
Practical Aggregation Operators for

Gradual Trust and Distrust

Patricia Victora,∗, Chris Cornelisa, Martine De Cockb,1, Enrique
Herrera-Viedmac

aDept. of Applied Mathematics and Computer Science, Ghent University, Belgium
bInstitute of Technology, University of Washington Tacoma, USA

cDept. of Computer Science and Artificial Intelligence, University of Granada, Spain

Abstract

Trust and distrust are two increasingly important metrics in social networks,
reflecting users’ attitudes and relationships towards each other. In this pa-
per, we study the indirect derivation of these metrics’ values for users that do
not know each other, but are connected through the network. In particular,
we study bilattice-based aggregation approaches and investigate how they
can be improved by using ordered weighted averaging techniques, or through
the incorporation of knowledge defects. Experiments on a real world data
set from CouchSurfing.org demonstrate that the best operators from a the-
oretical perspective are not always the most suitable ones in practice, and
that the sophisticated aggregation methods can outperform the more obvious
bilattice-based approaches.

Keywords: aggregation operator, trust network, distrust, social network,
ordered weighted average, bilattice

1. Introduction

The last years have witnessed a proliferation of web applications in which
people can share information and interact with each other. These are the

∗Corresponding author.
Email addresses: Patricia.Victor@UGent.be (Patricia Victor),

Chris.Cornelis@UGent.be (Chris Cornelis), mdecock@u.washington.edu (Martine De
Cock), viedma@decsai.ugr.es (Enrique Herrera-Viedma)

1On leave from Ghent University.

Preprint submitted to Fuzzy Sets and Systems August 16, 2010

so-called social networking sites, think e.g. of Facebook2 (social utility that
connects people to friends and others), LinkedIn2 (business networking tool),
Flickr2 (photo management and sharing) or Wikipedia2 (free online encyclo-
pedia). A lot of these social networking applications rely heavily on the
opinions that their users express: recommendation systems would not per-
form well if their users did not have the possibility to indicate which products
they (dis)like, online marketplaces would lose a lot of their attraction without
the feedback option that monitors the behavior of buyers and sellers, ques-
tion answering systems would not be very popular if there were no evaluation
facilities which make it much easier to filter out the best answers, and so on.

Besides opinions on objects, very often social web applications allow peo-
ple to express their view on other users of the system too. Such opinions come
in many flavors: users can add their connections as ‘friends’ in Facebook,
bookmark ‘interesting people’ in Amazon.com3, allow ‘fans’ and ‘followers’
in Yahoo!Answers and Twitter3, etc. Apart from these positive labels, in a
large group of users, each with their own intentions, tastes and opinions, it
is only natural that also negative evaluation concepts are needed. For ex-
ample, the technology news web site Slashdot4 lets its users tag each other
as ‘friends’, ‘fans’, ‘foes’ or ‘freaks’, and the political forum Essembly4 as
‘friends’, ‘allies’ or ‘nemeses’.

In this paper, we focus on social networks in which the users explicitly ex-
press their opinion as trust and distrust statements. We refer to this kind of
social networks as trust networks. An interesting example is CouchSurfing4,
a large worldwide hospitality exchange network. Users can create a profile
and indicate if they are offering sleeping accomodation; other users looking
for a couch can then browse through the profiles and try to determine which
users are trustworthy enough to be their host (and vice versa). To this aim,
CouchSurfing provides several evaluation possibilities, such as leaving refer-
ences or creating friendship relations. After a couch experience, users can
also indicate how much they trust or distrust each other, which gives rise to
a large (hidden) trust network among the CouchSurfers. Forming your own
opinion on the users might have been easy when the network was still rather

2See www.facebook.com, www.linkedin.com, www.flickr.com and wikipedia.org
3See www.amazon.com, answers.yahoo.com, twitter.com
4See slashdot.org, www.essembly.com, www.couchsurfing.org

2

small, but nowadays CouchSurfing contains over one million users, making it
increasingly difficult to find the hosts/guests that you would get along with
well, let alone the ones that are trustworthy.

In large networks such as CouchSurfing, it is very unlikely that all users
know each other directly. In other words, these networks are unlikely to be
fully connected. This means that, if a user a wants to form a trust opin-
ion about an unknown user x, a has to inquire about x with one of its own
trust relations, say b, who in turn might consult a trust connection, etc.,
until a user connected to x is reached. The process of predicting the trust
score along the thus constructed path from a to x is called trust propagation.
Since it often happens that a has not one, but several trust connections that
it can consult for an opinion on x, we also require a mechanism for combining
several trust scores originating from different sources. This process is called
trust aggregation.

Previously, a number of propagation operators for trust and distrust val-
ues have been proposed in [1], where we advocated a trust model in which
trust scores are (trust,distrust)-couples drawn from a bilattice [2]. In this pa-
per, we embark on the problem of aggregating information originating from
multiple trust paths into an overall score, a research area that is still in its
infancy. The problem of trust score aggregation was first addressed in [3]
and [4], in which we introduced a number of desirable criteria that a trust
score aggregation operator should satisfy, and presented possible aggregation
approaches based on the use of Yager’s Ordered Weighted Averaging (OWA,
[5]) operators. In this work, we undertake a more general study of trust score
aggregation operators. Furthermore, since individual trust opinions are not
always based on perfect knowledge (if often happens that users are not com-
pletely certain of their opinion), we also investigate the effect of incorporating
knowledge defects into the aggregation process.

In Section 2, we first recall preliminaries and introduce new trust score
concepts regarding the bilattice-based trust model and its propagation opera-
tors. We elaborate on the proposed aggregation criteria in Section 3, present
several bilattice-based operators, and discuss their theoretical properties. In
Section 4, we introduce weighted extensions of these aggregation operators,
with or without taking into account knowledge defects, while in Section 5 we
investigate the usefulness of the proposed operators in practice. We examine
their applicability on the basis of a data set from CouchSurfing and show how
they can be used to improve the less sophisticated aggregation strategies. We

3

conclude and outline ideas for future investigation in Section 6.

2. Preliminaries

According to the proposal in [1], we model a trust network as a directed
graph with the users as nodes, and directed trust links as edges:

Definition 1 (Trust network). A trust network is a couple (A,R) in which
A is the set of users and R is an A×A→ [0, 1]2 mapping that associates to
each couple (x, y) of users in A a trust score R(x, y) = (t, d) in [0, 1]2.

Definition 2 (Trust score). A trust score (t, d) is an element of [0, 1]2, in
which t is called the trust degree, and d the distrust degree.

We will use trust scores to compare the degree of trust and distrust a user
may have in other users in the network, or to compare the uncertainty that
is contained in the trust scores. This information can e.g. be used in the
ranking mechanisms of a recommender system, a file-sharing system, and so
on; for example by giving preference to recommendations/files from sources
that are trusted more, or to opinions that are better informed.

2.1. The Trust Score Space

The set of trust scores can be endowed with a bilattice structure, giving rise
to the trust score space, a trust model that allows to compare and preserve
information about the provenance of trust scores. For more background
information and a comparison with other trust models, we refer to [1].

Definition 3 (Trust score space, Trust-distrust and Knowledge ordering).
The trust score space

BL� = ([0, 1]2,≤td, ≤k,¬)

consists of the set [0, 1]2 of trust scores, a trust-distrust ordering ≤td, a knowl-
edge ordering ≤k, and a negation ¬ defined by

(t1, d1) ≤td (t2, d2) iff t1 ≤ t2 and d1 ≥ d2

(t1, d1) ≤k (t2, d2) iff t1 ≤ t2 and d1 ≤ d2

¬(t1, d1) = (d1, t1)

for all (t1, d1) and (t2, d2) in [0, 1]2.

4

One can verify that the structure BL� is a bilattice in the sense of Ginsberg
[2], that is, ([0, 1]2,≤td) and ([0, 1]2,≤k) are both lattices and the negation ¬
serves to impose a relationship between them:

(t1, d1) ≤td (t2, d2)⇒ ¬(t1, d1) ≥td ¬(t2, d2)

(t1, d1) ≤k (t2, d2)⇒ ¬(t1, d1) ≤k ¬(t2, d2),

such that ¬¬(t1, d1) = (t1, d1). In other words, ¬ is an involution that re-
verses the ≤td-order and preserves the ≤k-order.

Figure 1 shows BL�, along with some examples of trust scores. These scores
are interpreted as epistemic values: they reflect the imperfect knowledge we
have about the actual trust and distrust values, which are complementary.
The lattice ([0, 1]2,≤td) orders the trust scores going from complete distrust
(0, 1) to complete trust (1, 0). The lattice ([0, 1]2,≤k) evaluates the amount
of available trust evidence, ranging from a “shortage of evidence”, t+ d < 1,
to an “excess of evidence”, viz. t+ d > 1.

Note that it is possible that two trust scores cannot be compared in
([0, 1]2,≤td) or ([0, 1]2,≤k), but that it can never occur that they are incom-
parable in both lattices. Hence, for the remainder of the paper, any two
inputs or outputs of an aggregation process can always be compared to each
other, either on the content level or the knowledge level.

The boundary values of the ≤k ordering, (0, 0) and (1, 1), reflect igno-
rance, resp. contradiction. We call trust scores (t, d) with t + d < 1 incom-
plete, while those with t+ d > 1 are called inconsistent. In both cases, there
is a knowledge defect, which can be quantified by the following [0,1]-valued
measure:

Definition 4 (Knowledge defect, Knowledge defective trust score).
We define the knowledge defect of a trust score (t, d) as kd(t, d) = |1− t−d|.
We say that trust scores (t, d) for which kd(t, d) = 0, i.e., t + d = 1, have
perfect knowledge (i.e., there is no uncertainty about the trust value), while
all others are called knowledge defective.

Definition 5 (Consistent, Inconsistent trust score). We call a trust
score (t, d) consistent iff t+ d ≤ 1, and inconsistent otherwise.

