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Abstract—In the last few decades, image registration (IR) has
been established as a very active research area in computer
vision. Over the years, it has been applied to a broad range
of real-world problems ranging from remote sensing to medical
imaging, artificial vision, and computer-aided design. IR has been
usually tackled by iterative approaches considering numerical
optimization methods which are likely to get stuck in local
optima. Recently, a large number of IR methods based on the use
of metaheuristics and evolutionary computation paradigms has
been proposed providing outstanding results. In this contribution,
we aim to develop a preliminary experimental study on some of
the most recognized feature-based IR methods considering evolu-
tionary algorithms. To do so, the IR framework is first presented
and a brief description of some prominent evolutionary-based IR
proposals are reviewed. Finally, a selection of some of the most
representative methods are benchmarked facing challenging 3D
medical image registration problem instances.

I. INTRODUCTION

Image registration [1]–[3] is an important research field

in digital image processing [4]. It is used to align two or

more images acquired under different conditions: at different

times, using different sensors, from different viewpoints, or a

combination of some of the latter situations. In IR, the input

and output images are available, but the specific transformation

that produced the output image from the input one is usually

unknown. IR aims to estimate the best geometric transfor-

mation leading to the best possible overlapping transforming

those independent images into a common one.

Medical IR is a mature research field with theoretical

support and two decades of practical experience [5]. A wide

variety of applications have been proposed [6] and there are

excellent review works that provide an up-to-date progress

in the application of classical optimization techniques to the

medical IR field [5], [7]–[9]. Recently, IR approaches based on

evolutionary computation (EC) [10] and other metaheuristics

(MHs) [11] have demonstrated to be a promising solution for

facing some of the most challenging drawbacks of the latters,

specifically for escaping from local optima solutions [12]–[17].

The aim of the current contribution is two-fold. On the one

hand, we aim to provide a brief review of those, in our modest

opinion, most relevant evolutionary-based IR methods in the

state of the art. On the other hand, we aim to develop an

experimental study on the performance of some of the previous

contributions in order to achieve a better comprehension of this

family of methods. To do so, we have considered a feature-

based IR approach [3] in which a preprocessing step, previous

to the application of IR, is performed in order to extract a

concise subset of salient features of the medical 3D images. In

particular, the considered image dataset comes from the well-

known BrainWeb repository at McGill University [18]. We will

deal with complex scenarios by facing non-rigid IR problem

instances considering similarity transformations, which are

constituted by a rotation, a translation, and a uniform scaling.

Thus, the conducted experiments will provide us with actual

information about the degree of suitability of evolutionary-

based IR methods to solve IR problems in medical imaging

environments.

The structure of this contribution is as follows. Section II

describes the IR problem analyzing the principal components

of a generic IR method. Next, Section III introduces the

EC paradigm. Section IV develops a review of the state of

the art in IR methods based on EC and their most relevant

pros and cons. Section V presents a broad experimental study

facing a realistic medical application of IR datasets in which

several of the reviewed methods have been tested. Finally,

some conclusions are drawn in Section VI.

II. IMAGE REGISTRATION

There is not a universal design for a hypothetical IR

method that could be applicable to all registration tasks,

since various considerations on the particular application must

be taken into account. Nevertheless, IR methods usually

require the four following components (see Figure 1): two

input Images named scene Is = {~p1, ~p2, . . . , ~pn} and model

Im = {~p ′

1
, ~p ′

2
, . . . , ~p ′

m}, with ~pi and ~p ′

j being image points; a

Registration transformation f , being a parametric function

relating the two images; a Similarity metric F , in order to

measure a qualitative value of closeness or degree of fitting

between the transformed scene image, noted f ′(Is), and the

model image; and an Optimizer which looks for the optimal

transformation f inside the defined solution search space.

In order to avoid many of the drawbacks related to classi-

cal voxel-based IR methods, the feature-based IR approach

is based on the extraction of prominent geometric primi-

tives/features from the images [3]. The proper comparison of

feature sets will be possible using a reliable feature detector

that accomplishes the accurate extraction of invariant features.
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Fig. 1. The IR optimization process

Those are features which are not affected by changes in the ge-

ometry of the images, radiometric conditions, and appearance

of noise. There are many different kinds of features that can

be considered, e.g., region features, line features, and point

features. Hence we have decided to follow the feature-based

approach in the later experimental study developed in this

contribution.

