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Abstract—Fuzzy Rule-Based Classification Systems are a
widely used tool in Data Mining because of the interpretability
given by the concept of linguistic label. However, the use of this
type of models implies a degree of uncertainty in the definition
of the fuzzy partitions. In this work we will use the concept of
Interval-Valued Fuzzy Set to deal with this problem. The aim of
this contribution is to show the improvement in the performance
of linguistic Fuzzy Rule-Based Classification Systems afterward
the application of a cooperative tuning methodology between the
tuning of the amplitude of the support and the lateral tuning
(based on the 2-tuples fuzzy linguistic model) applied to the
linguistic labels modeled with Interval-Valued Fuzzy Sets.

I. INTRODUCTION

Computational Intelligence methods have shown to be

useful tools to solve complex problems in classification

tasks. Among them, Fuzzy Rule-Based Classification Sys-

tems (FRBCSs) [13] are widely employed since they provide

a good performance together with a high interpretability of

the rules due to the use of linguistic labels. Furthermore,

these systems offer the possibility of mixing different kinds

of information as the one given by experts or the one obtained

by mathematical models or empirical measures.

In FRBCSs the definition of the membership functions

used to represent the linguistic labels is truly significant.

When defining the fuzzy partitions we can use expert

knowledge or we can simply proceed by establishing an

homogeneous partition over the input space. In both cases,

the theory of Interval-Valued Fuzzy Sets (IVFSs) [15], [3]

allows us to model the possible ignorance inherent to the

definition of membership functions. We must point out that

the interval membership of an element to a set provides a

lower bound and an upper bound for the punctual value of

the membership of the element to the set. In [16], we have

shown that the use of IVFSs in FRBCSs is useful in the

framework of classification with imbalanced data-sets.

In addition to the previous issue, sometimes fuzzy par-

titions are not well fitted to the context, as they remain

fixed during the rule generation process. Therefore, it seems

necessary to carry out a post-processing step to tune the

linguistic labels modeled, in this case, by means of IVFSs.

The objective of this work is to improve the performance

of FRBCSs by means of the cooperation between IVFSs
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and a post-processing tuning step. With this aim, in addition

to the use of the IVFSs model in the Fuzzy Reasoning

Method (FRM) (afterward of the rule generation process), we

propose a cooperative tuning methodology to manage both

the amplitude of the support and the position of the linguistic

labels through a lateral displacement (based on the 2-tuples

fuzzy linguistic model [10]). We study the behavior of our

methodology with 16 data-sets selected from UCI repository

[2].

The work is arranged as follows: in Section II we start

explaining the rule generation algorithm employed. Then, we

present the FRBCS with the linguistic labels modeled by

IVFSs in Section III. The approaches to perform the genetic

tuning are introduced in Section IV. Next, in Section V, we

show the experimental study carried out and we finish the

work with some concluding remarks in Section VI.

II. FUZZY RULE BASED CLASSIFICATION SYSTEMS AND

FUZZY LEARNING METHOD

FRBCSs are a very useful tool in Data Mining, since they

allow the inclusion of all the available information in system

modeling, both the one that comes from expert knowledge

and the one from empirical measures and mathematical

models, deriving on a very interpretable model and therefore

allowing the knowledge representation to be understandable

for the system users.

Any classification problem consists of m training patterns

xp = (xp1, . . . , xpn, yp), p = 1, 2, . . . ,m from M classes

where xpi is the ith attribute value (i = 1, 2, . . . , n) of the
p-th training pattern.

In this work we use fuzzy rules of the following form for

our FRBCSs:

Rule Rj : If x1 is Aj1 and . . . and xn is Ajn

then Class = Cj with RWj ,

where Rj is the label of the jth rule, x = (x1, . . . , xn) is

an n-dimensional pattern vector, Aji is an antecedent fuzzy

set, Cj is a class label, and RWj is the rule weight. We use

triangular membership functions as antecedent fuzzy sets.

Fuzzy learning methods are the basis to build a FRBCS.