The bottom part of the bilattice (or lower triangle, under the kd(t, d) = 0
line) contains the trust scores for which there is some doubt (uncertainty)

5

Ignorance (0,0)

Full trust (1,0)Full distrust (0,1)

Inconsistency (1,1)

Very reliable
(1,0.2)

(0.5,0.5)

!td

!k

kd=0 kd=0

Figure 1: The trust score space BL�, a bilattice-based trust model that enables us to
compare trust scores according to the trust-distrust content (≤td) and to evaluate the
uncertainty that is involved (≤k).

about the trust degree. The information contained in such a trust score (t, d)
can be represented as an interval [t, 1− d], denoting that the user should be
trusted at least to the degree t, but not more than 1− d. In such an interval
representation, complete ignorance is represented as [0, 1]. Note that this
approach is similar to De Cock & Pinheiro da Silva’s [6] proposal to model
the trust network as an intuitionistic fuzzy relation, and Prade’s [7] method
where trust evaluations are represented as an interval in a bipolar trust scale.

We call users that issue consistent trust scores consistent users. In this work,
we assume that every user is consistent. However, although we start from
consistent users, modelling inconsistent information is still needed when we
want to accurately represent the result of a trust score aggregation process;
we will elaborate upon this in Section 3. The upper part of the bilattice
(upper triangle, above the kd(t, d) = 0 line) contains such inconsistent trust
scores denoting conflicting information. Note that trust scores in the upper
triangle cannot be represented as intervals, since they contain too much in-
formation instead of a lack.

The trust scores in BL� = ([0, 1]2,≤td, ≤k,¬) can also be considered within
the alternative space ([0, 1]2,≤t, ≤d,¬), with ¬ defined in Definition 3, and

6

≤t and ≤d as in Definition 6. Note that ≤t and ≤d are quasi-orderings, since
they are not antisymmetric.

Definition 6 (Trust ordering, Distrust ordering). The trust ordering ≤t
and distrust ordering ≤d are defined by

(t1, d1) ≤t (t2, d2) iff t1 ≤ t2
(t1, d1) ≤d (t2, d2) iff d1 ≤ d2

The trust and distrust orderings can also be seen as two extra orderings on
BL�, which separately evaluate the amount of trust and distrust information
respectively. The negation ¬ serves to impose a relationship between them:

(t1, d1) ≤t (t2, d2)⇔ ¬(t1, d1) ≤d ¬(t2, d2).

The mapping is illustrated in Figure 2. The dotted line denotes the trust
scores (t, d) with perfect knowledge, i.e., kd(t, d) = 0 or t + d = 1. The
triangles underneath (in the gray area) contain the consistent trust scores;
inconsistent trust scores reside in the upper triangles.

The bilattice framework allows us to model the trust network as a BL�-
fuzzy relation in the set of users that associates a score drawn from the trust
score space with each ordered pair of users. It should be thought of as a
snapshot taken at a certain moment, since trust scores can be updated.

2.2. Trust Score Propagation

In virtual trust networks, propagation operators are used to handle the prob-
lem of establishing trust information in an unknown user by inquiring through
other users. The simplest case, atomic propagation, takes the trust score of
user a in user b and the trust score of b in user x, and uses this information
to predict the trust score of a in x. In [1], four operators were proposed for
this purpose, each reflecting a different strategy of dealing with the available
trust information.

We use T to denote an arbitrary t–norm, i.e. an increasing, commuta-
tive and associative [0, 1]2 → [0, 1] mapping satisfying T (1, x) = x for all x
in [0, 1]. Furthermore S denotes an arbitrary t–conorm, i.e. an increasing,
commutative and associative [0, 1]2 → [0, 1] mapping satisfying S(0, x) = x
for all x in [0, 1]. Finally N is used to denote a negator, i.e. a decreasing
[0, 1]→ [0, 1] mapping satisfying N (0) = 1 and N (1) = 0.

7

(1,0)(0,1)

(0,0)

(1,1)

(1,0)

(1,1)(0,1)

(0,0)

!td

!k

!t

!d

Figure 2: The four orderings on BL�: trust-distrust ordering ≤td, knowledge ordering ≤k,
trust ≤t and distrust ≤d ordering.

Definition 7 (Propagation operators in BL�). Let T be a t-norm, S a
t-conorm and N a negator. The propagation operators P1, P2, P3 and P4 are
defined by (for (t1, d1) and (t2, d2) in [0, 1]2):

P1((t1, d1), (t2, d2)) = (T (t1, t2), T (t1, d2))

P2((t1, d1), (t2, d2)) = (T (t1, t2), T (N (d1), d2))

P3((t1, d1), (t2, d2)) = (S(T (t1, t2), T (d1, d2)),S(T (t1, d2), T (d1, t2)))

P4((t1, d1), (t2, d2)) = (T (t1, t2),S(T (t1, d2), T (d1, t2)))

P1 reflects the basic strategy of taking over information only from trusted
sources, while P2 exhibits a paranoid behavior by taking over distrust infor-
mation even from an unknown party. P3, on the other hand, also takes into
account distrusted sources, reversing their opinion rather than ignoring or
copying it; P4 mitigates P3’s behavior by reversing only distrust information
and ignoring trust information coming from a distrusted party.

Note that only P1 is associative. The fact that the other operators are
not associative means that we need to fix a particular evaluation order to
propagate trust scores over paths with more than two edges. In a network
with a central authority that maintains all trust information, one can chose
which order to use. On the other hand, if there is no central authority, and

8

each user has access only to the trust scores it has issued, it is necessary
to perform the propagation in a right-to-left direction (i.e., right associative
propagation operators). With this order, at each node in the propagation
path, a user combines its trust score in its successor, with the propagated
trust score it receives from this successor. This is illustrated below for a path
containing three edges, and a generic propagation operator P :

P ((t1, d1), (t2, d2), (t3, d3)) = P ((t1, d1), P ((t2, d2), (t3, d3)))

In the remainder, we assume there is a central authority, that the right-to-left
evaluation order is used for propagation, and that aggregation is applied at
the end of the trust estimation process. In other words, the central authority
first looks for paths to the target user, then propagates backwards along
these paths, and finally aggregates the values into one final trust score.

Since we assume all users to be consistent, i.e., to issue consistent trust
scores, it is desirable that the propagation operators preserve consistency. In
this way, we can ensure that all inputs (either direct trust scores or the result
of propagations) for the aggregation process are consistent.

Definition 8 (Consistency preserving propagation). We say that the
propagation operator P preserves the consistency iff, when all inputs are
consistent, the result of the propagation is consistent too.

Note that only P1 and P2 are consistency preserving for arbitrary choices of
the fuzzy logical operators involved; however, when using the minimum/max-
imum, product/probabilistic sum, or the Lukasiewicz duals, the property also
holds for P3 and P4.

3. Trust Score Aggregation

When a user a needs to establish an opinion about another user x, and there
is more than one path linking them, we require a way of combining the infor-
mation provided by each of those paths. This process is called aggregation.
Trust metrics that only take into account trust mostly use classical aggre-
gation operators such as the minimum, maximum, weighted sum, average,
or weighted average [8, 9, 10, 11, 12, 13, 14]. Aggregation of both trust and
distrust has not received much attention so far. Guha et al.’s approach [15]
uses matrix multiplications to model the propagation and aggregation pro-
cess, and needs rounding mechanisms to decide whether a user should trust or

9

distrust another user. In other words, the two values are merged into one. In
our trust score space setting, however, the goal is to treat trust and distrust
as two separate concepts throughout the whole aggregation process. This
strategy is also followed by Jøsang et al in a subjective logic framework: he
proposed three probabilistic aggregation operators, called consensus opera-
tors, for the fusion of dependent, independent or partially dependent opinions
[16], but they assume equally important users, hence lacking flexibility.

In this section, we focus on the trust score aggregation problem. We first
postulate several desirable trust score aggregation properties (Section 3.1)
and then set out to define a number of aggregation operators fulfilling these
properties (Section 3.2).

3.1. Characterization of Trust Score Aggregation Operators

Let BL� = ([0, 1]2,≤td, ≤k,¬) be the trust score space introduced in Sec-
tion 2.1. In this space, we look for a trust score aggregation operator
A : ([0, 1]2)n → [0, 1]2 (n ≥ 1) satisfying as many of the following char-
acteristics pinned down in Definitions 9–17 as possible.

Definition 9 (Trust boundary preservation). We say that aggregation
operator A satisfies the trust boundaries iff, ∀(t1, d1), · · · , (tn, dn) ∈ [0, 1]2,
A((t1, d1), . . . , (tn, dn)) = (p, q), with min(t1, . . . , tn) ≤ p ≤ max(t1, . . . , tn).

Definition 10 (Distrust boundary preservation). We say that aggre-
gation operator A satisfies the distrust boundaries iff, ∀(t1, d1), · · · , (tn, dn) ∈
[0, 1]2, A((t1, d1), . . . , (tn, dn)) = (p, q), with min(d1, . . . , dn) ≤ q ≤
max(d1, . . . , dn).

Since an aggregated trust score should reflect a consensus about the trust
estimation, it is only natural that it should not contain more trust than the
maximum trust value among the aggregates. In the same respect, the aggre-
gated distrust value should not be higher than the maximum of the aggre-
gates’ distrust values. Analogously, the aggregated trust score should contain
at least as much distrust and trust as the minimum among the aggregates.

Note that these conditions imply aggregation operators that cannot be
used in an additive context. For instance, in situations where risk is involved,
if a lot of the agents highly distrust x, the aggregated distrust degree about x
could be experienced on a higher level than the maximum among the distrust
degrees, to emphasize the fact that many agents really distrust x (which can-
not be modeled due to the upper distrust boundary).

10

When aggregating additional trust scores, the knowledge contained in the
aggregated trust score should not decrease. In other words, the aggregated
trust score should contain at least as much knowledge as the most knowl-
edgeable aggregate:

Definition 11 (Knowledge boundary preservation). We say that an ag-
gregation operator A satisfies the knowledge boundary iff, ∀(t1, d1), · · · , (tn, dn)
∈ [0, 1]2, A((t1, d1), . . . , (tn, dn)) = (p, q), with p+ q ≥ max(t1 + d1, . . . , tn + dn).