The registration transformation considered will depend on

the application addressed and the nature of the images in-

volved. The first category of transformations includes affine

transformations, which preserve the operations of vector addi-

tion and scalar multiplication, being a combination of transla-

tion, rotation, scaling, and shear components. Among the most

common IR transformations we found rigid, similarity, affine,

projective, and curved [2]. Linear transformations are global in

nature, thus not being able to model local deformations. The

second category of transformation includes “elastic” or “non-

rigid” transformations which allow local warping of image

features, thus allowing local deformations [8]. In particular,

we use similarity transformations in the experiments of this

contribution.

One of the most important components of any IR method

is the similarity metric [19]. It is considered as a function

F that measures the goodness of IR problem solution given

by a registration transformation f . The final performance of

any IR method will depend on the accurate estimation of

F . Each solution is evaluated by F as follows. First, f is

usually applied to the scene image (f(Is)). Next, the fitting

degree between the transformed scene and the model images

is determined.

As said, the key idea of the IR process is focused on de-

termining the unknown parametric transformation that relates

two images. According to the search strategy component, we

can distinguish two different IR approaches in the literature to

determine that parametric transformation:

• Matching-based approach: it performs a search in the

space of feature correspondences (typically, correspon-

dences of image points). Once the matching of scene and

model features is accomplished, the registration transfor-

mation is derived (see the top picture in Figure 2).

• Transformation parameters-based approach: a direct

search in the space of the f parameters is done (see the

bottom picture in Figure 2).

Fig. 2. From top to bottom, the matching-based and transformation
parameters-based IR approaches

In both approaches, IR arises as a non-linear optimization

problem that cannot be solved by a direct method (e.g.

resolution of a simple system of linear equations) because

of the uncertainty underlying the estimation of f . On the

contrary, it must be tackled by means of an iterative procedure

searching for the optimal estimation of f, following one of the

said approaches. Classical numerical optimizers can be used.

However they usually get trapped in a local minima solution.

III. EVOLUTIONARY COMPUTATION

Metaheuristics (MHs) [11] are among the most promi-

nent and successful approximate or heuristic techniques to

solve a large amount of complex and computationally hard

combinatorial and numerical optimization problems arising in

human activities, such as economics (e.g., portfolio selection),

industry (e.g., scheduling or logistics), or engineering (e.g.,

routing), among many others. MHs can be seen as general

algorithmic frameworks that require relatively few modifica-

tions to be adapted to tackle a specific problem. They are a

diverse family of optimization algorithms including methods

as simulated annealing (SA), tabu search (TS), multi-start

methods, iterated local search (ILS), variable neighborhood

search (VNS), greedy randomized adaptive search procedures

(GRASP), and ant colony optimization (ACO).

Similarly to MHs, evolutionary computation (EC) [10]

makes use of computational models of evolutionary processes

for evolving populations of solutions as key elements in the

design and implementation of computer-based problem solving

systems. EC approaches constitute a very interesting choice

since they are able to achieve good quality outcomes when,

for instance, global solutions of hard problems cannot be found

with a reasonable amount of computational effort.

There is a variety of EC models that have been proposed

and studied, which are referred as evolutionary algorithms

(EAs) [10], [20]. Among them we refer to four well-defined

EAs which have served as the basis for much of the activity in

the field: genetic algorithms (GAs), evolution strategies (ES),

32



genetic programming (GP), and evolutionary programming

(EP). In particular, GAs are probably the most used EAs in

the literature to face real-world optimization problems. Some

other EAs have been proposed in the last few years improving

the state of the art in this field by adopting more suitable

optimization strategies: the CHC algorithm1 and differential

evolution (DE).

In the last decade, it has been increased the interest on the

application of EC principles to the IR optimization problem

due to their more suitable and improved global optimization

behavior. Thus, next section is devoted to introduce a short

revision of some of those, in our modest opinion, most relevant

EC-based IR methods proposed to date.