The algorithm used in this work is the method proposed in

[4], that we have called the Chi et al.’s rule generation.

To generate the fuzzy rule base, this FRBCSs design

method determines the relationship between the variables of

the problem and establishes an association between the space

of the features and the space of the classes by means of the

following steps:
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1) Establishment of the linguistic partitions. Once the

domain of variation of each feature Ai is determined,

the fuzzy partitions are computed.

2) Generation of a fuzzy rule for each example xp =
(xp1, . . . , xpn, Cp). To do this it is necessary:

2.1 To compute the matching degree µ(xp) of the

example to the different fuzzy regions using a

conjunction operator (usually modeled with a

minimum or product T-norm).

2.2 To assign the example xp to the fuzzy region with

the greatest membership degree.

2.3 To generate a rule for the example, whose an-

tecedent is determined by the selected fuzzy

region and whose consequent is the label of class

of the example.

2.4 To compute the rule weight.

We must remark that rules with the same antecedent can be

generated during the learning process. If they have the same

class in the consequent we just remove one of the duplicated

rules, but if they have a different class only the rule with the

highest weight is kept in the rule base.

III. FUZZY RULE-BASED CLASSIFICATION SYSTEMS

WITH INTERVAL-VALUED FUZZY SETS

In this section we present the model that employs IVFSs to

represent the linguistic labels of FRBCSs. The use of IVFSs

allows to handle the uncertainty associated with the ad-hoc

construction of fuzzy partitions and, in this way, it is possible

to increase the performance of the system.

IVFSs [3] are an extension of the theory of fuzzy sets [18].

These sets were born in 1975 with the work of Sambuc [15].

Later, in the eighties, Gorzalczany called these sets IVFSs

for the first time [9].

We denote by L([0, 1]) the set of all closed subintervals

of the closed interval [0, 1]; that is:

L([0, 1]) = {x = [x, x]|(x, x) ∈ [0, 1]2 and x ≤ x}
L([0, 1]) is a partially ordered set with respect to the relation
≤L defined in the following way; given x, y ∈ L([0, 1]):
x ≤L y if and only if x ≤ y and x ≤ y.

With this order relation the smallest element is [0, 0] and the
largest is [1, 1].
Definition 1: An Interval-Valued Fuzzy Set A on the

universe U 6= ∅ is a mapping A : U → L([0, 1]) such that

the membership degree of u ∈ U is given by A(u) = [A(u),
A(u)] ∈ L([0, 1]), where A : U → L([0, 1]) and A : U →
L([0, 1]) are functions defining the lower and upper bounds

of the membership interval A(u), respectively.
We generate the initial knowledge base by means of the

rule learning algorithm of Chi et al.’s [4], explained in

the previous section. We use the initial knowledge base as

starting point to obtain the IVFSs: we take the fuzzy sets

generated by this algorithm as the lower bounds and we add

the upper bound to each set. In this manner, we will study the

influence of the IVFSs in the FRM, not in the rule generation

process.

We build the upper bound in this way: it is centered in the

maximum of the membership function of the fuzzy partition

and the amplitude of its support is 50% greater than the one

of the lower bound (being symmetrical in both sides). Figure

1 shows an example of a linguistic variable represented by

3 labels (IVFSs) in the initial state. The solid lines represent

the lower bounds (Aj) and the dashed lines represent the

upper bounds (Aj).

0.0 1.0

1.0

Fig. 1. Example if the IVFSs employed.

Furthermore, as we work with IVFSs, the rule weight

will be compounded by a tuple (PCFLj , PCFUj) computed

using the Penalized Certainty Factor (PCF) (see [14]):

PCFLj =

∑
xp∈ClassCj

Aj(xp)−
∑

xp /∈ClassCj

Aj(xp)

m∑
p=1

Aj(xp)

(1)

PCFUj =

∑
xp∈ClassCj

Aj(xp)−
∑

xp /∈ClassCj

Aj(xp)

m∑
p=1

Aj(xp)

(2)

As the lower bound of each IVFS is the fuzzy set created

by the rule learning algorithm given by Chi et al.’s [4],

PCFLj is equal to RWj .