Recall that we assume that all users are consistent. If we use propagation
operators that preserve consistency, this means that all aggregates will also
be consistent, and can be represented as intervals. Hence, in the latter spirit,
the knowledge boundary condition implies more narrow intervals, i.e., the
uncertainty should not increase.

For example, consider (t1, d1) and (t2, d2) with t1 = t2 and d1 > d2,
which means that [t1, 1 − d1] is included in [t2, 1 − d2]. In other words,
the latter contains more uncertainty than the former. Due to the trust
boundary condition and t1 = t2, the aggregated trust degree p must be
t1. W.r.t the aggregated distrust degree q, from the knowledge boundary
condition (p + q ≥ max(t1 + d1, t2 + d2)) it follows that q ≥ d1. Hence,
[p, 1 − q] must be at least as narrow as [t1, 1 − d1], and certainly less wide
than [t2, 1− d2].

Besides these three conditions, the following common properties are also
useful, and often imposed on aggregation operators.

Definition 12 (Commutativity, Associativity, Idempotency). For all
(t, d), (tj, dj) ∈ [0, 1]2 with j ∈ {1, · · · , n}, and for π a permutation of
{1, · · · , n}, an aggregation operators A is called

a) commutative iff A((t1, d1), . . . , (tn, dn)) = A((tπ(1), dπ(1)), . . . , (tπ(n), dπ(n))).

b) idempotent iff A((t, d), . . . , (t, d)) = (t, d).

c) associative iff A((t1, d1), · · · , (tn, dn)) = A((t1, d1), A((t2, d2), · · · , (tn, dn)))
= · · · = A(A((t1, d1), · · · , (tn−1, dn−1)), (tn, dn)).

Note that, if the trust and distrust boundaries are satisfied, the idempotency
condition is automatically fulfilled.

11

Definition 13 (Trust-distrust monotonicity). We say that an aggrega-
tion operator A respects trust-distrust monotonicity iff ∀ (tj, dj), (t

′
j, d

′
j) ∈

[0, 1]2, with j ∈ {1, · · · , n}: if (tj, dj) ≤td (t
′
j, d

′
j), then

A((t1, d1), . . . , (tj, dj), . . . , (tn, dn)) ≤td A((t1, d1), . . . , (t
′
j, d

′
j), . . . , (tn, dn))

Definition 14 (Knowledge monotonicity). We say that an aggregation
operator A respects knowledge monotonicity iff ∀ (tj, dj), (t

′
j, d

′
j) ∈ [0, 1]2,

with j ∈ {1, · · · , n}: if (tj, dj) ≤k (t
′
j, d

′
j), then

A((t1, d1), . . . , (tj, dj), . . . , (tn, dn)) ≤k A((t1, d1), . . . , (t
′

j, d
′

j), . . . , (tn, dn))

Since we are using a trust score space, with two orderings, two monotonicity
conditions arise; one for the trust-distrust and one for the knowledge order-
ing. Intuitively, each of these conditions makes sense, as for instance, the
more information/less doubt (resp., the more trust and the less distrust) the
individual sources provide, the more information (resp., the more trust/less
distrust) the aggregated outcome should contain. Therefore, a trust score
aggregation operator A should be monotonously increasing with respect to
both ≤td and ≤k.

Proposition 1. If A is an idempotent trust score aggregation operator that
satisfies the trust-distrust monotonicity, then A respects the trust and distrust
boundaries.

Proof. Due to trust-distrust monotonicity, A((t1, d1), . . . , (tj, dj), . . . , (tn, dn))
≤td A((tl, dm), . . . , (tl, dm)) [*], with tl = max(t1, . . . , tn) and dm = min(d1, . . . , dn).
Since A is idempotent, [*]= (tl, dm). From the definition of ≤td it follows
that if A((t1, d1), . . . , (tj, dj), . . . , (tn, dn)) = (p, q) then p ≤ tl ∧ q ≥ dm, or in
other words, p ≤ max(t1, . . . , tn) and q ≥ min(d1, . . . , dn). Analogously for
p ≥ min(t1, . . . , tn) and q ≤ max(d1, . . . , dn).

Definition 15 (Trust monotonicity, Distrust monotonicity). For all
(tj, dj), (t

′
j, d

′
j) ∈ [0, 1]2, with j ∈ {1, · · · , n}, we say that an aggregation

operator A respects

a) trust monotonicity iff A satisfies: if (tj, dj) ≤t (t
′
j, d

′
j), then A((t1, d1),

. . . , (tj, dj), . . . , (tn, dn)) ≤t A((t1, d1), . . . , (t
′
j, d

′
j), . . . , (tn, dn)).

12

b) distrust monotonicity iff A satisfies: if (tj, dj) ≤d (t
′
j, d

′
j), then

A((t1, d1), . . . , (tj, dj), . . . , (tn, dn)) ≤d A((t1, d1), . . . , (t
′
j, d

′
j), . . . , (tn, dn)).

Note that trust-distrust monotonicity is automatically fulfilled if trust and
distrust monotonicity hold, because (p, q) ≤td (r, s) ⇔ p ≤ r ∧ q ≥ s ⇔
(p, q) ≤t (r, s) ∧ (p, q) ≥d (r, s).

Besides these mathematical properties that have well-known intuitive ra-
tionales, we also propose a number of additional requirements to further
guarantee the behavior of the trust score aggregation process. We motivate
these requirements by examples.

Example 1 (Ignorance). In the scenario in Figure 3, b and c are both fully
trusted acquaintances of a that are connected to x. Propagation with any of
the four operators from Section 2.2 results in the two trust scores (t, d) and
(0, 0). However, it can be argued that c’s opinion of x (ignorance) should not
contribute to the final outcome; indeed, a (0, 0) edge can be considered as no
edge at all, as it carries no information.

In other words, (0, 0) should act as a neutral element of the aggregation
operator:

Definition 16 (Neutrality). We say that an aggregation operator A satis-
fies the neutrality condition iff, ∀ (tj, dj) ∈ [0, 1]2 and j ∈ {1, · · · , n− 1},

A((t1, d1), . . . , (ti−1, di−1), (0, 0), (ti+1, di+1), . . . , (tn, dn)) =
A((t1, d1), . . . , (ti−1, di−1), (ti+1, di+1), . . . , (tn, dn)).

Example 1 also shows why a naive average of trust and distrust degrees,
leading to

(
t
2
, d

2

)
, would be a poor aggregation strategy in this case.

Proposition 2. If A is an idempotent trust score aggregation operator that
satisfies the knowledge monotonicity and the neutral element condition, then
A respects the knowledge boundary.

Proof. Due to knowledge monotonicity, A((t1, d1), . . . , (ti, di), . . . , (tn, dn)) ≥k
A((0, 0), . . . , (ti, di), . . . , (0, 0)) [*]. Since A is idempotent and satisfies the
neutrality condition, it holds that [*]= A((ti, di)) = (ti, di). Hence, from the
definition of ≤k it follows that if A((t1, d1), . . . , (ti, di), . . . , (tn, dn)) = (p, q)
then p ≥ ti and q ≥ di, hence p+ q ≥ ti + di, and this for all i = 1, . . . , n. In
other words, p + q ≥ max(t1 + d1, . . . , ti + di, . . . , tn + dn) which shows that
A respects the knowledge boundary.

13

a

b

x

c

(1
,0)

(1,0)
(0,
0)

(t,d)

Figure 3: Scenario with ignorance

a

b

x

c

(1
,0)

(1,0)
(0,
1)

(1,0)

Figure 4: Scenario with total inconsistency

Example 2 (Total inconsistency). In Figure 4, two fully trusted acquain-
tances of a express completely opposite trust opinions of x. Again, a simple
average of trust and distrust degrees, yielding (0.5, 0.5), is unsuitable, since
it does away with the conflicting information a receives, and cannot be dis-
tinguished from a scenario in which a receives information that x is half to
be trusted and half to be distrusted. In other words, we lose too much prove-
nance information. A more intuitive result seems to be (1, 1), reflecting the
inconsistency a faces in its assessment of x.

This brings us to a final requirement for trust score aggregation operators:
an equal number of (1,0) and (0,1) arguments should yield contradiction.

Definition 17 (Opposite arguments). We say that an aggregation oper-
ator A fulfills the opposite arguments condition iff

A((1, 0), · · · , (1, 0)︸ ︷︷ ︸
n/2 times

, (0, 1), · · · , (0, 1)︸ ︷︷ ︸
n/2 times

) = (1, 1)

3.2. Bilattice-Based Aggregation Operators for Trust Scores

Figure 5 depicts two possible scenarios, both for aggregating two trust scores
(denoted by dots): (t1, d1) and (t2, d2) (Example 3), and (t3, d3) and (t4, d2)
(Example 4). Note that all trust scores are consistent since they reside under
or on the kd = 0 line (lower triangle); hence, we can also represent them as
intervals.

Example 3 (Aggregation with overlap). User a asks two of his acquin-
tances (whom he trusts completely) for an opinion about user x. The first

14

t1 t2 t3 t4

d2

d1

d3=t3

!d

!t

kd=0

(0,1) (1,1)

(0,0) (1,0)

Figure 5: Possible aggregation results of (t1, d1) and (t2, d2), and (t3, d3) and (t4, d2), for
operators satisfying the trust and distrust boundaries (within the dotted lines) and the
knowledge boundary (gray area)

user returns the trust score (t1, d1) and the second one (t2, d2) (dots). Since
user a has complete faith in the two trusted third parties, the propagated trust
scores to be aggregated remain (t1, d1) and (t2, d2) . Note that, in Figure 5,
t1 < t2, d1 > d2 and t2 < 1− d1; in other words, t1 < t2 < 1− d1 < 1− d2.

