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a b s t r a c t

Most of the decision support systems for balancing industrial assembly lines are designed to report a
huge number of possible line configurations, according to several criteria. In this contribution, we tackle
a more realistic variant of the classical assembly line problem formulation, time and space assembly line
balancing. Our goal is to study the influence of incorporating user preferences based on Nissan automo-
tive domain knowledge to guide the multi-objective search process with two different aims. First, to
reduce the number of equally preferred assembly line configurations (i.e., solutions in the decision space)
according to Nissan plants requirements. Second, to only provide the plant managers with configurations
of their contextual interest in the objective space (i.e., solutions within their preferred Pareto front
region) based on real-world economical variables. We face the said problem with a multi-objective ant
colony optimisation algorithm. Using the real data of the Nissan Pathfinder engine, a solid empirical
study is carried out to obtain the most useful solutions for the decision makers in six different Nissan sce-
narios around the world.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

An assembly line is made up of a number of workstations, ar-
ranged in series and in parallel, through which the work progresses
on a product flows, thus composing a flow-oriented production
system. Production items of a single type (single-model) or of sev-
eral types (mixed-model) visit stations successively, where a sub-
set of tasks of known duration are performed on them. Assembly
lines are of great importance in the industrial production of high
quantity standardised commodities and more recently even gained
importance in low volume production of customised products
(Boysen, Fliedner, & Scholl, 2008).

The assembly line configuration involves determining an opti-
mal assignment of a subset of tasks to each station of the plant ful-
filling certain time and precedence restrictions. In short, the goal is
to achieve a grouping of tasks that minimises the inefficiency of the
line or its total downtime and that respects all the constraints im-
posed on the tasks and on the stations. Such problem is called
assembly line balancing (ALB) (Scholl, 1999) and arises in mass
manufacturing with a significant regularity both for the first-time
installation of the line or when reconfiguring it. It is thus a very
ll rights reserved.
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complex combinatorial optimisation problem (known to be NP-
hard) of great relevance for managers and practitioners.

Due to this reason, ALB has been an active field of research over
more than half a century and a large branch of research has been
developed to support practical assembly line configuration plan-
ning by suited optimisation models. The first family of ‘‘academic”
problems modelling this situation was known as Simple Assembly
Line Balancing Problems (SALBP) (Baybars, 1986; Scholl, 1999), and
only considers the assignment of each task to a single station in
such a way that all the precedence constraints are satisfied and
no station workload time is greater than the line cycle time. When
other considerations are added to those of the SALBP family, the
problems are known in the literature by the name of General
Assembly Line Balancing Problems (GALBP). An up-to-date analysis
of the bibliography and available state of the art procedures can be
found in Scholl and Becker (2006) for the SALBP family of prob-
lems, and in Becker and Scholl (2006) for the GALBP ones. More-
over, a generic classification scheme for the field of ALB
considering many different variants is also provided in a recent pa-
per by Boysen, Fliedner, and Scholl (2007).

In spite of the great amount of proposed SALBP extensions,
there remains a gap between requirements of real configuration
problems and the status of research (Boysen et al., 2008). This
gap could be due to different reasons making the mathematical
models far from real-world assembly systems: (i) the consideration
of a single or only a few SALBP practical extensions at a time, when
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real-world assembly systems require a lot of these extensions to be
considered simultaneously; (ii) their formulation as a single-objec-
tive problem, when the overall assembly objectives (such as pro-
duction rate, cost of operation, buffer space, etc.) are of a multi-
dimensional character (Malakooti & Kumar, 1996); and (iii) the
existence of several interesting characteristics present in practical
line balancing problems are still not covered by any of the existing
models.

As a result of the observation of the ALB operation in an auto-
motive Nissan plant from Barcelona, Spain, Bautista and Pereira re-
cently proposed a SALBP extension aiming to take a step ahead on
the latter issue. They considered an additional space constraint to
get a simplified but closer version to real-world problems, defining
the time and space assembly line balancing problem (TSALBP)
(Bautista & Pereira, 2007). TSALBP presents eight variants depend-
ing on three optimisation criteria: m (the number of stations), c
(the cycle time), and A (the area of the stations). In this paper,
we tackle the 1/3 variant of the TSALBP, which tries to jointly min-
imise the number of stations and their area for a given product cy-
cle time, a complex and realistic multi-criteria problem in the
automotive industry.

Multi-criteria optimisation (Chankong & Haimes, 1983; Ehrgott,
2000; Gal, Stewart, & Hanne, 1999; Steuer, 1986) is a major area of
research and applications in operations research (OR) and manage-
ment sciences. Multi-objective optimisation (MOO) problems as
the said TSALBP variant are frequently encountered in practice.
There are often different criteria measuring the ‘‘quality” of a solu-
tion and it is not possible to select a most important criterion or to
combine them into a single-objective function. In the context of
ALB, and in relation with the TSALBP-1/3, consider for example a
plant manager that has to define an assembly line configuration
or to balance again an existing line to satisfy a given annual pro-
duction rate (i.e., fulfilling a specific cycle time) with a clear space
restriction related to the available place in her or his current plant.
Each possible valid line configuration satisfying the cycle time will
require a different number of stations – that the decision maker
(DM) also wants to minimise as much as possible to reduce the
staff costs- and will occupy a concrete area – that must also be
minimised for obvious industrial cost reasons-. In such case, com-
pany managers would like to have an algorithm to compute a set of
good solutions (instead of a single solution) with various trade-offs
between the two different criteria (i.e., the number of stations and
the area of these stations in the assembly line configuration), so
they can select the most desirable solution after inspecting the var-
ious alternatives.