IV. EVOLUTIONARY IMAGE REGISTRATION

A. Previous Work

In the last few years, approximate optimization approaches

based on both MH and EC are being extensively used by the

IR community. As stated, they are based on the extension of

basic heuristics by considering their inclusion in an iterative

process of improvement. One of the main advantage of these

optimization alternatives is their capability to escape from

local optima. That is one of the most relevant pitfalls of

traditional IR methods.

As said, EC [10] is one of the most addressed approaches

within metaheuristics. EC involves those strategies using com-

putational models inspired on evolutive procedures of nature

as key elements in designing and developing of problem

solving systems based on computers. In particular, the first

attempts facing the IR problem using EC can be found in

the eighties. Fitzpatrick et al. [23] proposed such approach

using genetic algorithms (GAs) [24], [25] to register 2D

angiographic images in 1984. Since then, evolutionary IR has

become a very active area and several well-known EAs have

been considered to tackle the IR optimization process, causing

an outstanding interest [13]–[15], [17], [26], [27].

1) He and Narayana’s GA-based Proposal: This IR

method [14] is a slight improvement of the previously re-

viewed Yamany et al.’s approach [13]. It considers a real

coding scheme that makes use of arithmetic crossover and

uniform mutation operators within an elitist generational

model including a restart mechanism. This evolutionary IR

method deals with rigid transformations following a two-step

technique. First, a coarse parameter estimation is faced using

a real-coded GA. Then, the obtained preliminary solution

is refined by means of a local search procedure based on

the dividing rectangle method. In the coarse resolution, the

ranges of the parameters were set to: ±20 voxels along x

and y directions, and ±40 voxels along z direction for the

translation, and rotations of ±10◦ around x and y axes, and

±20◦ around z axis. However, the setting of the parameters

range and the use of a simple rigid transformation may be

a weak point when applying this method to some real-world

environments.

1The CHC acronym stands for Cross generational elitist selection, Hetero-
geneous recombination, Cataclysmic mutation [21], [22].

2) Chow et al.’s GA-based Proposal: The authors proposed

in [26] the same generational and proportionate-fitness models

for population reproduction than the method by He and

Narayana [14]. However, Chow et al. introduced the use of a

crossover operator that randomly selects the number of genes

to be swapped. The value to be accumulated for a mutated

gene is generated randomly within a constant range for the

rotation genes and dynamically computed for the translation

ones according to the fitness value of the chromosome. They

also make use of a GA with more suitable components to

the current EC framework such as a real coding scheme and a

sophisticated restart mechanism (named “dynamic boundary”).

In spite of these improvements, there are some drawbacks in

terms of accuracy, due to the fact that the authors work with a

smaller, randomly selected data set from scene images with a

huge amount of data. Besides, although the algorithm aims to

get a quick registration estimation with the latter procedure,

the efficiency could be reduced since it needs to perform a sort

operation for each evaluation of the fitness function. As many

of the mentioned proposals, it also has the limitation of only

considering a rigid transformation (translation and rotation).

The restart scheme assumes that, prior to its application, the

population will fall in a search space region that is near to the

global optimum, which could be not always the case.

3) Cordón et al.’s CHC-based Proposal: This contribution

used the sophisticated CHC EA [21], [22] that shows a

very good intensification/diversification trade-off for the IR

of MRIs [27]. Authors introduced two different variants of

the method. First, they used binary-coded solutions and the

HUX crossover [28], based on the original CHC structure.

The second variant of the CHC-based IR method extends the

latter structure to work in a real-coded fashion by considering

a real to binary coding translation mechanism as well as

using different specific real-coded genetic operators as the

blend crossover operator (BLX-α) [29]. Authors considered

similarity transformations, thus eight-dimensional real coded

solutions are considered to encode the transformation (four

parameters for rotation, three for translation, and one for uni-

form scaling). They proposed the following objective function

in order to tackle these particular scenarios:

F ′(f ′, Is, Im) = ω1 ·

(

1

1 +
∑N

i=1
‖ (sR~pi + ~t )− ~p ′

j ‖
2

)

+

ω2 ·

(

1

1 + |ρs
c − ρm|

)

(1)

where Is and Im are the scene and model images; f is the

transformation encoded in the evaluated solution; ~pi is the ith

3D point from the scene and ~p ′

j is its corresponding closest

point in the model obtained with the GCP data structure [13];

ω1 and ω2 (ω1 + ω2 = 1) weight the importance of each

function term; ρs
c is the radius of the sphere wrapping up the

scene image transformed with the current f ; and ρm is the

radius of the sphere wrapping up the model image. As the
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first term of F reveals, the modeled error corresponds to the

MSE. Note that F maximizes up to 1.0 for a rarely perfect

fit.