Since it is desirable that a standard trust score aggregation operator should
fulfill at least Definitions 9 and 10 (trust and distrust boundaries), the ag-
gregated result must be in the area marked out by the dotted lines. Hence,
the extremes w.r.t. ≤t and ≤d for the aggregated trust score are (t2, d1) and
(t1, d2) (stars). By also imposing Definition 11, however, only part of the pos-
sible results remain: as can be seen in the figure, t2 +d2 > t1 +d1, and hence
all possible results should reside above or on the kd(t2, d2) line (formed by all
trust scores that have the same knowledge defect as (t2, d2)), in other words,
in the gray area. In this way, only one extreme remains, namely (t2, d1).

The same conclusion can be obtained when reasoning in the interval rep-
resentation, even without focusing on the boundary conditions. The interval
representations of (t1, d1) and (t2, d2) are [t1, 1−d1] and [t2, 1−d2] respectively.
Note that in Example 3 the two intervals overlap (t1 < t2 < 1−d1 < 1−d2).
As the aggregated trust interval must reflect the consensus among the two

15

D

A

B

C

kd=0

E

F

!t

!d

(0,1) (1,1)

(0,0) (1,0)

Figure 6: Possible aggregation results of several trust scores, for operators fulfilling the
trust, distrust and knowledge boundary conditions

intervals, it should represent the trust estimation on which both users agree,
which is usually modeled as the intersection of the two intervals. This strat-
egy results in a narrower interval, or analogously, a trust score that con-
tains less uncertainty (recall our discussion about knowledge monotonicity).
Hence, [t2, 1−d1] is indeed the most logical choice for the aggregation extreme
w.r.t. ≤t and ≤d.

Example 4 (Aggregation with no overlap). In the second scenario of
Figure 5, user a makes inquiries about user z, resulting in (t3, d3) (or [t3, 1−
d3]) and (t4, d2) (or [t4, 1 − d2]). Note that t3 = 1 − d3 < t4 < 1 − d2. This
time, a’s acquaintances do not agree at all: there is no overlap between the
two trust intervals.

This example illustrates how inconsistent trust scores can arise, even when
the users are consistent. In this case, the extreme aggregated trust score is
(t4, d3), reflecting the disagreement that exists between the aggregates.

These two-points-examples can be generalized to scenarios with more in-
puts; see Figure 6 for an example with eight aggregates, represented by dots.

16

Imposing trust, distrust and knowledge boundary conditions yields a lim-
ited number of possible aggregation results, depicted in the figure by the
gray area. Each of the trust scores marked by stars makes sense as aggre-
gated trust score: A is the most optimistic choice (maximum trust degree for
the lowest possible knowledge level), B the most pessimistic one (maximum
distrust degree), C the moderating approach (average of the most knowledge-
able trust scores) and D the most extreme, knowledge maximizing, option:
maximum trust and distrust degree, often resulting in an inconsistent trust
estimation.

We call A and B the trust, resp. distrust maximizing operator, C the
knowledge preference averaging operator and D the knowledge maximizing
trust score aggregation operator.

Definition 18 (TMAX). The trust maximizing trust score aggregation op-
erator TMAX is defined as

TMAX ((t1, d1), · · · , (tn, dn)) =

(max (t1, · · · , tn) ,max (t1 + d1, · · · , tn + dn)−max (t1, · · · , tn))

Definition 19 (DMAX). The distrust maximizing trust score aggregation
operator DMAX is defined as

DMAX ((t1, d1), · · · , (tn, dn)) =

(max (t1 + d1, · · · , tn + dn)−max (d1, · · · , dn) ,max (d1, · · · , dn))

Definition 20 (KAV). The knowledge preference averaging trust score ag-
gregation operator KAV is defined as

KAV ((t1, d1), · · · , (tn, dn)) = (p, q)

with (p, q) such that

p =

n∑
i=1

wi · ti

n∑
i=1

wi

, q =

n∑
i=1

wi · di

n∑
i=1

wi

(1)

wi =

{
1 if ti + di = max (t1 + d1, · · · , tn + dn)

0 otherwise

17

Definition 21 (KMAX). The knowledge maximizing trust score aggrega-
tion operator KMAX is defined as

KMAX ((t1, d1), · · · , (tn, dn)) = (max (t1, · · · , tn) ,max (d1, · · · , dn))

Note that this operator corresponds to ⊕, the join of the information lattice
([0, 1]2,≤k) in the trust score space.

Proposition 3. TMAX, DMAX, KAV and KMAX fulfill Definitions 9-12
and 16. Furthermore, KMAX also satisfies Definitions 13-15 and 17, while
TMAX and DMAX also fulfills Definition 15.

4. Advanced Trust Score Aggregation Operators

Although the four operators from Section 3.2 are perfectly justifiable, it will
often be the case that they are too extreme. In some situations, users might
prefer also to take into account the opinions from users who have more doubt
about their opinions, while in other scenarios they might prefer to listen to
less marked opinions instead of only retaining the ‘best’ and the ‘worst’
among the opinions.

In this section, we will present two families of aggregation operators
which mitigate the behavior of KMAX and KAV, the former by introducing
maximum-like weights, and the latter through the incorporation of knowl-
edge defects. Along the way, it will turn out that some theoretical properties
need to be sacrificed, or at least adjusted.

4.1. Ordered Weighted Averaging Trust Score Aggregation

A straightforward solution for mitigating KMAX’s behavior is to introduce
weights in the aggregation process. One of the best-known weighted aggrega-
tion strategies is the ordered weighted averaging (OWA) family. The weights
can then be chosen in such a way that KMAX’s behavior is alleviated, but
without harming the underlying maximum thought.

4.1.1. The classical OWA operator

The traditional OWA operator [5] models an aggregation process in which
a sequence V of n scalar values are ordered decreasingly and then weighted
according to their ordered position by means of a weight vector W = 〈wi〉,

18

such that wi ∈ [0, 1] and Σn
i=1wi = 1. In particular, if ci represents the ith

largest value in V ,

OWAW (V) =
n∑
i=1

wici (2)

The OWA’s main strength is its flexibility, since it enables us to model a whole
range of aggregation strategies: e.g., if W1 = 〈0, · · · , 0, 1〉, then OWAW1

equals min; the average is modeled by W2 = 〈1/n, · · · , 1/n〉, etc. Moreover,
the reordering of the arguments introduces an element of non-linearity into
an otherwise linear process.

OWA operators can be analyzed by several measures, among which the
orness-degree that computes how similar its behavior is to that of max:

orness(W) =
1

n− 1

n∑
i=1

((n− i) · wi) (3)

For example, orness(W1) = 0, while the weight vector 〈0.8, 0.1, 0.1, 0, 0〉
yields an orness-degree of 0.925, meaning that its behavior is very maximum-
like. Yager proved that the higher the orness, the more the operator ap-
proaches the maximum [17]. OWA operators with an orness degree less than
0.5 approach the minimum operator.

The application of an OWA operator requires scalar values as arguments. As
such, OWA operators are not directly applicable to aggregate trust scores.
Therefore, we propose to perform trust aggregation by means of two separate
OWA operators, one for the trust and one for the distrust degrees.

4.1.2. OWA Operators for Trust Scores

Below, we describe a generic procedure for applying (standard) OWA oper-
ators to the trust score aggregation problem:

1. Determine n, the number of trust score arguments distinct from (0, 0).
Trust scores that represent complete ignorance do not take part in the
aggregation process5.

5If all trust scores equal (0, 0), the final result is also set to (0, 0) and the aggregation
process terminates at this step.

19

2. Construct the sequences T and D, containing the n trust values (resp.,
the n distrust values) of the trust score arguments.

3. Construct n-dimensional weight vectors WT and WD.
4. Compute the aggregated trust score as (OWAWT

(T), OWAWD
(D)).

If we add an extra restriction to the construction of WT and WD which
ensures that the orness degree of both weight vectors is at least 0.5 (so
that they exhibit a maximum-like behavior), the above procedure can be
generalized into a class of trust score aggregation operators that can be seen
as alternate, mitigated, versions of KMAX.

Definition 22 (K-OWA). We define the trust score OWA operator K-
OWAWT ,WD

associated with the trust weight vector WT and distrust weight
vector WD as

K−OWAWT ,WD
((t1, d1), · · · , (tn, dn)) =

(OWAWT
(t1, · · · , tn) ,OWAWD

(d1, · · · , dn)) ,

with WT = 〈wT1 , · · · , wTn〉 and WD = 〈wD1 , · · · , wDn〉 such that

orness(WT) ≥ 0.5 and orness(WD) ≥ 0.5
n∑
i=1

wTi
= 1 and

n∑
i=1

wDi
= 1

with i = {1, · · · , n} and (ti, di) 6= (0, 0).

Proposition 4. K-OWA always fulfills Definitions 9, 10, 12a, 12b and 16
(regardless of the weight choice). In order for Definition 17 to hold, it suffices
that wTi

= 0 and wDi
= 0 as soon as i > n

2
.

This can be verified by construction and by the properties of an OWA oper-
ator. Definitions 13 and 14 are harder conditions to fulfill in general, as the
following example shows.

Example 5. If the trust scores to aggregate are (1, 0), (0, 0), (0, 0) and (0, 0),
then the outcome by our OWA procedure is (1, 0) (regardless of the choice of
weights vectors, because n = 1). If we change these trust scores to (1, 0),
(0.1, 0), (0.1, 0) and (0.1, 0), the number of arguments that take part in the
OWA aggregation equals 4. If we compute the weights for instance as WT =
〈2

3
, 1

3
, 0, 0〉 and WD = 〈1, 0, 0, 0〉, the final result of the aggregation equals

(0.7, 0). So, although (0, 0) ≤td (0.1, 0) and (0, 0) ≤k (0.1, 0), (1, 0) 6≤td
(0.7, 0) and (1, 0) 6≤k (0.7, 0).

20

The reason for the failure of the monotonicity properties in this example
is due to the presence (and subsequent alteration) of (0, 0) trust score ar-
guments, which causes the application of the OWA operators to a different
number of arguments. It can be verified, however, that if we add the restric-
tion to Definitions 13 and 14 that (tj, dj) 6= (0, 0) and (t′j, d

′
j) 6= (0, 0), the

property holds, regardless of the weight vectors WT and WD, provided they
remain fixed. Analogously for Definition 15.