Ant Colony Optimisation (ACO) (Dorigo & Stützle, 2004; Mullen,
Monekosso, Barman, & Remagnino, 2009) is a metaheuristic ap-
proach for solving hard combinatorial optimisation problems. The
inspiring source of ACO is the pheromone trail laying and following
behaviour of real ants which use pheromones as a communication
medium. In analogy to the biological example, ACO is based on the
indirect communication of a colony of simple agents, called (artifi-
cial) ants, mediated by (artificial) pheromone trails. The pheromone
trails in ACO serve as a distributed, numerical information which
the ants use to probabilistically construct solutions to the problem
being solved and which they adapt during the algorithm’s execu-
tion to reflect their search experience. Some examples of applica-
tions of ACO algorithms to production and management science
are assembly line balancing, production, project scheduling, and
flowshop optimisation (Abdallah, Emara, Dorrah, & Bahgat, 2009;
Bautista & Pereira, 2007; Behnamian, Zandieh, & Fatemi Ghomi,
2009; Merkle, Middendorf, & Schmeck, 2002; Sabuncuoglu, Erel, &
Alp, in press). Recently, multi-objective ant colony optimisation
(MOACO) algorithms have been shown as powerful search tech-
niques to solve complex MO NP-hard problems (Angus & Wood-
ward, 2009; García Martínez, Cordón, & Herrera, 2007).
In Chica, Cordón, Damas, and Bautista (2010) Chica, Cordón, Da-
mas, Bautista, and Pereira (2008b), we proposed the use of MOACO
to solve the TSALBP-1/3. In those contributions, our novel procedure
based on the Multiple Ant Colony System (MACS) algorithm (Barán &
Schaerer, 2003) clearly outperformed the well-known NSGA-II (Deb,
Pratap, Agarwal, & Meyarivan, 2002), the state-of-the-art evolution-
ary multi-objective optimisation (EMO) algorithm.

Nevertheless, although with the latter approach we managed to
obtain a successful automatic procedure to solve the problem, pro-
viding very good approximations of the ‘‘efficient frontier”, it still
presents an important drawback. Sometimes, in real-world prob-
lems, the experts do not want to evaluate so many solutions and
they feel much more comfortable on dealing with a smaller num-
ber of the most interesting solutions. This can be done by locating
the search in a specific Pareto front region or just by considering a
smaller Pareto set. In our problem, due to its realistic nature and
the absence of any information on DM preferences, large Pareto
sets with a huge number of different solutions are not suitable.
On the one hand, plant managers can be overwhelmed with the
excessive number of solutions found in the efficient solutions set,
many of them being different ALB configurations sharing the same
objective values. On the other hand, they can be only interested in
a local objective trade-off corresponding to a specific portion of the
efficient frontier collecting those most appealing solutions to their
industrial context. Any other efficient solution, although theoreti-
cally valid for the problem-solving in any context, would not be
interesting for them.

Therefore, the need of using explicit knowledge allowing us to
guide the multi-objective search and to get the more interesting
solutions for the plant DM in charge of the ALB in our problem be-
comes clear. As we are specifically interested on the TSALBP in
automotive industry scenarios, in the current contribution we
aim to extend the latter proposal for the TSALBP-1/3 based on
MACS by incorporating problem-specific information provided by
the Nissan plant experts. To do so, we introduce some novel proce-
dures for incorporating preference information into a MOACO algo-
rithm in order to simplify the DM task. These models will use an a
priori approach to incorporate the Nissan managers’ expertise elic-
ited in the form of preferences both in the decision variable and the
objective space. Notice that, this comprises a novelty since a priori
approaches have been less used in MOACO, EMO and other meta-
heuristics for MOO (Coello, Lamont, & Van Veldhuizen, 2007; Jones,
Mirrazavi, & Tamiz, 2002) than, for instance a posteriori ap-
proaches, which postpone the inclusion of preferences until the
search process is finished. Nevertheless, we should note that the
presented procedures are generic and can be applied without prob-
lems to any other TSALBP domain or even to other kinds of MOO
problems.

Our preferences in the decision variable space will aim to dis-
criminate between those promising line configurations having
the same objective values, i.e., the same trade-off between the
number of stations and their area (some preliminary work was
done in Chica, Cordón, Damas, Bautista, & Pereira (2008a)). In the
same conditions, a Nissan DM would prefer a solution with a more
balanced stations configuration since it provides less human re-
sources’ conflicts. In this way, the efficient solutions set size will
be reduced by providing the plant manager with only a single line
configuration for each objective value trade-off. Additionally, we
will show how the use of this kind of preference information also
increases the quality of the Pareto front approximation by increas-
ing the MACS convergence capability.