4) De Falco et al.’s DE-based Proposal: Authors proposed

a new IR method based on the DE EA [30]. DE is a parallel

direct search method that has proved to be a promising can-

didate to solve real-valued optimization problems [31], [32].

DE combines simple arithmetic operators with the classical

crossover, mutation, and selection genetic operators within

an easy to implement scheme. It shows the advantage of

considering few control parameters, named mutation factor

(F ) and recombination rate (CR). The fundamental idea of DE

is a new scheme for generating trial solutions by adding the

weighted differenced vector between two population members

to a third one. The proposed method is applied to two 2D

IR problems: mosaicking and changes in time of satellite

images. Registration is carried out from the transformation

parameters-based approach searching for the most suitable

affine transformation (given by eleven real-coded parameters)

in terms of maximization of the MI similarity metric.

B. Pros & Cons

There are different advantages and drawbacks that have been

stated either to justify or to avoid the use of these methods

when tackling complex optimization problems like IR. Some

advantages follow:

• In contrast to classical gradient-based methods, those

based on EC do not depend on the starting solution2,

thus being more robust approaches. Moreover, they pro-

vide specific strategies to escape from local optima. In

particular, they can cope with multimodal functions to

tackle IR [33].

• They are conceptually simple and easy to implement.

• They can handle arbitrary kinds of constraints and ob-

jectives easily. The latter can be considered weighted

components of the fitness function. Thus, it is easier the

adaptation of the optimization scheduler to the particular

requirements of a wide range of possible objectives. They

can also be integrated in a multi-objective scheme for

solving the IR problem [16].

• Unlike other numerical IR techniques (e.g. gradient-

based) that are only applicable for continuous functions or

other constrained sets, their performance is independent

of the solution representation.

The most important shortcomings related to the use of EC

are:

• The EC-based IR methods need an initial tuning of

control parameters following a manual expert-based pro-

cedure. In the last few years, advanced strategies are

arising in order to provide new optimization algorithms

with an adaptive behavior of control parameters [34].

• The estimation of the appropriate stop criterion is not

easy and it is closely related to the fair comparison of

2Despite stochastic approaches, the success of EC methods does not fully
rely on providing a near-optimal starting solution.

the different methods under study. Moreover, it is problem

dependent. Either the CPU time or the number of function

evaluations are typical criteria. The former should be

preferred tackling methods with heterogenous designs.

V. EXPERIMENTAL STUDY

In this section we aim to develop a comparative study of the

performance of some of the state-of-the-art evolutionary-based

IR contributions previously presented in Section IV facing a

medical application. Moreover, we aim to extend the analysis

of performance focusing our attention not only on the best

individual results but also on the robustness of the methods.

A. Experimental Design

We considered the following evolutionary-based IR methods

introduced in Section IV:

• He-GA [14] (EV1)

• Chow-GA [26] (EV2)

• Cordón-CHC [27] (EV3)

• DeFalco-DE [30] (EV4)

All of these methods are based on the transformation

parameters IR approach, which has been the most adopted one

in the last years due to the successfull results. Moreover, we

included an improved variant [35] of the well-known iterative

closest point (ICP) algorithm [36] in order to compare with

a classical non-evolutionary IR method. All these IR methods

have been implemented in C++ and compiled with GNU/g++.

We used a computer with an Intel Pentium IV 2.6 MHz

processor and 2GB RAM.

We considered the parameter values originally proposed

by the authors in every contribution. Nevertheless, we have

adapted the majority of the methods by using the same

objective function (i.e. Eq.(1)) and coding scheme for rep-

resentation of solutions in order to carry out a fair compar-

ison. In particular, the solutions are based in a real-valued

vector coding the similarity transformation as: a rotation

R = (θ, Axisx, Axisy, Axisz), a translation ~t = (tx, ty, tz),

and an uniform scaling s, with θ and ~Axis being the angle

and axis of rotation, respectively.