Note that the associativity condition will not always be fulfilled, since this
depends on the weighting scheme (see Example 6). Because of the averaging
nature of K-OWA, also the knowledge boundary condition does not always
hold: take e.g. (1, 0), (0.5, 0) and (0.6, 0) and WT = 〈1/3, 1/3, 1/3〉, which
yields (0.7, 0) as aggregated result, and 0.7 + 0 < 1 + 0. In other words, the
result of the aggregation will not always reside in the gray triangle of Figure
6. However, it will remain in the area that is marked out by the minimum
and maximum among the trust and distrust degrees (since the trust and
distrust boundaries are always satisfied).

4.1.3. Determining the weights

As is clear from the above, the actual way of aggregating the trust scores is
determined by the choice of the weight vectors. One strategy is to construct
WT and WD beforehand. For instance, the final trust (resp., distrust) value
can be evaluated as the extent to which a predefined fraction (at least one, all
of them, a majority, . . .) of the trust score arguments exhibits trust (resp.,
distrust).

Example 6 (Fixed weights). In [3], given n trust score arguments to ag-
gregate (all distinct from (0, 0)), trust and distrust weights are computed by

wTi
=

2 ·max(0, dn
2
e − i+ 1)

dn
2
e(dn

2
e+ 1)

, wDi
=

2 ·max(0, dn
4
e − i+ 1)

dn
4
e(dn

4
e+ 1)

The disparity between trust and distrust weights was motivated by the ob-
servation that a few distrust statements about x (in particular, a quarter of
them) may suffice to reach a final conclusion of distrust, while the evaluation
of trust depends on the majority of the arguments; distrust is easier estab-
lished than trust. Note that weights are decreasing, in a sense that the higher
trust/distrust values have a stronger impact than the lower ones.

This example also illustrates why K-OWA does not always satisfy the
associativity condition: let n = 3, if we aggregate all three trust scores at

21

once, two of them will take part in the trust degree computation; however,
when we perform the aggregation in two phases, only one trust score will take
part in each trust degree computation.

The above example can be generalized into an implementation of the K-OWA
family, where the weight vectors are determined by two parameters α and β:

Example 7 (Fixed weights family). Let α and β in [1,∞]. The weights
can then be computed as (with i = {1, · · · , n} and (ti, di) 6= (0, 0)):

wTi
=

2 ·max(0, dn
α
e − i+ 1)

dn
α
e(dn

α
e+ 1)

wDi
=

2 ·max(0, dn
β
e − i+ 1)

dn
β
e(dn

β
e+ 1)

Remark that KMAX is a special case of this particular implementation of
K-OWA, with α = β = n.

Proposition 5. The trust score aggregation operators from Example 7 al-
ways exhibit a maximum-like behavior, regardless of the α and β choice.

Proof. We show that the orness degree of WD and WT will never be lower
than 2/3: the lowest possible orness for WT and WD will be achieved when
all arguments take part in the aggregation process, i.e., when α = β = 1.
This yields weights WTi

= WDi
= 2(n−i+1)

n(n+1)
. Consequently,

orness(WT) = orness(WD) =
1

n−1

∑n
i=1((n− i)(

2(n−i+1)
n(n+1)

)) =

2(
Pn

i=1(n−i)2+(n−i))
n(n−1)(n+1)

=

2(
Pn

i=1(n2+n)+
Pn

i=1(i2−i)−2n
Pn

i=1 i)
n(n−1)(n+1)

=

2(n3+n2+1/3n3+1/2n2+1/6n=1/2n2+1/2n−2/2n3−2/2n2)
n(n−1)(n+1)

=

2/3.

22

4.2. Knowledge-Enhanced Trust Score Aggregation

In Section 3.2 we explained that the KAV trust score aggregation operator
exhibits the most moderating behavior among the bilattice-based strategies.
However, one can argue that, for some applications/situations, even KAV
might be too extreme, since it only takes into account the opinions of the
most knowledgeable agents. This is illustrated by the following example.

Example 8. Assume that the trust scores to aggregate are (1, 0), (1, 0),
(0.7, 0.29) and (0.7, 0.29). In other words, two of the trust score arguments
have perfect knowledge (kd(1, 0) = 0), while the other only show a very small
knowledge defect (kd(0.7, 0.29) ≈ 0). Intuitively, one would expect their con-
tribution to be almost equally important, and hence that the final trust degree
lies somewhere in the middle between 0.7 and 1, and the distrust degree be-
tween 0 and 0.29. However, the KAV aggregated trust score equals (1, 0).

In a way, the determination of the weights for the KAV aggregation can
be seen as a binary process, because only the users with the most perfect
knowledge (in other words, with the lowest knowledge defect) take part in the
aggregation, even if the difference with some of the other arguments is almost
negligible. A possible solution to this problem is the following new family
of trust score aggregation operators; they mitigate the behavior of KAV,
but without harming the underlying thought of trust score discrimination
w.r.t. knowledge amount.

Definition 23 (KAAV). The knowledge awarding averaging trust score ag-
gregation operator KAAVγ associated with knowledge reward γ ∈ [0,∞] is
defined as

KAAVγ ((t1, d1), · · · , (tn, dn)) = (p, q)

with (p, q) such that

p =
n∑
i=1

wi · ti and q =
n∑
i=1

wi · di

wi =
(1− kd(ti, di))

γ

n∑
i=1

(1− kd(ti, di))
γ

If all trust scores have kd(t, d) = 1, then the aggregated result is (0, 0).

23

If the knowledge reward γ equals 0, then we obtain the arithmetic mean.
When γ = 1, each trust score is weighted inversely proportional to its knowl-
edge defect: the lower kd(t, d), the higher the associated weight. Note that
the aggregated trust score will approximate KAV’s result for γ →∞.

Example 9 (Knowledge-dependent weights). In the case of Example
8, with γ = 1, W = 〈 1

3.98
, 1

3.98
, 0.99

3.98
, 0.99

3.98
〉. Then the aggregated trust score

(p, q) ≈ (0.85, 0.15), a much more intuitive result.

Proposition 6. KAAV fulfills Definitions 9 and 10, 12a, 12b, 16 and 17.

The following counterexample demonstrates that the associativity condition
does not hold in general: KAAV1 ((1, 0), (0.5, 0), (0.2, 0.8)) = (0.58, 0.32) 6=
KAAV1 (KAAV1 ((1, 0), (0.5, 0)) , (0.2, 0.8)) ≈ (0.49, 044). Note that, as was
the case with K-OWA too, mitigating the behavior implies we have to sacrifice
the knowledge boundary condition. Note that trust, distrust, trust-distrust
and knowledge monotonicity do not hold in general because of the way the
weights are generated: even if tj > tj′ and hence 1−kd(tj, dj) > 1−kd(tj′ , dj′)
since we assume consistent agents, this does not imply that the final ag-
gregated trust score p will be higher than p

′
, since the other weights are

also affected by the change in the jth weight. E.g., (0.5, 0.3) ≥d (0, 0.3),
but A ((1, 0), (1, 0), (0.5, 0.3)) ≈ (0.870, 0.039) <d A ((1, 0), (1, 0), (0, 0.3)) ≈
(0.857, 0.086). As a result, trust-distrust and knowledge monotonicity do not
hold.

5. Aggregation Operators in Practice

While the previous sections were concerned with the rationale and theory
behind the aggregation operators, in this section, we investigate their useful-
ness in practice. For extra analyses and comparisons between the aggregation
operators, we refer to [18].

5.1. Data Set and Methodology

The data set we use in our experiments is obtained from CouchSurfing, a web
application with a strong social networking component. After a couch expe-
rience, users can fill in a form to evaluate their guest or host. One of the ques-
tions assesses the trust relationship between the parties involved: users can
indicate whether they ‘don’t trust’, ‘somewhat’, ‘generally’ or ‘highly’ trust
another user, trust him/her ‘with his life’, or have no idea (‘don’t know’). The

24

Table 1: Distribution of trust and knowledge statements in the data set

trust statements knowledge statements

type t
′

% type k # %

don’t know 0 152 443 5.65 not at all 0 88 808 3.29
don’t trust 0 6 429 0.24 a little bit 0.25 573 517 21.26
somewhat trust 0.25 331 061 12.27 somewhat 0.5 761 085 28.21
generally trust 0.5 994 476 36.86 fairly well 0.75 658 996 24.43
highly trust 0.75 893 428 33.12 very well 1 341 529 12.66
trust with my life 1 319 868 11.86 extremely well 1 177 001 6.56

couldn’t know any better 1 96 770 3.59

trust field is kept private to other members and is not mandatory. Nonethe-
less, these relationships constitute a large trust network of 397 471 users and
2 697 706 trust statements. The distribution of the network is given in Table
1. Furthermore, the users can also indicate how well they know each other,
using one of the following options: ‘not at all’, ‘a little bit’, ‘somewhat’,
‘fairly well’, ‘very well’, ‘extremely well’ or ‘could not know any better’.

This data set is very suitable for our purposes, since it contains gradual
trust, distrust, and knowledge levels. Unfortunately, the CouchSurfing data
does not perfectly align with our trust score space setting (e.g., the latter
requires cardinal values, whereas the data set only provides ordinal ones);
hence, we need a heuristic method to map the available information into
trust scores. Our translation of the trust and knowledge statements into [0, 1]
values can be found in Table 1. We translate the three highest knowledge
levels to the maximum knowledge value 1 due to pragmatic reasons, to ensure
a more balanced distribution of the trust scores over the trust score space.

We propose to map the available trust and knowledge information to trust
scores according to the following formula: (t, d) =

(
k · t′ , k · (1− t′)

)
, with

t
′

(k) the translation of the trust (knowledge) statement. In this way, we
obtain consistent trust scores with the desirable properties t + d = k and
1− k = kd(t, d), and a data set with a high variety of knowledge defects and
gradual trust and distrust degrees. In our experiments, we ignore the records
that contain a ‘not at all’ knowledge statement or ‘don’t know’ trust level,
since we interpret (0, 0) as no link. We do retain (0, 0) trust scores which are
the result of propagation.