Meanwhile, the preferences in the objective space will deal with
an even more important task to ease the Nissan plant manager’s
task. It will aim to reduce the efficient frontier size by focusing only
on the most interesting specific portion to the DM according to the
economic factors of the country where the Nissan plant is located.
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These preferences will change with respect to the final location of
the industrial plant (scenario). Hence, we will use six real scenarios
around the world and two distinct approaches to incorporate pref-
erences in the objective space into the MACS algorithm: (a) by
units of importance, and (b) by setting a set of goals (some preli-
minary work in the latter approach was done in Chica, Cordón, Da-
mas, & Bautista (2009)). They will be based on two preference
incorporation models existing in EMO (Branke, Kaubler, & Sch-
meck, 2001; Deb, 1999).

Our MACS algorithm with preferences will be tested on both
academic real-like TSALBP-1/3 instances and a real-world Nissan
instance which has specific peculiarities with respect to the others.
The latter corresponds to the assembly process of the Nissan Path-
finder engine, developed at the Nissan industrial plant in Barcelona
(Spain). Real scenarios and cost data are used to test the behaviour
of the algorithms.

The paper is structured as follows. In Section 2, the problem for-
mulation, our MOACO proposal, and the experiments configuration
are explained. Then, the preferences in the decision space to filter
equally-preferred solutions and their experimentation are detailed
in Section 3. In Section 4, we introduce the need of incorporating
more advanced preferences in the objective space and we check
out the performance of the resulting algorithms on different Nissan
scenarios. Finally, some concluding remarks are discussed in Sec-
tion 5.
2. Preliminaries

The problem description and our MOACO approach to the
TSALBP-1/3 are presented in the first two sections. In the third sec-
tion, a brief summary on the usual way to incorporate preferences
in MOO is provided. Besides, we present the experimental setup
and the tackled problem instances.
2.1. The time and space assembly line balancing problem

The manufacturing of a production item is divided up into a set
V of n tasks. Each task j requires an operation time for its execution
tj > 0 that is determined as a function of the manufacturing tech-
nologies and the resources employed. Each station k is assigned
to a subset of tasks Sk (Sk # V), called its workload. Each task j
must be assigned to a single station k.

Each task j has a set of direct predecessors, Pj, which must be
accomplished before starting it. These constraints are normally
represented by means of an acyclic precedence graph, whose ver-
tices stand for the tasks and where a directed arc (i, j) indicates that
task i must be finished before starting task j on the production line.
Thus, if i 2 Sh and j 2 Sk, then h 6 k must be fulfilled. Each station k
presents a station workload time t(Sk) that is equal to the sum of
the tasks’ lengths assigned to the station k.

In general, SALBP (Scholl, 1999) focus on grouping together the
tasks belonging to the set V in workstations by an efficient and
coherent way. In short, the goal is to achieve a grouping of tasks
that minimises the inefficiency of the line or its total downtime
satisfying all the constraints imposed on the tasks and on the sta-
tions. The literature includes a large variety of exact and heuristic
problem-solving procedures as well as metaheuristics applied to
the SALBP (Baybars, 1986; Talbot, Patterson, & Gehrlein, 1986).

However, this SALBP does not model the real industry situation
in an accurate way. For example, the need of introducing space
constraints in assembly lines design can be easily justified since:
(i) there are some constraints to the maximum allowable move-
ment of the workers that directly limit the length of the worksta-
tion and the available space, (ii) the required tools and
components to be assembled should be distributed along the sides
of the line so, if several tasks requiring large areas for their supplies
are put together, the workstation would be unfeasible; and (iii) the
change of product which will need to be assembled keeping the
same production plant (line reconfiguration) sometimes causes
additional requirements of space.

A spatial constraint may be considered by associating a required
area aj to each task j and an available area Ak to each station k that,
for the sake of simplicity, we shall assume to be identical for every
station and equal to A:A = maxk2{1. . .n} {Ak}. Thus, each station k re-
quires a station area a(Sk) that is equal to the sum of areas required
by the tasks assigned to station k.

This leads us to a new family of problems called TSALBP in Bau-
tista and Pereira (2007). It may be stated as: given a set of n tasks
with their temporal tj and spatial aj attributes (1 6 j 6 n) and a pre-
cedence graph, each task must be assigned to a single station such
that: (i) every precedence constraint is satisfied, (ii) no station
workload time (t(Sk)) is greater than the cycle time (c), and (iii)
no area required by any station (a(Sk)) is greater than the available
area per station (A).

TSALBP presents eight variants depending on three optimisa-
tion criteria: m (the number of stations), c (the cycle time), and A
(the area of the stations). Within these variants there are four mul-
ti-objective problems and we will tackle one of them, the TSALBP-
1/3. It consists of minimising the number of stations m and the sta-
tion area A, given a fixed value of the cycle time c. We chose this
variant because it is quite realistic in the automotive industry.
The main supporting reasons for our decision were: (i) the annual
production of an industry plant is usually set by some market
objectives specified by the company. This rate and other minor as-
pects influence the specification of a fixed cycle time c, so the
assembly line needs to be balanced again taking into account the
new cycle time. (ii) When we set the cycle time c, we need to
search for the best number of stations m because the factory must
achieve the demand with the minimum number of workers. Fur-
thermore, searching for the station area is a justified objective be-
cause it can reduce the workers’ movements and the components
and system tools transfers. (iii) Some values for the objective m,
the number of stations, are not allowed in real conditions because
in automotive factories the number of workers are decided in ad-
vance and some changes can occur during a project or periods of
time. (iv) Not only the number of stations but also some station
areas may be unreachable. Undesirable areas are those which are
too small or too large because they can generate disturbing condi-
tions for workers or annoying and unnecessary movements among
the stations, respectively.