In this work we employ the FRM of the winning rule, this

FRM among others can be seen in [5]. However, the use of

IVFSs implies the following two changes in the FRM:

• Matching degree between the antecedent of the rule

and the example: We apply the product T-norm both

to the lower bound and the upper bound. So, we have

an interval.

µLAj(xp) = T (Aj1(xp1), . . . , Ajn(xpn)),
j = 1, . . . , L.

(3)

µUAj(xp) = T (Aj1(xp1), . . . , Ajn(xpn)),
j = 1, . . . , L.

(4)

• Association degree: We take the mean between the

product of the matching degree by the rule weight

associated to the lower bound and the product of the

matching degree by the rule weight associated to the

upper bound.
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bk
j =

µLAj(xp) ∗ PCFLjk + µUAj(xp) ∗ PCFU jk

2
k = 1, . . . ,M, j = 1, . . . , L. (5)

At this point we already have a single value associated

to the class. According to this, we can apply the rest of the

method in the same way than in the general FRM.

IV. LINGUISTIC LABEL TUNING THROUGH A GENETIC

ALGORITHM

Membership functions are usually obtained by normaliza-

tion process or defined by experts. In all cases they are not

well-suited to the context of each variable due to they remain

fixed during the rule generation process. For this reason it

is necessary to perform a post-processing step in order to

tune the fuzzy partitions to adapt the behavior of FRBCSs

for each single problem.

In this section we introduce three approaches to carry

on the tuning. We start describing the model in which we

tune the amplitude of the upper bound of the IVFSs, next

we explain the genetic tuning based on the 2-tuples fuzzy

linguistic model [10] to make the lateral displacement and

then we introduce the methodology in which the previous

genetic tuning models cooperate. Finally, we describe the

use of the CHC algorithm [7] which has been selected to

perform the genetic tuning process.

A. Tuning Of The Amplitude Of The Linguistic Labels

As we have stated in Section III we represent the linguistic

labels of the FRBCS by means of IVFSs. We build the

upper bound of each IVFS with a fixed amplitude. However,

as the expert has not the same uncertainty defining the

different membership functions, the amplitude of the upper

bound does not need to be the same for all linguistic labels.

Therefore, we perform a post-processing step, by means of

a genetic algorithm, in which we tune the amplitude of the

upper bound of the IVFSs. It is necessary to remark that the

amplitude of the lower bound will remain fixed.

The modification of the amplitude is given by a number

within the interval [0, 1], that is, from the overlapping of

both bounds (value 0) to twice the amplitude of the upper

with respect to the lower bound (value 1). The amplitude

of the upper bound will be uniformly increased according

to intermediate values being ‘0.5’ the initial situation of the

FRBCS, that is, when the amplitude of the upper bound is

50% greater than the one of the lower bound. These situations

are depicted in Figure 2.

B. Lateral Tuning Of Linguistic Labels Based On The 2-

tuples Model

In our initial model we have fixed the position of the

different labels, such that for each value of the input space

of each variable the sum of the membership degrees of the

different labels is 1. This labels’ distribution does not need

to be optimal as the data distribution does not need to be

uniform. Therefore, we use the genetic tuning based on the

b) Gene = 0.5 c) Gene = 1.0a) Gene = 0.0

Fig. 2. Gene values representation in the genetic amplitude tuning. a)
Upper and lower bounds are overlapped. b) Initial situation. c) Upper bound
amplitude is twice than the one of the lower bound

2-tuples fuzzy linguistic model [10] (adjusting the previous

proposal in this topic [1] for our problem) to make the lateral

displacements of the linguistic labels. In this manner, we

could improve the performance of the FRBCS.

The symbolic translation of a linguistic term is a number

within the interval [-0.5, 0.5) that expresses the bounds of

the domain of a label when it is moving between its two

lateral labels. If the number is negative the displacement

will be done to the left and, if the number is positive, to

the right. An example is illustrated in Figure 3 where we

show the symbolic translation of a label represented by the

pair (S2,-0.3) together with the lateral displacement of the

corresponding membership function.

