allow us to highlight some observations of the
results obtained as follows.

1) Only the GENN approach outperforms the performance
of the 1NN in accuracy/kappa rate.

2) Some methods present clear differences when dealing with
large datasets. For instance, we can highlight the PSO and
RSP3 techniques. The former may suffer from a lack of
convergence due to the fact that the performance obtained
in training data is slightly higher than that obtained by
1NN; hence, it may be a sign that more iterations are
needed to tackle large datasets. On the other hand, the
techniques based on space partitioning present some draw-
backs when the data scale up and are made up of more
attributes. This is the case with RSP3.

3) In general, LVQ-based methods do not work well when
the data scale up.
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Fig. 4. Accuracy in test versus reduction in large datasets. (a) All PG methods considered over large datasets. (b) Zoom in the overlapping reduction-rate zone.

4) BTS3 stands out as the best centroids-based method over
large-size datasets because the best performing ones over
small datasets were also the most complex in time, and
they cannot be run here.

5) Although ENPC overfits the data, it is the best performing
method that consider the tradeoff between accuracy/kappa
and reduction rates. PSO can also be stressed as a good
candidate in this type of dataset.

6) There is no significant differences between the accuracy
and kappa rankings when dealing with large datasets.

Again, we differentiate between numerical, nominal, and
mixed datasets. Complete results can be found in the web site
associated with this paper. Observing these results, we want to
outline different properties of PG methods over large datasets.
Note that there is only one dataset with mixed attributes; for
this reason, we focus this analysis on the differences between
numerical and nominal datasets.

1) When only numerical datasets are taken into considera-
tion, three algorithms outperform the 1NN rule: GENN,
PSO, and ENPC.

2) Over nominal large datasets, no PG method outperforms
1NN.

3) MixtGauss and AMPSO are highly conditioned on the
type of input data, preferring numerical datasets. By con-
trast, RSP3 is better adapted to nominal datasets.

Finally, we perform again an analysis of the behavior of the
PG techniques depending on the number of classes, but in this
case, over large datasets. the web site associated with this paper
presents the results. Observing these results, we can point out
several comments.

1) Over binary large datasets, there are four algorithms
that outperform 1NN. However, when the PG techniques
tackle multiclass datasets, no PG method overcome
1NN.

2) When dealing with large datasets, there is no im-
portant differences between the accuracy and kappa
ranking with binary datasets.

3) Class-relabeling methods perform well independent of the
number of classes.

C. Global Analysis

This section shows a global view of the obtained results. As
a summary, we want to outline several remarks on the use of
PG because the choice of a certain method depends on various
factors.

1) Several PG methods can be emphasized according to their
test accuracy/kappa obtained: PSO, ICPL2, ENPC, and
GENN. In principle, in terms of reduction capabilities,
PSCSA and AVQ obtain the best results, but they offer
poor accuracy rates. Taking into consideration the compu-
tational cost, we can consider DSM, LVQ3, and VQ to be
the fastest algorithms.

2) Edition schemes usually outperform the 1NN classifier,
but the number of prototypes in the result set is too high.
This fact could be prohibitive over large datasets because
there is no significant reduction. Furthermore, other PG
methods have shown that it is possible to preserve high
accuracy with a better reduction rate.

3) A high reduction rate serves no purpose, if there is no min-
imum guarantee of performance accuracy. This is the case
of PSCSA or AVQ. Nevertheless, MSE offers excellent
reduction rates without losing performance accuracy.

4) For the tradeoff reduction–accuracy rate, PSO has been
reported to have the best results over small-size datasets. In
the case of dealing with large datasets, the ENPC approach
seems to be the most appropriate one.

5) A good reduction–accuracy balance is difficult to achieve
with a fast algorithm. Considering this restriction, we
could say that RSP3 allows us to yield generated sets
with a good tradeoff among reduction, accuracy, and time
complexity.

VI. VISUALIZATION OF DATA RESULTING SETS: A CASE

STUDY BASED ON BANANA DATASET

This section is devoted to illustrate the subsets selected re-
sulting from some PG algorithms considered in this study. To
do this, we focus on the banana dataset, which contains 5300
examples in the complete set. It is an artificial dataset of two
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Fig. 5. Data generated sets in banana dataset. (a) Banana original (0.8751, 0.7476). (b) GENN (0.0835, 0.8826, 0.7626). (c) LVQ3 (0.9801, 0.8370, 0.6685).
(d) Chen (0.9801, 0.8792, 0.7552). (e) RSP3 (0.8962, 0.8755, 0.7482). (f) BTS3 (0.9801, 0.8557, 0.7074). (g) SGP (0.9961, 0.6587, 0.3433). (h) PSO
(0.9801, 0.8819, 0.7604). (i) ENPC (0.7485, 0.8557, 0.7086).

classes composed of three well-defined clusters of instances of
the class −1 and two clusters of the class 1. Although the bor-
ders are clear among the clusters, there is a high overlap between
both classes. The complete dataset is illustrated in Fig. 5(a).