2.2. A MACS algorithm to solve the TSALBP-1/3 variant

In this section, we review our ACO proposal for solving the
TSALBP-1/3. It is based on the MACS algorithm, which was pro-
posed by Barán and Schaerer (2003) as an extension of Ant Colony
System (Dorigo & Gambardella, 1997) to deal with multi-objective
problems. The complete MACS description can be found in Barán
and Schaerer (2003), and our proposal is detailed in depth in Chica
et al. (2010).

MACS uses one pheromone trail matrix, s, and several heuristic
information functions, gk (in our case, g0 for the duration time of
each task tj, and g1 for their area aj). The transition rule is slightly
modified to attend to both heuristic information functions. Since
MACS is Pareto-based, the pheromone trails are updated using
the current non-dominated set of solutions (Pareto archive).

In our problem, although one solution is an assignment of dif-
ferent tasks to different stations, its construction cannot be per-
formed similarly to other assignment problems because the
number of stations is not fixed. Indeed, this is a variable to be min-
imised and we have to deal with the important issue of satisfying



Table 1
Used parameter values.

Parameter Value Parameter Value

Number of runs 10 Number of ants 10
Maximum run

time
900 s b 2

PC specifications Intel
Pentium™ D

q 0.2

2 CPUs at
2.80 GHz

q0 0.2

Operating system CentOS Linux
4.0

Ants’
thresholds

{0.2,0.4,0.6,0.7,0.9}

GCC 3.4.6 (2 ants per
threshold)

1 Available at: http://www.assembly-line-balancing.de.
2 The problem has been simplified by merging the data of the different kinds of

engines that are assembled in the industrial cell.
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precedence constraints. Using a constructive and station-oriented
approach (as usually done for the SALBP, Scholl & Becker, 2006)
we can face the precedence problem. Thus, our algorithm will open
a station and select one task among every candidate till a stopping
criterion is reached. Then, a new station is opened to be filled.

We analysed different settings for the heuristic information but
the experiments showed that the performance of the algorithm is
better if it is not considered (see Chica, Cordón, Damas, Bautista,
& Pereira, in press). Therefore, the new preference incorporation
proposals in this contribution are based on a MACS algorithm only
guided by the pheromone trail information.

This pheromone trail information has to memorise which tasks
are the most appropriate to be assigned to a station. Hence, pher-
omone has to be associated to a pair (stationk, taskj), k = 1, . . .,m,
j = 1, . . .,n, so our pheromone trail matrix has a bi-dimensional nat-
ure. We have used two station-oriented single-objective greedy
algorithms to obtain the initial pheromone value s0.

In addition, we introduced a new mechanism in the construc-
tion algorithm to close a station according to a probability distribu-
tion, given by the filling rate of the station. It helps the algorithm
reach more diverse solutions from closing stations by a probabilis-
tic process:

pðclosingÞ ¼
P
8i2Sk

ti

c

This probability is computed at each construction step so its value is
progressively increased. Once it has been computed, a random
number is generated to decide if the station is closed or not at that
time.

Furthermore, there is a need to look for a better intensification-
diversification trade-off. This objective can be achieved by means of
introducing different filling thresholds associated to the ants that
build the solution, so the solution construction procedure is modi-
fied. In this way, before deciding the closing of the station, the ant’s
filling threshold must be overcome. Thus, the higher the ant’s
threshold, the more filled the station will be because there will be
less possibilities to close the station during its construction process.

In this way, the ants population will show a highly diverse
search behaviour, allowing the algorithm to properly explore the
different parts of the optimal Pareto front by spreading the gener-
ated solutions.

2.3. Handling preferences in MOO

There have been much work on regarding how and when to
incorporate decisions from the DM into the search process. Numer-
ous techniques have been applied to solve multi-criteria problems
considering the DM domain knowledge such as outranking rela-
tions, utility functions, preference relations, or desired goals (Chan-
kong & Haimes, 1983; Ehrgott, 2000).

One of the most important question is the moment when the
DM is required to provide preference information. There are basi-
cally three ways of doing so (Ehrgott, 2000):

� Prior to the search (a priori approaches): There is a considerable
body of work in OR involving approaches performing prior
articulation of preferences. The main difficulty and disadvan-
tage of the approach is finding this preliminary global prefer-
ence information.
� During the search (interactiveapproaches): Interactive approaches

have been normally favoured by researchers because of the DM
can get better perceptions influenced by the total set of ele-
ments in a situation or perhaps, some preferences cannot be
expressed analytically but with a set of beliefs. Thus, the OR
community has been working with this approach for a long
time.
� After the search (a posteriori approaches): The main advantage of
incorporating preferences after the search is that no utility
function is required for the analysis. However, many real-world
problems are too large and complex to be solved using this
technique, or even the number of elements of the Pareto opti-
mal set that tends to be generated is normally too large to allow
an effective analysis from the DM.