(s2,-0.3)

S0
S1 S2 S3 S4

-0.5 0.5

-0.5 0.5

-0.5 0.5

-0.5 0.5 -0.5 0.5

3.0−=α

(s2,-0.3)

S0
S1 S2 S3 S4

-0.5 0.5

-0.5 0.5

-0.5 0.5

-0.5 0.5 -0.5 0.5

(s2,-0.3)

S0
S1 S2 S3 S4S0
S1 S2 S3 S4

-0.5 0.5

-0.5 0.5

-0.5 0.5

-0.5 0.5 -0.5 0.5

-0.5 0.5-0.5 0.5

-0.5 0.5-0.5 0.5

-0.5 0.5-0.5 0.5

-0.5 0.5-0.5 0.5 -0.5 0.5-0.5 0.5

3.0−=α

Fig. 3. 2-tuples based tuning model.

C. Cooperative Tuning For Both The Amplitude And The

Lateral Displacement

Along this section, we have defined two posible tuning ap-

proaches of the membership functions separately. However,

in this work we want to go one step further and to propose

a tuning methodology in which we tune simultaneously both

the the amplitude and the the position of the linguistic labels.

To do so, we need to define an unique representation inside

the genetic algorithm for both possibilities.

The motivation for this proposal lies in the following

premise: the use of each previously defined tunings sepa-

rately can make that the system reach a sub-optimal model.

With this cooperative methodology, the genetic algorithm

search engine will be able to work at the same time with

both characteristics, what should lead us to discover better
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adapted solutions to the problem and therefore more accurate

ones.

D. CHC Algorithm

In order to apply the genetic tuning, we will consider the

use of CHC algorithm [7], which presents a good trade-off

between diversity and convergence, being a good choice in

complex problems. The components needed to design this

process are explained below:

1) Coding Scheme: A real coding is considered in all the

models, where the representation of each gene of the

chromosome depends on the model:

• Amplitude tuning: Each gene represents the ampli-

tude modification as we have explained in Subsec-

tion IV-A. So, the chromosome length is equal to

the number of labels times the number of variables.

• Lateral tuning: Each gene represents the lateral

displacement as we have explained previously. So,

the chromosome length is equal to the number of

labels times the number of variables.

• Cooperative tuning: Each chromosome will be

composed by two parts, one to make the amplitude

tuning and the other one to make the lateral tuning.

The representation of each part is the same as we

have explained for the previous tuning models.

2) Chromosome Evaluation: The fitness function is the

accuracy rate.

3) Initial Gene Pool: Depending on the model, we initial-

ize the population in a different way:

• Amplitude tuning: The initial pool is obtained with

the first individual having all genes with value

0.5 (the initial FRBCS). The second and the third

individuals have all genes with values 0 and 1

respectively, whereas the remaining individuals are

generated at random in [0, 1].

• Lateral tuning: The initial pool is obtained with

the first individual having all genes with value

0.0 (the initial FRBCS), whereas the remaining

individuals are generated at random in [-0.5, 0.5].

• Cooperative tuning: In this model we initialize

three individuals to cover the same situations than

in the amplitude tuning. The first part of each chro-

mosome of these three individuals is initialized

having all genes with value 0.0 and the remainder

of each chromosome will be initialized as in the

amplitude tuning. The remaining individuals will

have initialized all the genes randomly.

4) Crossover Operator: We consider the Parent Centric

BLX (PCBLX) operator [11], which is based on the

BLX-α. Figure 4 depicts the behavior of these kinds

of operators.