To measure the performance of the aggregation operators, we use the leave-

25

Figure 7: Example of a leave-one-out scenario

one-out method, which consists of hiding a trust relation and trying to predict
its hidden value (i.e., the trust score). Figure 7 depicts an example of a trust
network which contains four users with five trust relations: we hide the trust
relation from user a to user x (dotted line) and try to estimate its trust
score by aggregating the opinions of a’s acquaintances b and c. Therefore,
we need to propagate a’s trust score in b and b’s trust score in x, and a’s
trust score in c and c’s trust score in x. In our experiments, we take into
account propagation paths of exactly length 2 and use the P1 propagation
operator of Definition 7 (because it is at the basis of all other propagation
operators) with T = min. In this way, we can ensure that every aggregate
is the result of the same propagation process and that there is no variable
path length which might introduce extra errors, making it harder to study
the actual impact of the aggregation operators. In this configuration, the
CouchSurfing data set consists of 1 596 674 distinct a-x trust scores with at
least one a-b-x trust path between them.

To measure the accuracy of the aggregation operators, we work with two
measures that are variations on the classical mean absolute error (MAE) and
root mean squared error (RMSE). The first measure considers every error of
equal value, while the latter one emphasizes larger errors. The computation
of the MAE and RMSE is done by determining the deviation between the
hidden trust score and the predicted trust score for each leave-one-out ex-
periment. Since MAE and RMSE are defined for scalar values, but we work
with trust scores which have two components, we define the trust score MAE
as the average of the Manhattan distances and the trust score RMSE as an
adjusted form of the Euclidean distances:

Definition 24 (T-MAE, T-RMSE). We define the trust score MAE and

26

RMSE in a leave one out experiment with n trust score predictions as

T-MAE =

n∑
i=1

|tri − tpi
|+ |dri − dpi

|

n

T-RMSE =

√√√√(n∑
i=1

(tri − tpi
)2 + (dri − dpi

)2

)
/n,

with tri (dri) the real trust (distrust) degree and tpi
(dpi

) the predicted trust
(distrust) degree.

Since the trust and distrust degrees range between 0 and 1, the extreme
values that T-MAE can reach are 0 and 2, while T-RMSE ∈ [0,

√
2].

5.2. Comparative Analysis of the Bilattice-Based Operators

In this section, we will discuss the performance of the aggregation operators
introduced in Section 3.2, and compare them with two additional baseline
strategies (the squares E and F in Figure 6): KMIN (E) computes the ag-
gregated trust score as (t, d) = (min(t1, · · · , tn),min(d1, · · · , dn)), and ‘Fixed
values’ (F) is a strategy that always yields (0.431, 0.206), which represents
the average trust and distrust degree in the translated data set. Remark
that, unlike TMAX, DMAX, KMAX and KAV, the results of the last two
operators do not always reside in the gray area of Figure 6. Table 2 contains
the results.

The trust score aggregation operators (upper part of the table) perform more
or less the same when considering T-RMSE; however, an inspection of the T-
MAE values shows that TMAX and KAV achieve slightly better results than
DMAX and KMAX. The baselines (lower part of the table) clearly produce
the highest MAE errors, but the RMSE’s are the opposite way round for the
fixed values baseline, which means that it makes less large prediction errors
than the others. This is due to its better prediction for leave-one-out experi-
ments that only contain one path (FIX yields the average trust and distrust
degree in the data set, whereas the other algorithms just copy the input).
At first glance, it looks as if there is no clear winner among TMAX, DMAX,
KMAX and KAV. However, in the remainder of the discussion, we will show
that overall T-MAE’s and T-RMSE’s do not give a complete picture of an

27

Table 2: Overall performance of aggregation strategies on the CouchSurfing data set, with
propagation operator P1 and T = min for paths of length 2; T-MAE ∈ [0, 2] and T-RMSE
∈ [0,

√
2].

Aggregation operator Figure 6 T-MAE T-RMSE

Trust maximizing TMAX A 0.316 0.321
Distrust maximizing DMAX B 0.325 0.324
Knowledge preference averaging KAV C 0.318 0.321
Knowledge maximizing KMAX D 0.322 0.324

Knowledge minimizing KMIN E 0.389 0.389
Fixed values FIX F 0.340 0.311

operator’s performance, and that sacrificing the knowledge condition allows
for other operators that can produce more accurate trust estimations.

Figure 8 shows the evolution of T-MAE6 over the number n of trust scores
that need to be aggregated. The split-up of the results gives us a clearer
image than overall MAE errors. Notice that all our non-baselines operators
perform more or less equally for small n, but that these classes are exactly
the ones that are overrepresented in our experiment. The latter is depicted
by the bars, their scale can be found on the right side of the graph. The bars
illustrate for example that in more than 500 000 leave-one-out experiments
there was only one propagation path and in almost 300 000 cases exactly
two (the scenario of Figure 7), as opposed to about 1000 leave-one-out ex-
periments which have to aggregate between 50 and 75 trust scores. These
numbers explain why we get very similar average errors in Table 2.

On average, one can see that it becomes more difficult to produce accu-
rate predictions as the number of inputs starts to increase, and that there is
clearly a performance difference between the operators: DMAX and KMAX
make a very bad showing from the moment they have to deal with more than

6Similar results are obtained for T-RMSE.

28

ALGORITHM

RESULTS FOR TRANSLATION 3 Prop 4: MAE scoreRESULTS FOR TRANSLATION 3 Prop 4: MAE scoreRESULTS FOR TRANSLATION 3 Prop 4: MAE scoreRESULTS FOR TRANSLATION 3 Prop 4: MAE scoreRESULTS FOR TRANSLATION 3 Prop 4: MAE scoreRESULTS FOR TRANSLATION 3 Prop 4: MAE scoreRESULTS FOR TRANSLATION 3 Prop 4: MAE scoreRESULTS FOR TRANSLATION 3 Prop 4: MAE scoreRESULTS FOR TRANSLATION 3 Prop 4: MAE scoreRESULTS FOR TRANSLATION 3 Prop 4: MAE scoreRESULTS FOR TRANSLATION 3 Prop 4: MAE scoreRESULTS FOR TRANSLATION 3 Prop 4: MAE scoreRESULTS FOR TRANSLATION 3 Prop 4: MAE score

TMAX

DMAX

KMAX

KAV

FIX

KMIN

Elements in class

>=1

and

<2

>=2

and

<3

>=3

and

<4

>=4

and

<5

>=5

and

<10

>=1

0

and

<20

>=2

0

and

<35

>=3

5

and

<50

>=50

and

<75

>=75

and

<100

>=1

00

and

<125

>=1

25

and

<15

0

>=1

50

0,33 0,31 0,3 0,3 0,3 0,32 0,34 0,36 0,35 0,33 0,28 0,4 0,36

0,33 0,31 0,31 0,32 0,32 0,34 0,37 0,42 0,45 0,5 0,52 0,5 0,58

0,33 0,3 0,3 0,31 0,32 0,35 0,39 0,43 0,44 0,46 0,43 0,5 0,47

0,33 0,31 0,3 0,3 0,3 0,31 0,33 0,36 0,36 0,35 0,35 0,4 0,43

0,34 0,34 0,35 0,35 0,34 0,33 0,33 0,35 0,36 0,4 0,4 0,5 0,47

0,33 0,37 0,41 0,44 0,47 0,5 0,56 0,62 0,67 0,74 0,79 0,8 0,83

6E+053E+0516725974102E+0579114205153765 1180 232 68 29 16

0,25

0,3

0,35

0,4

0,45

0,5

0,55

0,6

>
=

1
 a

n
d

 <
2

>
=

2
 a

n
d

 <
3

>
=

3
 a

n
d

 <
4

>
=

4
 a

n
d

 <
5

>
=

5
 a

n
d

 <
1
0

>
=

1
0
 a

n
d

 <
2
0

>
=

2
0
 a

n
d

 <
3
5

>
=

3
5
 a

n
d

 <
5
0

>
=

5
0
 a

n
d

 <
7
5

>
=

7
5
 a

n
d

 <
1
0
0

>
=

1
0
0
 a

n
d

 <
1
2
5

>
=

1
2
5
 a

n
d

 <
1
5
0

>
=

1
5
0

1

10

100

1000

10000

100000

1000000

T-
M

A
E

trust scores to aggregate

s
iz

e
 o

f
th

e
 c

la
s
s

TMAX DMAX KMAX KAV FIX KMIN # Elements in class

Figure 8: T-MAE for the trust score aggregation operators; split-up according to the
number of aggregates.

20 inputs; their T-MAE is often almost twice as high as TMAX’s. Obvi-
ously, these two operators are too extreme for the CouchSurfing application.
TMAX and KAV adapts themselves much better to changing aggregation
conditions. Note that TMAX achieves somewhat lower errors in cases with
more than 75 inputs, which can be explained by the fact that the average
trust degree tri for n > 75 is significantly higher than for n ≤ 75 (viz. 0.594
vs. 0.423).

5.3. The Effect of Orness Weights for KMAX

Table 2 and Figure 8 demonstrated that KMAX’s attitude is too explicit. As
we discussed in Section 4.1.2, a possible solution is the introduction of or-like
weights. We will illustrate the effect of tuning the weight vectors for K-OWA
and show that they can indeed have a positive impact on the T-MAE. The
goal of this experiment is to illustrate the importance of choosing the right
trust and distrust weights, and not to compute the ideal weighting strategy
(the latter can for instance be achieved by automatic methods such as ma-
chine learning techniques). To this aim, we use the proposals in Example 7.

29

In Figure 9, we compare KMAX’s performance with some of the opera-
tors of the K-OWA family. KMAX is represented by the circles, while the
mitigation on the trust and distrust side (tuning of α and β resp.) is repre-
sented by the triangles and the inverse triangles respectively. The line with
the squares depicts the course of a K-OWA operator with α 6= n 6= β.