Concerning the field of EMO and other metaheuristics for MOO,
most of the existing work is mainly based on a posteriori ap-
proaches where the only intervention of DMs is done once the
algorithm has reached the best possible approximation of the effi-
cient solutions set. However, this is sometimes problematic as the
process of selecting the most convenient set of solutions from a
complete efficient set is not particularly trivial. In most of the
cases, the DM is unable to choose a solution among the hundreds
or thousands computed (Miettinen, 1999).

Nevertheless, in the last few years we can find several EMO ap-
proaches based on eliciting goal information prior to the search (a
priori approaches) (Cvetkovic & Parmee, 2002; Deb & Branke,
2005) as well as handling preferences during the search (interac-
tive approaches, as done for instance in Phelps & Koksalan
(2003), and in Molina, Santana, Hernández-Díaz, Coello, & Cabal-
lero (2009)), which are becoming more and more usual and impor-
tant. A comprehensive survey on the incorporation of preferences
in EMO is studied in Coello et al. (2007). In addition, some EMO
researchers are starting to define a global framework considering
multi-criteria decision making (MCDM) as a conjunction of three
components: search, preference trade-offs, and interactive visual-
isation (Bonissone, 2008).

2.4. Experimental setup and problem instances

The problem instances and the parameter values used in this
contribution are detailed in the next two sections.

2.4.1. Problem instances
Three real-like problem instances with different features have

been selected for the experimentation: barthol2, barthold,
and weemag. Originally, these instances were SALBP-1 instances1

only having time information. However, we have created their area
information by reverting the task graph to make them bi-objective
(as done in Bautista & Pereira (2007)).

In addition, we have considered a real-world problem corre-
sponding to the assembly process of the Nissan Pathfinder engine,
developed at the Nissan industrial plant in Barcelona (Spain).2 The
assembly of these engines is divided in 378 operation tasks

http://www.assembly-line-balancing.de
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(grouped into 140). For more details about the Nissan instance, the
interested reader is referred to Bautista and Pereira (2007), in
which all the tasks and their time and area information are
specified.

2.4.2. Parameter values
The initial MACS algorithm and all its variants with preferences

which will be introduced in the next two sections have been run 10
times with 10 different seeds for each of the three real-like in-
stances and the Nissan instance. Every considered parameter value
is shown in Table 1.
3. Preferences in the decision space to reduce the number of
efficient solutions for the TSALBP

We have included preferences in the decision space to discrim-
inate between those solutions having the same objective values,
i.e., the same values for the number of stations and their area (no-
tice that, some preliminary work on this issue was done in Chica
et al. (2008a)). First, the description of these DM preferences, based
on the Nissan factories observation, is given. Then, some experi-
mentation is done and the behaviour of the MACS variants with
and without preferences is analysed.

3.1. Description of the used preferences for an idle module-phase of
production

Although the most usual application of preferences is aimed to
guide the search to the specific Pareto front regions which are
interesting for the DM (see Section 4), we also considered that
applying them on the decision variable space could be beneficial
for our framework.

Despite it is convenient to have a set of possible useful assembly
line configurations for the plant (see for instance, Dar-El & Rubi-
novitch, 1979), the reduction of the number of solutions presenting
the same objective values is highly justified in the TSALBP. In this
way, it will relieve managers for the tiring task of checking an ex-
tremely large number of possible solutions for the line balancing of
their plant.

Thus, it is important to establish some rules, based on the ex-
pert preferences, to choose among those solutions the most appro-
Table 2
Unary metrics for barthol2, barthold, Nissan, and weemag instances.

Mean (standard deviation)

barthol2 barthol

Number of non-dominated solutions
MACS 13.5 (2.84) 12 (1.41)
MACS preferences 10.8 (1.47) 12 (1.18)

Number of different Pareto front solutions
MACS 12.8 (2.79) 11 (0.89)

MACS preferences 10.8 (1.47) 12 (1.18)

Metric S
MACS 391719.09 (1204.82) 725348.1

MACS preferences 391410.59 (166.44) 726,088

Metric M2*

MACS 10.86 (2.07) 9.49 (0.5

MACS preferences 9.38 (1.2) 10.19 (0.

Metric M3*

MACS 61.99 (12.92) 407.91 (2
MACS preferences 64.82 (6.56) 403.31 (2

Number of applications of preferences-based domin
MACS preferences 8.3 (3.02) 5.6 (2.88
priate one according to the specific industrial context. This
addition of domain knowledge (using an a priori approach) (Bonis-
sone, Subbu, Eklund, & Kiehl, 2006; Coello et al., 2007) will allow us
to derive a Pareto set composed of a smaller number of more likely
solutions for the final user as well as it induces a better conver-
gence to the actual efficient frontier as a collateral effect.

In view of our observations of real Nissan plants, we can dis-
criminate between two solutions (assembly line configurations)
with the same cycle time, number of stations and area (c, m and
A values) changing the original dominance relation by considering
the following preferences based on Nissan domain knowledge:

(a) The workload of the plant must be well-balanced in every
station. For m stations, all the station workload times t(Sk)
for k = 1, . . .,m are alike. Due to this information, and consid-
ering the same number of employees per station, a well-bal-
anced plant provides less human resources’ conflicts.
Likewise, it eliminates the need of programming shifts
among the workers of the different stations.