PCBLX is described as follows. Let us assume that

X = (x1 · · ·xn) and Y = (y1 · · · yn), (xi, yi ∈
[ai, bi] ⊂ ℜ, i = 1 · · ·n), are two real-coded chromo-

somes that are going to be crossed. PCBLX operator

generates the two following offspring:

c1
i c2

i

PCBLX BLX

ai bi

Fig. 4. Scheme of the behavior of the BLX and PCBLX operators

• O1 = (o11 · · · o1n), where o1i is a randomly (uni-

formly) chosen number from the interval [l1i , u
1
i ],

with l1i = max{ai, xi−Ii}, u1
i = min{bi, xi+Ii},

and Ii =| xi − yi |.
• O2 = (o21 · · · o2n), where o2i is a randomly (uni-

formly) chosen number from the interval [l2i , u
2
i ],

with l2i = max{ai, yi−Ii} and u2
i = min{bi, yi+

Ii}.
On the other hand, the incest prevention mechanism

will be only considered in order to apply the PCBLX

operator. In our case, two parents are crossed if half

their Hamming distance is above a predetermined

threshold, L. Since we consider a real coding scheme,
we have to transform each gene considering a Gray

Code (binary code) with a fixed number of bits per

gene (BITSGENE), that is determined by the system

expert. In this way, the threshold value is initialized as:

L = (#Genes ·BITSGENE)/4.0

where #Genes stands for the total length of the

chromosome. Following the original CHC scheme, L is

decremented by one (BITSGENE in this case) when

there are no new individuals in the next generation.

In order to work with the cooperative tuning method-

ology, we realize the cross in the following way: we

cross the parts of the chromosome representing the

same kind of tuning among them. In this process we

generate four offspring and we select the two best ones.

5) Restarting approach: When the threshold value is

lower than zero, all the chromosomes are regenerated

randomly. Furthermore, the best global solution found

is included in the population to increase the conver-

gence of the algorithm.

V. EXPERIMENTAL STUDY

In this study, our aim is to analyze the behavior of the

FRBCS by the combination of the IVFS model and the post-

processing step. Furthermore, we want to check whether the

behavior of the synergy between the genetic amplitude tuning

and the lateral tuning improves the behavior of both tuning

approaches when they are performed separately.

In this section, first we describe the experimental set-up

together with the parameters employed in the study. Next we
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TABLE I

SUMMARY DESCRIPTION FOR THE EMPLOYED DATA-SETS.

Data-set #Ex. #Atts. #Class.

Balance 625 4 3

Bupa 345 6 2

Cleveland 297 13 5

Ecoli 336 7 8

Glass 214 9 6

Haberman 306 3 2

Iris 150 4 3

Magic 1902 10 2

New-Thyroid 215 5 3

Page-blocks 548 10 5

Penbased 1099 16 10

Pima 768 8 2

Ring 768 8 2

Vehicle 846 18 4

Wine 178 13 3

Wisconsin 683 9 2

introduce the statistical tests used and we conclude with the

empirical results achieved.

A. Experimental Set-Up

We have analyzed the performance of the different pro-

posals in 16 data-sets selected from UCI repository [2].

Table I summarizes the following characteristics of each

data-set: number of examples (#Ex.), number of attributes

(#Atts.) and number of classes (#Class.). We must point out

that the Magic, Page-blocks, Penbased and Ring data-sets

are stratified-sampled to the 10% to improve the learning

process efficiency and we have removed the missing values

of Cleveland and Wisconsin after the partionate.

To carry out the different experiments we consider a 5-

folder cross-validation model, i.e., 5 random partitions of

data with a 20%, and the combination of 4 of them (80%)

as training and the remaining one as test. For each data-set

we consider the average results of the five partitions.

The FRBCS configuration is the following one: 3 labels

per fuzzy partition, product T-norm as conjunction operator,

together with the PCF heuristic [14] for the computation of

the rule weight and FRM of the winning rule.

All the genetic tuning models presented in Section IV

employ populations composed by 50 individuals, 30 bits per

gen in order to perform the gray codification and the number

of evaluations is 5.000 times the number of attributes.

B. Statistical Test For The Performance Comparison

In this work, we use some hypothesis validation techniques

in order to give a statistical support to the result analysis. We

will use a non parametric test, because the initial conditions

that guarantee the reliability of the parametric tests cannot

be fulfilled [6], [8]. We employ the Wilcoxon rank test [17]

as non parametric statistical procedure to make comparisons

between two algorithms; we use the Iman-Davenport test [17]

to detect statistical differences among a group of results and

the Holm post-hoc test [12] to find the algorithms that reject

the equality hypothesis with respect to a selected control

method.