A feature-based IR approach [1], [3], [37] has been consid-

ered for our medical application. It aims to reduce the huge

amount of data of the original images in order to speed up

and guide the optimization procedure. Feature extraction is

considered as a preprocessing step, previous to the application

of the IR method. It is based on the selection of a small

subset of truly representative characteristics of the images to

be registered. We used a 3D crest lines algorithm [38], [39] to

obtain feature points from medical images. These preprocessed

images are the ones that will be used by every IR method to

estimate the registration transformation. Once the IR method

has finished, the raw images are considered to measure the

quality of the final results.

As stated, we designed several IR problem instances using

similarity transformations, thus coping with the specific char-

acteristics of the application domain of medical applications.

For each problem instance tackled by the five IR methods,
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thirty different runs are performed. Each run considers a dif-

ferent (randomly generated) similarity transformation. In order

to perform a fair comparison among the methods included in

this study, we considered CPU time as the stop criterion. After

a preliminary study, we noticed that twenty seconds was a

suitable stopping criterion to let all the algorithms converge

properly.

The way a particular run is performed is as follows: a ran-

dom (similarity) transformation is applied to the ground-truth

image and then the IR method estimates the unknown inverse

transformation. Thus, ground-truth registration is available for

the addressed medical application. In particular, similarity

transformations are randomly generated following a uniform

probability distribution as follows: each of the three rotation

axis parameters will be in the range [−1, 1]; the rotation angle

will range in [0◦, 360◦]; the three translation parameters in

[−40mm, 40mm]; and the uniform scaling ranges in [0.5, 2.0].
The mean square error (MSE) function is used for IR evalua-

tion, thus the quality of the final IR result is evaluated using the

image estimated by the IR method and its counterpart ground-

truth (both images in their original/raw versions, i.e. previous

the application of the feature extraction) as follows:

MSE =

∑r

i=1
||f(~xi)− ~x ′

i ||
2

r
(2)

where f(~xi) refers to the scene image’s ith point transformed

by the estimated similarity transformation f , r is the scene

image size, and ~x ′

i is the latter ~xi scene point considering in its

ground-truth coordinates. It is clear that this procedure cannot

be used in those situations where ground-truth is not available.

It is only a mean to accomplish an accurate evaluation of the

performance of the IR methods considered.

B. Medical Image Dataset

We use a dataset from the BrainWeb public repository3 of

the McConnell Brain Imaging Centre [18]. The BrainWeb

repository is a Simulated Brain Database (SBD) providing

synthetic MRI data computationaly generated. Such MRIs

have been extensively used by the neuroimaging community

to evaluate the performance of different methods [40]–[43]. In

particular, Wachowiak et al. [43] generated a T1 MRI volume

of a normal brain with the BrainWeb system in order to register

single 2D-slices with respect to the whole 3D volume. The

SBD provides MRI data based on two anatomical models:

normal and multiple sclerosis (MS). Full 3D data volumes

have been simulated for both models using three sequences

(T1-, T2-, or proton-density- (PD) weighted) and a variety

of slice thickness, noise levels, and levels of intensity non-

uniformity (RF).

We extracted the isosurface and select crest-lines points with

relevant curvature information from the original images using

a 3D crest-line edge detector [38], [39]. The resulting datasets

comprise around five hundred points (see Figure 3). Table I

3Available at http://www2.bic.mni.mcgill.ca

details the nature of each of the three MRIs considered for

testing the IR algorithms.

Fig. 3. From left to right: the original medical image, the corresponding
extracted isosurface, and the crest-lines extracted from the isosurface of one
of the three BrainWeb’s MRIs.

TABLE I
DETAILED DESCRIPTION OF THE BRAINWEB DATASET

Lesion Noise Crest-line points

BW(1) - - 583

BW(2) MS 1% 348

BW(3) MS 5% 284

C. Results

Our results correspond to a number of medical IR problem

instances for the 3D medical images presented in Table I. The

three IR scenarios we consider are: BW(1)-BW(2), BW(1)-

BW(3), and BW(2)-BW(3), each one considering a randomly

generated similarity transformation in every of the thirty runs

performed. Thus ninety different IR problem instances are

addressed by every IR method.