(b) The needed space for toolboxes and other worker’s instru-
ments must be as similar as possible. This preference aims
to offer solutions in which every worker has the same work-
ing conditions. If we reduce the extra effort in movements
and the crowding feeling, that will eliminate industrial
disputes.

As can be seen, these industrial concepts have not got the
importance of the m and A objectives. Thus, considering them as
additional criteria and establishing a lexicographic order is not
appropriate for the problem. However, the ‘‘know-how” repre-
sented by (a) and (b) can be formulated by means of preference
measures allowing us to establish a priority between similar
solutions:

PtðrÞ ¼
Xm

k¼1

ðc � tðSkÞÞ2; PaðrÞ ¼
Xm

k¼1

ðA� aðSkÞÞ2

where r represents a solution (assembly line configuration) with
known c, A and m values. Sk is the set of tasks assigned to the k-
th station in r.

Bearing in mind these measures, the following preferences-
based dominance relations can be considered:
d Nissan weemag

571.9 (81.08) 15.6 (4.39)
7.2 (0.75) 7.9 (1.22)

7.6 (1.02) 8.2 (1.54)
7.2 (0.75) 7.8 (1.17)

9 (2127.41) 8889.75 (0.65) 65148.1 (5.66)

(2202.85) 8864.45 (31.9) 65151.6 (17.49)

8) 6.88 (0.78) 7.46 (1.26)

97) 6.54 (0.65) 7.15 (1.06)

0.95) 21.12 (1.31) 24.61 (1)
3.33) 19.62 (2.63) 24.39 (1.62)

ance
) 935.4 (231.36) 39.5 (18.19)



714 M. Chica et al. / Expert Systems with Applications 38 (2011) 709–720
Definition 1. A solution r1 is said to partially dominate (i.e., to be
more preferable for the plant DM than) another solution r2 with
respect to time – with both having identical c, A, and m values – if
Pt(r1) < Pt(r2).
Definition 2. A solution r1 is said to partially dominate (i.e., to be
more preferable for the plant DM than) another solution r2 with
respect to space – with both having identical c, A, and m values –
if Pa(r1) < Pa(r2).
Fig. 1. C metric values represented by means of boxplots for every problem
instance (from left to right, barthol2, barthold, Nissan, and weemag).

Fig. 2. The Pareto front for the barthol2 problem instance.

Table 3
Upper and lower bounds for the considered instances.

Problem instance m A

Lower Upper Lower Upper

barthol2 50 90 70 200
barthold 7 30 250 800
weemag 30 60 40 70
Nissan 16 40 16 40
Definition 3. A solution r1 is said to completely dominate (i.e., to
be totally preferable for the plant DM than) another solution r2

with respect to time and space – with both having identical c, A,
and m values – if: [Pt(r1) 6 Pt(r2)] ^ [Pa(r1) < Pa(r2)] _ [Pt(r1) <
Pt(r2)] ^ [Pa(r1) 6 Pa(r2)]

Of course, the decision between two solutions with different c, A
and m values is made by using the traditional dominance
relationship.

3.2. Experiments and analysis of results

Comparing different optimisation techniques empirically al-
ways involve the notion of performance and it is not an easy task.
Thus, we have used more than a single MOO performance index of
different kinds (as proposed in Zitzler, Thiele, Laumanns, Fonseca,
& Grunert da Fonseca (2003)): the number of total and different
(in the objective space) efficient solutions returned by each algo-
rithm, as well as the S, M2* and M3* metrics. S, the hypervolume
metric, measures the volume enclosed by the generated Pareto
front (it is the most used because it can determine the quality of
the obtained Pareto front in terms of both convergence and exten-
sion), M2* evaluates the distribution of the solutions, and M3* eval-
uates the extent of the obtained Pareto fronts3 (see Coello et al.
(2007) for a more detailed explanation on multi-objective perfor-
mance indices, classically called metrics). In addition, the number
of applications of the preferences-based dominance criterion is also
shown in Table 2.

On the other hand, we have considered the binary metric C
(Coello et al., 2007) to compare the obtained Pareto sets. Fig. 1
shows boxplots based on that metric which compare MACS with
and without preferences by calculating the dominance degree of
their respective generated efficient set approximations. Each rect-
angle contains four boxplots (from left to right, barthol2, bart-
hold, Nissan, and weemag) representing the distribution of the C
values for the ordered pair of algorithms. Each box refers to algo-
rithm A associated with the corresponding row (i.e., either MACS
with or without preferences) and algorithm B associated with the
corresponding column (i.e., the other one) and gives the fraction
of B covered by A (C(A,B)).

In the view of the obtained results, the preferences-based MACS
variant shows the best convergence and reduces the number of
non-dominated solutions with the same objective values as ex-
pected while keeping a similar value of different solutions. In some
cases, this reduction is quite important (see Nissan instance, from
an average of 571.9 solutions to 7.2), thus significantly reducing
the complexity of the desired solution selection for the plant DM.
We should also highlight that the real-world instance of Nissan
is the most appropriate to use preferences based on domain knowl-
edge. Indeed, the number of applications of the preferences-based
dominance is the highest one. Regarding the C metric analysis rep-
resented in Fig. 1, we can notice the similar convergence of MACS
3 M1* has not been applied because we do not know the optimal efficient frontier
for the problem instances.
with and without preferences. Nevertheless, the preferences-based
MACS variant seems to outperform MACS in some instances.