The pictures of the generated sets by some PG methods could
help to visualize and understand their way of working and the
results obtained in the experimental study. The reduction rate
and the accuracy and kappa values in test data registered in the
experimental study are specified for each one. In the original
dataset, the two values indicated correspond to accuracy and
kappa with 1NN.

1) Fig. 5(b) depicts the generated data by the algorithm
GENN. It belongs to the edition approaches, and the gener-
ated subset differs slightly from the original dataset. Those
samples found within the class boundaries can either be
removed or be relabeled. It is noticeable that the clusters
of different classes are a little more separated.

2) Fig. 5(c) shows the resulting subset of the classical LVQ3
condensation algorithm. It can be appreciated that most of
the points are moved to define the class boundaries, but a

few interior points are also used. The accuracy and kappa
decrease with respect to the original, as is usually the case
with condensation algorithms.

3) Fig. 5(d) and (e) represents the sets generated by the Chen
and RSP3 methods, respectively. These methods are based
on a space-splitting strategy, but the first one requires the
specification of the final size of the generated sets, while
the latter does not. We can see that the Chen method
generates prototypes keeping a homogeneous distribution
of points in the space. RSP3 was proposed to fix some
problems observed in the Chen method, but in this concrete
dataset, this method is worse in accuracy/kappa rates than
its ancestor. However, the reduction type of Chen’s method
is fixed, and it is very dependent on the dataset tackled.

4) Fig. 5(f) and (g) represents the sets of data generated
by BTS3 and SGP methods. Both techniques are cluster-
based and present very high reduction rates over this
dataset. SGP does not work well in this dataset because
it promotes the removal of prototypes and uses an incre-
mental order, which does not allow us to choose the most
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appropriate decision. BTS3 uses a fixed reduction type;
thus, it focuses on improving accuracy rates, but its gen-
eration mechanisms are not well suited for this type of
dataset.

5) Fig. 5(h) and (i) illustrates the sets of data generated by
PSO and ENPC methods. They are wrapper and hybrid
methods of the position-adjusting family and iterate many
times to obtain an optimal reallocation of prototypes. PSO
requires the final size of the subset selected as a parameter,
and this parameter is very conditioned to the complexity
of the dataset addressed. In the banana case, keeping 2%
of prototypes seems to work well. On the other hand,
ENPC can adjust the number of prototypes required to fit
a specific dataset. In the case study presented, we can see
that it obtains similar sets to those obtained by the Chen
approach because it also fills the regions with a homo-
geneous distribution of generated prototypes. In decision
boundaries, the density of prototypes is increased and may
produce quite noisy samples for further classification of
the test data. It explains its poor behavior in this problem
with respect to PSO, the lower reduction rate achieved,
and the decrement of accuracy/kappa rates with regard to
the original dataset classified with 1NN.

We have seen the resulting datasets of condensation, edition,
and hybrid methods and different generation mechanisms with
some representative PG methods. Although the methods can be
categorized as a specific family, they do not follow a specific
behavior pattern, since some of the condensation techniques
may generate interior points (like in LVQ3), other clusters of
data (RSP3), or even points with a homogeneous distribution in
space (Chen or ENPC). Nevertheless, visual characteristics of
generated sets are also the subject of interest and can also help
to decide the choice of a PG method.

VII. CONCLUSION

In this paper, we have provided an overview of the PG meth-
ods proposed in the literature. We have identified the basic and
advanced characteristics. Furthermore, existing work and re-
lated fields have been reviewed. Based on the main characteris-
tics studied, we have proposed a taxonomy of the PG methods.

The most important methods have been empirically analyzed
over small and large sizes of classification datasets. To illustrate
and strengthen the study, some graphical representations of data
subsets selected have been drawn and statistical analysis based
on nonparametric tests has been employed. Several remarks and
guidelines can be suggested.

1) A researcher who needs to apply a PG method should
know the main characteristics of these kinds of methods in
order to choose the most suitable. The taxonomy proposed
and the empirical study can help a researcher to make this
decision.

2) To propose a new PG method, rigorous analysis should be
considered to compare the most well-known approaches
and those which fit with the basic properties of the new
proposal. To do this, the taxonomy and analysis of influ-

ence in the literature can help guide a future proposal to
the correct method.

3) This paper helps nonexperts in PG methods to differentiate
between them, to make an appropriate decision about their
application, and to understand their behavior.

4) It is important to know the main advantages of each PG
method. In this paper, many PG methods have been empir-
ically analyzed, but a specific conclusion cannot be drawn
regarding the best performing method. This choice de-
pends on the problem tackled, but the results offered in
this paper could help to reduce the set of candidates.
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