Since we are performing thirty runs per IR problem and

method, we can analyze the distribution of the registration

error during the said runs. Table II shows statistical results

computed from the MSE (Eq. 2) of the five IR methods

included in our study. Every entry of the table refers to the

minimum, mean, and standard deviation (in brackets) MSE

values in the thirty runs. The best minimum and mean MSE

values in each IR problem are highlighted using bold font. The

code included in the first column of the table will be used to

refer to every method from now on. The unit length of the

data in this table is squared millimeters.

Figure 4 is a boxplot4 derived from the MSE values of

the thirty different runs. Every boxplot includes 5 boxes

corresponding to each IR method considered. In each box,

the minimum and maximum MSE values are the lowest and

highest lines, the upper and lower ends of the box are the upper

and lower quartiles, and a thick line within the box shows

the median. In data with no dispersion, all the quartiles are

grouped together and the box turns into a single line. Outliers

are represented by circles.

4The bottom and top part of the box correspond to the 25th and the
75th percentiles, respectively. The horizontal line inside the box is the 50th

percentile, i.e. the median value.
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Fig. 4. Boxplots highlighting the MSE distribution during the thirty runs of all the IR methods in every medical IR problem

TABLE II
MEDICAL IR RESULTS. EACH ENTRY CORRESPONDS TO THE MINIMUM

(TOP), MEAN (BOTTOM), AND STANDARD DEVIATION (IN BRACKETS)
MSE VALUES OBTAINED FROM THE THIRTY DIFFERENT RUNS. THE BEST

MINIMUM AND MEAN MSE VALUES ARE IN BOLD.

Code BW(1)-BW(2) BW(1)-BW(3) BW(2)-BW(3)

0.279 0.046 0.042
ICP 2788 (±2364) 3009 (±2279) 2929 (±2094)

Evolutionary-based IR methods

0.466 1 0.342
EV1 1214 (±2794) 718 (±2182) 2014 (±3158)

19 19 18
EV2 4261 (±3417) 3604 (±3351) 2398 (±2667)

0.001 0.007 0.008
EV3 1124 (±2338) 1910 (±3283) 1865 (±2998)

0.001 0.006 0.024
EV4 132 (±708) 0.013 (±0.002) 0.026 (±0.001)

D. Discussion

From the obtained results in Table II, we can see how the

evolutionary-based IR methods achieve the best performance

compared to the classical ICP-based method. Specifically, both

EV3 and EV4 obtains the best acurate results (according to

minimum value of MSE), and EV4 the most robust proposal

(according to mean value of MSE). The low performance of

EV2 is due to the “dynamic boundary” scheme proposed by

the authors which is more suited for tackling IR scenarios with

a width search space of solutions. Figure 4 shows how robust

are each of the compared algorithms and Figure 5 depicts the

most relevant visual results.

VI. CONCLUSION

Unlike traditional methods, IR methods based on EC have

demonstrated their good behavior handling this ill-conditioned

problem in the last few years. The main difficulty to be tackled

is to find a reliable/robust manner to escape from locally

Fig. 5. From left two right: two indepent runs of EV4 and EV2 showing
high and low quality IR results, respectively.

optimal registration solutions. In this work we have introduced

a preliminary experimental revision of some of, in our modest

opinion, the most relevant IR methods of the state-of-the-art

following the said optimization approaches.

In order to establish a better comprehension of this family

of methods, experiments considering IR case studies tackling

a realistic medical application have been carried out. In

particular, we adopted a feature-based IR approach and we

considered a similarity transformation in order to better face

the specific characteristics of the medical application. From

the results obtained we remark the high performance and

accurate results offered by several of the reviewed IR methods

against those achieved by a recent version of the classical ICP

algorithm. We aim to corroborate the similarity of evolutionary

approaches for tackling the medical IR problem with a broader

experimental study including both new case studies and other

methods based on evolutionary and other metaheuristics.
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