The graphical representation of the aggregated Pareto fronts4

for the barthol2 instance is shown in Fig. 2. We can arrive to the
same previous conclusions by observing it. MACS with and without
preferences achieve a very similar convergence, and even in some
cases the former gets slightly better results. We have only included
the obtained Pareto front for this problem instance for the lack of
space but pretty similar behaviours are obtained in the remainder.
4 In order to be able to properly show all the algorithm’s runs at one time, we
merged the approximations of the efficient frontiers it obtained in different runs
preserving only the global efficient solutions in an aggregated Pareto front.



Fig. 3. World locations of Nissan Motors factories.

5 http://laborsta.ilo.org.
6 Reported by Cushman & Wakefield Research, http://www.cushwake.com.
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4. Advanced objective space preferences to guide the search to
the interesting TSALBP Pareto front region

In Section 3, we defined a criterion that allowed us to discrim-
inate among line configurations having the same values of c, m, and
A from an industrial point of view. However, this is a useful mech-
anism but unfortunately it is not enough because of the realistic
nature of TSALBP. Therefore, we should provide managers with
only interesting and helpful solutions for their specific industrial
context, instead of providing them with all the possible best solu-
tions for their problems regardless the location of the plant. We
will incorporate this explicit knowledge in the objective space
using the Nissan expertise, considering again an a priori approach.

In the next sections, we describe the Nissan problem-specific
knowledge as well as various EMO preference incorporation mech-
anisms which will be embedded in our MACS algorithm to handle a
priori preferences. Figures with the obtained Pareto fronts are in-
cluded to show and analyse the results of the experimentation in
every case.

4.1. Removing unattainable assembly line configurations from the
obtained Pareto sets

As said in Section 2.3, if explicit domain-knowledge is not con-
sidered, the multi-objective algorithm can provide a vast set of
solutions. Obviously, every efficient solution, although valid to
solve the tackled problem, is not always appropriate in every spe-
cific real industrial design context, as the MOO algorithm does not
take those conditions into account by itself while the DM does.
Hence, providing plant managers with some TSALBP solutions that
are known in advance not to be attainable or interesting for them is
meaningless. In our problem, line configurations with extreme val-
ues of m or A must be directly discarded because of the following
reasons:

1. An assembly line configuration with a very large number of sta-
tions and a small area may be dangerous with respect to the
industrial implantation. This behaviour can be explained since,
for a single assembly line, the management of a high number of
employees can negatively condition the near future. Staff man-
agement is even more complicated in our problem context, the
automotive industry. On the other hand, solutions having a low
number of stations with a large area are prone to be problem-
atic when assembly lines need to be restarted and the absentee-
ism level is appreciable.

2. If we consider the value of the area, the same extreme values
must be avoided. Industrial configurations with an extremely
high area for the stations will result in an inefficient process
since workers’ movements will take a lot of time. In contrast,
the end result of adopting configurations with a low area will
cause the workers’ discomfort and their productivity will
decrease.

Consequently, the obtained efficient set could be restricted to
upper and lower bounds for both objectives, the number of stations
m and their area A, prior to the run of the MOACO algorithm. None
of the solutions being out of these bounds will be considered in the
search process as they will never be useful line configurations for
the DM of the plant. Table 3 shows these bounds, set by plant’s
DMs, for our problem instances as well as for the real case of
Nissan.

4.2. Manufacturing location costs based on Nissan expert knowledge

When a DM has a set of possible solutions (the non-dominated
solutions of the Pareto set) one of the most used criterion to choose
one or a subset of them is taking into account their cost of devel-
opment. In order to define some cost variables in the TSALBP with
the latter aim, we will consider two types of operational costs:

� Labour cost: Associated to the employees (and consequently, to
the number of stations m). It is defined as an average labour cost
per employee in the manufacture of motor vehicles industry
group. Real data are used in this paper (taken from the Interna-
tional Labour Organisation5) and US dollars are considered as
currency. Other indicators related to labour costs might be used
as well (productivity, working hours, etc.).
� Industrial cost: Directly associated to the station maintenance

cost. In order to collect objective data, we consider that cost is
proportional to the station area A. In our case, it was collected
from the 2007 Industrial Space Across the World report.6 The
used units for industrial cost are US dollars per square feet in
one year.

Naturally, both operational costs are not fixed. Their differences
are subject to the location a manager wants to set up the factory.
Thus, one efficient solution (assembly line configuration) is not
well-defined enough if we do not take into account its possible
location, that is, there is not enough information for the MOACO
algorithm to search for the desired efficient solution set (Coello
et al., 2007). Since our real-world problem belongs to a Nissan
industrial plant, the candidate locations for the industrial solution
may perfectly be one of the actual Nissan factory locations (scenar-

http://laborsta.ilo.org
http://www.cushwake.com


Table 4
Labour cost, productivity, and industrial cost.