C. Empirical Results

The objective of this study is double, on one hand, we

want to show the goodness of our proposal and, on the other

hand, we want to analyze whether the cooperative tuning

methodology is better than the simple tuning approaches

when they are performed separately.

Table II shows the results achieved by the different ap-

proaches, both in training and in test in each data-set. This

table presents two different groups of results. The first one

covers the approaches in which the data base is composed

by standard fuzzy sets, that is, the results achieved by the

basic Chi et al.’s algorithm and the results provided by the

initial FRBCS post processed with lateral tuning. The second

group is formed by the approaches in which the data base

is composed by IVFSs, that is, the results of the models of

amplitude, lateral and cooperative tuning.

Usually, tuning models present an overfitting behavior,

especially when the tuning is guided by the accuracy rate.

However, as we can observe from Table II, our cooperative

tuning methodology present a good balance between the per-

formance in training and test, which is a desirable property

in this kind of methodology.

In Figure 5 we show the ranking of the different methods.

The value given to each method is calculated assigning the

position of each algorithm depending on the performance for

each data-set and then computing the mean value. We can

observe that our proposal of cooperative tuning is the best,

followed by the lateral tuning applied to the FRBCS with

IVFS and for the lateral tuning applied to the basic FRBCS.

We carry out a Iman-Davenport test in which we find

significative differences among the results since the “p-value”

obtained is close to zero. For this reason, we can apply

a post-hoc test (the Holm test in this case) to compare

our cooperative tuning methodology against the remaining

methods.
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Fig. 5. Ranking of the different proposals.

From the results of this Holm test (Table III) it is shown

that our cooperative tuning methodology is statistically better

than the remaining approaches. Furthermore, we carry out

a Wilcoxon test (Table IV) in which we show that our

methodology enhances the performance of the lateral tuning

applied to the FRBCS with IVFSs.
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TABLE II

RESULTS IN TRAIN (TR.) AND TEST (TST) OF THE DIFFERENT METHODS.

Data-set Chi Chi GTS Chi IVFS Chi IVFS Amp Chi IVFS GTS Chi IVFS Coop

Tr. Tst Tr. Tst Tr. Tst Tr. Tst Tr. Tst Tr. Tst
Balance 91.62 89.92 92.18 89.76 91.10 90.24 92.18 90.88 92.30 91.52 92.30 90.08

Bupa 60.73 57.68 77.45 58.84 59.71 58.26 61.09 57.68 68.87 59.42 75.85 61.16

Cleveland 92.22 36.01 94.76 40.75 90.02 53.21 92.81 50.50 94.00 51.51 95.86 53.21

Ecoli 76.18 72.64 71.26 64.84 69.98 67.58 77.37 71.45 68.35 61.28 88.35 82.16

Glass 66.28 57.95 75.09 60.30 55.94 51.87 69.21 59.86 77.21 64.50 78.73 63.57

Haberman 74.57 72.88 78.42 72.56 73.83 73.53 74.73 72.88 75.88 72.88 78.51 73.22

Iris 92.94 92.67 98.32 94.67 93.61 92.00 97.31 94.67 97.98 96.00 98.49 94.00

Magic 75.98 74.87 83.64 78.86 73.31 72.66 77.06 75.08 81.63 78.92 83.37 79.13

New-Thyroid 86.32 84.65 98.25 94.88 81.75 80.93 86.43 85.12 90.29 86.05 99.18 94.88

Pageblocks 92.73 91.42 94.38 93.06 91.50 90.88 92.87 91.42 93.14 91.24 94.42 93.61