Only introducing weights on the trust side does not have the effect we wished
for: there is a small positive impact for aggregation conditions with less than
50 inputs, but for higher numbers the situation is perceptibly deteriorat-
ing. Note that the results are worse the further away from the maximum
behavior: taking into account the first three quarters of the ordered argu-
ments (α = 4/3) yields worse results than only taking into account a quarter
(α = 4), which is worse than only taking into account the first ordered ar-
gument (maximum, KMAX, α = n). The more sources to aggregate, the
larger the possible effect of orderings and weight vectors; the effect of maxi-
mizing knowledge becomes more important when we have to deal with many
inputs. This finding is also confirmed by the good results of TMAX (which
maximizes the trust degree) for aggregation conditions with a high number
of inputs.

It is clear that changing the orness-weights on the distrust side has an
overall positive effect, and that better results are achieved when taking into
account opinions from many sources, for conditions for both low and high n
values. Recall that DMAX (maximizing the distrust degree) performed very
bad for high n (see Figure 8); the inverse triangle results in Figure 9 show
the benefits of making DMAX’s conduct less explicit.

Obviously, the optimal weighting scheme for K-OWA lies somewhere in
between the extremes TMAX and DMAX. This is illustrated by the squares,
which embody the behavior of K-OWA with α = 4 and β = 4/3, i.e., us-
ing the first quarter of the highest trust estimations and three quarters of
the highest distrust estimations. This means that, in the context of Couch-
Surfing, trust is easier established than distrust; it is an open, voluntary,
community of users who want and have to rely on each other. Note that the
benefit of using K-OWA to determine the trust and distrust level is especially
high for intermediate aggregation conditions (> 10 and ≤ 50), with T-MAE
decreases of 25% compared to KMAX.

30

KMAX=K-OWA !=n "=n K-OWA !=4 "=n K-OWA !=4/3 "=n

K-OWA !=n "=4 K-OWA !=n "= 4/3 K-OWA !=4 "=4/3

ALGORITHM

RESULTS FOR TRANSLATION 3 Prop 4: MAE scoreRESULTS FOR TRANSLATION 3 Prop 4: MAE scoreRESULTS FOR TRANSLATION 3 Prop 4: MAE scoreRESULTS FOR TRANSLATION 3 Prop 4: MAE scoreRESULTS FOR TRANSLATION 3 Prop 4: MAE scoreRESULTS FOR TRANSLATION 3 Prop 4: MAE scoreRESULTS FOR TRANSLATION 3 Prop 4: MAE scoreRESULTS FOR TRANSLATION 3 Prop 4: MAE scoreRESULTS FOR TRANSLATION 3 Prop 4: MAE score

KMAX=K-OWA !=n "=n

K-OWA !=n "= 4/3

K-OWA !=n "=4

K-OWA !=4/3 "=n

K-OWA !=4 "=n

K-OWA !=4 "=4/3

>=1

and

<2

>=2

and

<3

>=3

and

<4

>=4

and

<5

>=5

and

<10

>=10

and

<20

>=20

and

<35

>=35

and

<50

>=50

and

<75

>=75

and

<100

>=100

and

<125

>=12

5 and

<150

>=150

0,3332 0,305 0,3025 0,3066 0,3156 0,348 0,39 0,4328 0,4445 0,4591 0,4302 0,478 0,473

0,3332 0,3007 0,2909 0,2915 0,2896 0,306 0,33 0,349 0,3444 0,3366 0,2973 0,435 0,377

0,3332 0,305 0,3025 0,3066 0,3046 0,326 0,353 0,3773 0,3749 0,3693 0,3336 0,448 0,391

0,3332 0,3067 0,3029 0,2997 0,3007 0,307 0,335 0,3994 0,454 0,5316 0,5746 0,586 0,669

0,3332 0,305 0,3025 0,3066 0,3043 0,316 0,339 0,3826 0,4143 0,471 0,4852 0,503 0,584

0,3332 0,3007 0,2909 0,2915 0,2784 0,274 0,279 0,2989 0,3142 0,3485 0,3524 0,459 0,488

0,2

0,3

0,4

0,5

0,6

0,7

>
=

1
 a

n
d

 <
2

>
=

2
 a

n
d

 <
3

>
=

3
 a

n
d

 <
4

>
=

4
 a

n
d

 <
5

>
=

5
 a

n
d

 <
1

0

>
=

1
0

 a
n

d
 <

2
0

>
=

2
0

 a
n

d
 <

3
5

>
=

3
5

 a
n

d
 <

5
0

>
=

5
0

 a
n

d
 <

7
5

>
=

7
5

 a
n

d
 <

1
0

0

>
=

1
0

0
 a

n
d

 <
1

2
5

>
=

1
2

5
 a

n
d

 <
1

5
0

>
=

1
5

0

T-
M

A
E

trust scores to aggregate

Figure 9: Tuning the weights for K-OWA; α = β = n in Example 7 yields KMAX.

ALGORITHM RESULTS FOR TRANSLATION 3 Prop 4: MAE scoreRESULTS FOR TRANSLATION 3 Prop 4: MAE scoreRESULTS FOR TRANSLATION 3 Prop 4: MAE scoreRESULTS FOR TRANSLATION 3 Prop 4: MAE scoreRESULTS FOR TRANSLATION 3 Prop 4: MAE scoreRESULTS FOR TRANSLATION 3 Prop 4: MAE scoreRESULTS FOR TRANSLATION 3 Prop 4: MAE scoreRESULTS FOR TRANSLATION 3 Prop 4: MAE scoreRESULTS FOR TRANSLATION 3 Prop 4: MAE scoreRESULTS FOR TRANSLATION 3 Prop 4: MAE scoreRESULTS FOR TRANSLATION 3 Prop 4: MAE scoreRESULTS FOR TRANSLATION 3 Prop 4: MAE score

KAAV0

KAAV1

KAAV2

KAAV3

KAAV4

KAV

>=1

and

<2

>=2

and

<3

>=3

and

<4

>=4

and

<5

>=5

and

<10

>=1

0

and

<20

>=2

0

and

<35

>=35

and

<50

>=50

and

<75

>=75

and

<100

>=10

0

and

<125

>=1

25

and

<15

0

>=1

50
0,33 0,31 0,3 0,3 0,3 0,3 0,32 0,37 0,42 0,478 0,53 0,62 0,64
0,33 0,31 0,3 0,29 0,28 0,27 0,29 0,33 0,373 0,43 0,473 0,57 0,6
0,33 0,31 0,3 0,29 0,28 0,27 0,28 0,31 0,346 0,394 0,422 0,52 0,56
0,33 0,31 0,3 0,29 0,28 0,28 0,28 0,31 0,334 0,373 0,389 0,48 0,52
0,33 0,31 0,3 0,3 0,29 0,28 0,29 0,31 0,331 0,361 0,372 0,46 0,49
0,33 0,31 0,3 0,3 0,3 0,31 0,33 0,36 0,356 0,352 0,351 0,41 0,43

0,25

0,29

0,33

0,37

0,41

0,45

0,49

0,53

0,57

0,61

0,65

>
=

1
 a

n
d

 <
2

>
=

2
 a

n
d

 <
3

>
=

3
 a

n
d

 <
4

>
=

4
 a

n
d

 <
5

>
=

5
 a

n
d

 <
1
0

>
=

1
0
 a

n
d

 <
2
0

>
=

2
0
 a

n
d

 <
3
5

>
=

3
5
 a

n
d

 <
5
0

>
=

5
0
 a

n
d

 <
7
5

>
=

7
5
 a

n
d

 <
1
0
0

>
=

1
0
0
 a

n
d

 <
1
2
5

>
=

1
2
5
 a

n
d

 <
1
5
0

>
=

1
5
0

T-
M

A
E

!=0 !=1 !=2 !=3 !=4 KAV

trust scores to aggregate

Figure 10: Tuning the knowledge reward γ for KAAV; γ = 0 results in the arithmetic
mean, and γ →∞ yields KAV.

31

5.4. The Effect of Knowledge Incorporation for KAV

The knowledge preference averaging operator KAV only takes into account
the opinions of the most knowledgeable users. In Section 4.2 we claimed that
its performance might be improved if we incorporate additional opinions, by
rewarding those that are more certain (the KAAV operator). In this section,
we show that this is indeed the case. Again, the goal of the experiment is
not to compute the most optimal implementation of KAAV, but to illustrate
its advantages over the KAV operator.

In Figure 10 we compare the results achieved for the arithmetic mean (all
opinions are equally important, KAAV with γ = 0, solid line), three imple-
mentations of KAAV with increasing knowledge reward γ, and KAV (only
the most knowledgeable opinions matter, diamonds). Note that for a very
large γ, KAAV reduces to KAV. In other words, the line that is determined
by the knowledge defect of the trust score resulting from the KAAV aggrega-
tion will approximate the corresponding KAV line for increasing knowledge
awards.

First note that this graph again illustrates that it becomes more difficult
to accurately predict trust scores when a lot of opinions are available. Let
us now compare the classical average with the knowledge preference average
KAV. For only few inputs, the average performs better than KAV. How-
ever, for larger numbers n of aggregates, the average fails completely, with
T-MAE increases up to 50% compared to KAV. This demonstrates that
knowledge-enhanced aggregation strategies become more useful when many
inputs have to be aggregated. The trend is also apparent when focusing
on the KAAV implementations, with γ = 1, . . . , 4: as the number of inputs
increases, KAAV’s with larger knowledge awards achieve better results and
come closer to KAV’s trust score MAE. On the other hand, remark that mit-
igating KAV’s behavior produces better results for smaller n’s, even lower
than those of the arithmetic mean.

The results show that, when choosing between the average, KAV and
KAAV, a trade-off should be made between lower errors for smaller n and
lower T-MAE’s for aggregation conditions with many inputs. The best con-
figuration for a particular application can then e.g. be estimated during a
training phase.

32

5.5. Discussion
Although from a theoretical perspective, not satisfying the knowledge bound-
ary or monotonicity properties can be regarded as serious drawbacks for any
trust score aggregation operator, our experiments demonstrate that dropping
these conditions opens the door for new, more practical, aggregation opera-
tors. Our results on a large real-world data set from CouchSurfing showed
that this kind of operators can significantly improve the performance of the
less sophisticated, theoretically sounder, aggregation operators.