Penbased 98.66 94.27 99.50 93.09 95.31 92.27 98.95 94.36 99.11 95.55 99.59 95.09

Pima 75.45 72.53 81.94 73.69 69.71 67.97 76.30 72.39 78.55 74.08 81.55 74.22

Ring 59.53 52.70 96.92 85.81 51.17 50.41 59.66 52.43 93.81 85.81 96.14 88.78

Vehicle 65.85 60.88 78.78 66.55 54.87 51.55 68.99 60.05 74.08 63.24 77.89 66.08

Wine 98.73 92.67 100.00 93.81 98.02 94.90 99.86 94.33 100.00 94.38 100.00 94.92

Wisconsin 98.17 90.49 99.27 93.71 97.65 96.05 98.39 96.05 98.68 96.19 99.08 95.75

Mean 81.62 74.64 88.76 78.45 77.97 74.02 82.70 76.20 86.49 78.91 89.96 81.24

Taking into account all of these results, we have shown the

good synergy between both tuning models in a cooperative

methodology exploiting the advantages that each tuning

approach provides separately.

TABLE III

HOLM TEST TO COMPARE ALL THE METHODOLOGIES. THE

COOPERATIVE TUNING METHODOLOGY IS SELECTED AS THE CONTROL

METHOD.

i Algorithm z p α/i Hypothesys (α = 0, 05)
5 Chi 4.400 1.082E-5 0.01 Rejected for

Chi IVFS Coop
4 Chi IVFS 4.308 1.644E-5 0.0125 Rejected for

Chi IVFS Coop
3 Chi IVFS Amp 3.117 0.002 0.017 Rejected for

Chi IVFS Coop
2 Chi GTS 2.796 0.005 0.025 Rejected for

Chi IVFS Coop
1 Chi IVFS GTS 1.054 0.292 0.05 Not rejected

TABLE IV

WILCOXON TEST TO COMPARE THE COOPERATIVE TUNING

METHODOLOGY AGAINST THE LATERAL TUNING APPLIED TO THE

FRBCS WITH IVFSS.

Comparison R+ R− Hypothesys p-value
(α = 0.05)

Chi IVFS Coop 118.0 35.0 Rejected for 0.049
vs. Chi IVFS GTS Chi IVFS Coop

Finally, in order to illustrate the effect of the cooperative

tuning methodology in the fuzzy partitions, Table V depicts

by columns the results of the tuning process for the iris

data-set. The first column refers to the variable studied, the

second column shows the fuzzy partition in the initial FRBCS

with IVFSs generated by the Chi et al.’s algorithm. Next,

we present the final values of the genes after the tuning

process and the last column depicts the representation of each

fuzzy partition afterward of the post-processing step. First

of all, the final values of the genes confirms the necessity

of the contextualization of each linguistic label as no fuzzy

partition remains in its initial state. Furthermore, we show

that for the first and second variables all linguistic labels

are displaced slightly to the right while their amplitudes do

not suffer large variations except in two cases, one for each

variable. Regarding the two last variables, we show that their

amplitude tend to shrink considerably and in both variables

one linguistic label is displaced a lot from its initial position.

In conclusion, since the amplitude of the upper bound several

linguistic labels decrease, we can asseverate that the initial

fuzzy partitions are quite well defined. This fact is especially

significant in the two last variables which, knowing the

features of this data-set, are enough to discriminate well

among all the classes.

VI. CONCLUSIONS

In this work we have proposed the application of a

post-processing genetic model applied to the FRBCSs with

IVFS that performs simultaneously both the tuning of the

amplitude of the upper bound of the IVFS and the lateral

tuning, based on the 2-tuples fuzzy linguistic model. The

aim of this methodology is to perform a good cooperation

of both approaches in order to improve the performance of

the initial fuzzy system.

The achieved empirical results shown that, on one hand,

tuning models improve their respective initial systems (both

the basic FRBCS and the FRBCS with IVFSs) and, on

the other hand, our cooperative tuning methodology is sta-

tistically better than the tuning of the amplitude and the

lateral tuning applied to the FRBCS with IVFSs. In this

way, we handle in a proper way the uncertainties of the

system by means of IVFSs. The higher performance of our

cooperative methodology seems to prove the goodness of our

methodology, reaching a better tuning of the membership

functions to the context of each problem.
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