These findings can be explained by the imperfect, noisy nature of our data,
a problem inherent in the larger part of social network applications. Some
users might not fully understand the meaning of each trust/knowledge state-
ment, others make an unintentional mistake (e.g. checked the wrong trust
box, forgot to indicate the knowledge level, ..), and so on. Furthermore, the
data in trust-enhanced applications must be mapped to a practical model,
and the trust estimation mechanisms must be captured as precisely as pos-
sible. However, the resulting trust model and propagation operators remain
approximations, and hence will always introduce some extra noise.

One way of reducing the noise in the data is by making the aggregation
operators less extreme, e.g. by using knowledge-enhanced strategies that give
priority to better informed opinions, or by introducing weights that soften
the standard behavior of the operators. This explains the good performance
of the KAAV and K-OWA families, compared to the classical operators.

Moreover, one might also argue that the bilattice-based operators perform
less because the properties we enforced do not align well with the CouchSurf-
ing data. It turns out that the knowledge boundary condition is not as vital
as we thought, compared to the trust and distrust boundaries, the neutrality
and opposite arguments condition. The former property is exactly the one
that is only fulfilled for the bilattice-based approaches, whereas the KAAV
and K-OWA families do satisfy the latter.

The choice as to which approach (TMAX, KAV, KAAV, K-OWA, ...) is
most suitable also depends on the application at hand. In applications where
prudence is in order, one can e.g. opt for a K-OWA operator with a large
β-parameter (which results in a higher orness degree and hence will sooner
yield a high aggregated distrust degree). Or, in large user networks where
(partial) ignorance is the rule rather than the exception, KMAX or KAAV
might be preferred over TMAX or K-OWA.

33

6. Conclusions and Future Work

Research in trust networks is still in its infancy, in particular when it comes
down to the representation, propagation and aggregation of distrust. In this
paper, we have built upon previous work in which trust scores are mod-
eled as (trust,distrust)-couples that are drawn from a bilattice, and inves-
tigated which requirements a trust score aggregator needs to fulfill. Based
on these aggregation conditions, we proposed four trust score aggregation
strategies, each with their own distinct behavior: the trust maximizing oper-
ator TMAX which is the most optimistic choice (maximum trust degree for
the lowest possible knowledge level), distrust maximizing DMAX which is
the most pessimistic one (maximum distrust degree), knowledge preference
averaging KAV which is the most moderating approach (average of the most
knowledgeable trust scores), and the knowledge maximizing operator KMAX
(maximum trust and distrust degree), the boldest aggregation option.

Besides, we also introduced two other families of operators: the OWA-
based K-OWA operator and the knowledge awarding averaging trust score
operator KAAV, mitigating the behavior of KMAX and KAV respectively.
Although K-OWA and KAAV have less desirable properties from a theo-
retical perspective, our experiments on a large data set from CouchSurfing
demonstrated that they achieve more accurate results in real-world social
applications, which are inherently noisy.

Obviously, the reported performances do not only depend on the choice of
aggregation operator, but also on the combination with propagation, which
inherently introduces errors in the computation too. Hence, a first step in our
future research is the investigation of the synergy between the two operator
types and their separate influence on the accuracy.

A second research direction involves the further exploration of the role of
knowledge defects; we embarked on this topic in [4]. For instance, it makes
sense to generate weights which not only depend on the orness-degree, but
also on the amount of knowledge that the corresponding trust scores con-
tain (resulting in a variation of K-OWA with knowledge-dependent weights).
Another way to include knowledge information is by using induced OWA op-
erators [19] which order the elements based on increasing knowledge defects.

Thirdly, we also aim to refine the aggregation strategies to take into
account certain aspects of the virtual trust network’s topology. In particular,
the current approaches are indifferent as to the length of the paths that

34

generated the individual trust scores, and also do not consider how many
times the same user appears on a path; see [20] for initial results.

As another part of our future work, we also want to investigate the suit-
ability of our operators for specific trust-enhanced applications. In particular,
we are focusing on recommender systems, applications which suggest items
to users who might be interested in them [21, 22, 23, 24]. Trust informa-
tion can help to establish more, and more accurate, recommendations, and
its incorporation into existing recommender system technology is a topic of
ongoing research (see e.g. [10, 25, 26]).

Finally, another interesting research path is the investigation of the ap-
plicability of concepts from the preference modeling area (transitivity, in-
complete preference) in the context of trust score aggregation: preference
relations that do not necessarily satisfy reciprocity have been studied in [27];
trust scores can be identified with a couple of such preference evaluations,
which may provide us more insight into the management and processing of
trust and distrust degrees.

Acknowledgments

The authors thank CouchSurfing for making the data available. Patricia
Victor would like to thank the Institute for the Promotion of Innovation
through Science and Technology in Flanders for funding her research, and
Chris Cornelis the Research Foundation–Flanders for funding his research.
Enrique Herrera-Viedma would like to thank the financing of andalucian
excellence project TIC05299, Feder Funds in FUZZYLING project (TIN2007-
61079) and PETRI project (PET 2007-0460).

References

[1] P. Victor, C. Cornelis, M. De Cock, P. Pinheiro da Silva, Gradual trust and distrust
in recommender systems, Fuzzy Sets and Systems 160 (2009) 1367–1382.

[2] M. Ginsberg, Multi-valued logics: A uniform approach to reasoning in artificial in-
telligence, Computational Intelligence 4 (1988) 265–316.

[3] P. Victor, C. Cornelis, M. De Cock, E. Herrera-Viedma, Aggregation of gradual
trust and distrust, in: Proceedings of Eurofuse Workshop on Preference Modeling
and Decision Analysis (Eurofuse 2009), 2009, pp. 259–264.

35

[4] C. Cornelis, P. Victor, E. Herrera-Viedma, Ordered weighted averaging approaches
for aggregating gradual trust and distrust, in: Proceedings of ESTYLF 2010, 2010,
pp. 555-560.

[5] R. Yager, On ordered weighted averaging aggregation operators in multicriteria de-
cision making, IEEE Transactions on Systems, Man, and Cybernetics 18 (1988)
183–190.

[6] M. De Cock, P. Pinheiro da Silva, A many-valued representation and propagation of
trust and distrust, Lecture Notes in Computer Science 3849 (2006) 108–113.

[7] H. Prade, A qualitative bipolar argumentative view of trust, Lecture Notes in Arti-
ficial Intelligence 4772 (2007) 268–276.

[8] A. Abdul-Rahman, S. Hailes, Supporting trust in virtual communities, in: Pro-
ceedings of the 33rd Hawaii International Conference on System Sciences, 2000, pp.
1769–1777.

[9] F. Almenárez, A. Maŕın, C. Campo, C. Garćıa, PTM: A pervasive trust management
model for dynamic open environments, in: Proceedings of the First Workshop on
Pervasive Security, Privacy and Trust, in conjuntion with Mobiquitous, 2004.

[10] J. Golbeck, B. Parsia, J. Hendler, Trust networks on the semantic web, Lecture Notes
in Artificial Intelligence 2782 (2003) 238–249.

[11] S. Kamvar, M. Schlosser, H. Garcia-Molina, The eigentrust algorithm for reputation
management in p2p networks, in: Proceedings of WWW2003, 2003, pp. 640–651.

[12] L. Mui, M. Mohtashemi, A. Halberstadt, A computational model of trust and rep-
utation, in: Proceedings of the 35th Hawaii International Conference on System
Sciences.

[13] S. Noh, Calculating trust using aggregation rules in social networks, Lecture Notes
in Computer Science 4610 (2007) 361–371.

[14] M. Richardson, R. Agrawal, P. Domingos, Trust management for the semantic web,
in: Proceedings of the ISWC, 2003, pp. 351–368.

[15] R. Guha, R. Kumar, P. Raghavan, A. Tomkins, Propagation of trust and distrust,
in: Proceedings of WWW04, 2004, pp. 403–412.

[16] A. Jøsang, S. Marsh, S. Pope, Exploring different types of trust propagation, LNCS
3986 (2006) 179–192.

[17] R. Yager, Families of OWA operators, Fuzzy Sets and Systems 59 (1993) 125–148.

[18] P. Victor, Trust networks for recommender systems, Ph.D. dissertation (2010).

36

[19] R. Yager, D. Filev, Induced ordered weighted averaging operators, IEEE Transac-
tions on Systems, Man, and Cybernetics 29 (1999) 141–150.

[20] N. Verbiest, C. Cornelis, P. Victor, E. Herrera-Viedma, Strategies for incorporating
knowledge defects and path length in trust aggregation, in: Proceedings of IEA-
AIE2010, 2010, pp. 450-459.

[21] P. Resnick, H. Varian, Recommender systems, Communications of the ACM 40
(1997) 56–58.

[22] G. Adomavicius, A. Tuzhilin, Toward the next generation of recommender systems:
a survey of the state-of-the-art and possible extensions, IEEE Tr Knowl Dat En
(2005) 734–749.

[23] R. Yager, Fuzzy logic methods in recommender systems, Fuzzy Sets and Systems
136 (2003) 133–149.

[24] C. Porcel, E. Herrera-Viedma, Dealing with incomplete information in a fuzzy lin-
guistic recommender system to disseminate information in university digital libraries,
Knowledge-Based Systems 23 (2010) 32–39.

[25] P. Victor, C. Cornelis, M. De Cock, A. Teredesai, Trust- and distrust-based recom-
mendations for controversial reviews, IEEE Intelligent Systems, in press.

[26] P. Massa, A. Avesani, Trust-aware recommender systems, in: Proceedings of the
ACM Recommender Systems Conference (RECSYS 2007), 2007, pp. 17–24.

[27] E. Herrera-Viedma, S. Alonso, F. Chiclana, F. Herrera, A consensus model for group
decision making with incomplete fuzzy preference relations, IEEE Transactions on
Fuzzy Systems 15 (2007) 863–877.

37