Country Labour cost
per hour ($)

Productivity Labour cost
biased by
productivity

Industrial
space ($/
sq.ft.year)

Spain 28.36 21.67 1.31 15.59
Japan 30.60 25.61 1.19 19.51
Brazil 8.79 7.99 1.10 10.05
UK 31.61 30.13 1.05 28.91
USA 30.39 35.29 0.86 11.52
Mexico 6.57 9.24 0.71 5.02

Table 5
Units of importance for both objectives.

Country Labour cost
(objective f1:m)

Industrial space cost
(objective f2:A)

Brazil 2 0.2
Spain 1.5 0.1
Japan 0 0
Mexico 0 0
USA 0.2 1.25
UK 0.2 3
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ios). All the different Nissan Motors manufacturing locations all
over the world are red7-coloured in Fig. 3. We have selected six
of these countries to carry out our study, which together with their
real costs8 are shown in Table 4, in a descending order of labour
cost-productivity ratio.

From this data, industrial experts are able to set units of impor-
tance to the achievement of the two objectives, the number of sta-
tions m, and their area A, in order to define some preferences, or
even to set some goals depending on the countries the industrial
plant wants to be established. For example, in those countries
where the industrial cost (respectively, the labour cost) is quite
expensive, the objective m (respectively, the objective A) will be
more important to be minimised and hence its weight will be
higher.

4.3. Setting the plant manager preferences by means of units of
importance for the m and A objectives

Sometimes, it is quite difficult to exactly define the weighting of
different optimisation criteria, although the user has usually some
notions about what range of weightings might be reasonable. In
Branke et al. (2001), the authors present a simple and intuitive
way to integrate user’s preference into an EMO algorithm by defin-
ing linear maximum and minimum trade-off functions.

In the Guided Multi-Objective Evolutionary Algorithm (G-
MOEA) proposed by Branke et al. (2001), user preferences are taken
into account by modifying the definition of dominance. The ap-
proach allows the DM to specify, for each pair of objectives, maxi-
mally acceptable trade-offs. For example, in the case of two
objectives, the DM could define that an improvement by one unit
in objective f2 is worth a degradation of objective f1 by at most
a12 units. Similarly, a gain in objective f1 by one unit is worth at
most a21 units of objective f2.

In our case, an expert can provide our MACS algorithm for the
TSALBP-1/3 variant with the same units of importance for each
7 For interpretation of the references to colour in Fig. 3, the reader is referred to the
web version of this paper.

8 Productivity is measured as the Gross Domestic Product (purchasing power parity
(PPP) converted) per hour worked. This is the value of all final goods and services
produced within a nation in a given year, divided by the total annual hours worked
(source: Groningen Growth and Development Centre (University of Groningen)).
country location bearing in mind the costs of Table 4. A possible
definition for these units is shown in Table 5.

This information is then used to modify the traditional domi-
nance scheme as follows:

x � y$ ðf1ðxÞ þ a12f2ðxÞ 6 f1ðyÞ þ a12f2ðyÞÞ ^ ða21f1ðxÞ þ f2ðxÞ
6 a21f1ðyÞ þ f2ðyÞÞ

With this dominance scheme, only a part of the original Pareto front
remains non-dominated. This region is bounded by the solutions
where the trade-off functions are tangent to the optimal efficient
frontier. The original dominance criterion can be considered just
as a special case of the guided dominance criterion by choosing
a12 = a21 =1.

In the case of two objectives, as ours, the guided dominance cri-
terion corresponds to the standard dominance principle together
with a suitably transformed objective space. It is thus sufficient
to replace the original objectives with two auxiliary objectives
X1 and X2 and use them together with the standard dominance
principle (Deb & Branke, 2005):

X1 ¼ f1ðxÞ þ a12f2ðxÞ; X2 ¼ a21f1ðxÞ þ f2ðxÞ

In the case of the MACS algorithm, the transformation of the
dominance relation is as simple as in an evolutionary algorithm.
We have applied directly these modified relations to our scheme
with the units of importance of Table 5.

The obtained aggregated Pareto fronts are shown in Figs. 4 and
5 for every problem instance. The ‘‘MACS no specific location” line
Fig. 4. Pareto fronts for the barthol2 and barthold instances for different
scenarios using Branke’s units of importance alternative.



Fig. 5. Pareto fronts for the weemag and Nissan instances for different scenarios
using Branke’s units of importance alternative.

Table 6
Goal criteria for our objectives: number of stations m, and the area A (different
relational operators are used for each instance).

Problem instance Spain Japan UK

barthol2 m = 51 m = 60 m = 68
(=,6) A 6 120 A 6 100 A 6 90

barthold m 6 8 m 6 14 m 6 16
(2,6) A 6 650 A 6 500 A 6 400

weemag m 6 30 m 6 35 m 6 45
(6,2) A 2 [56,61] A 2 [46,51] A 2 [40,45]

Nissan+ m = 16 m = 23 m = 27
(=,=) A = 5.7 A = 3.8 A = 3
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shows the Pareto front achieved by the MACS algorithm without
considering any preference information (i.e., units of importance
in this case). This line also corresponds to the case of Japan and
Mexico, which have no discrimination between objectives (see Ta-
ble 5). The other lines show the MACS outputs with the different
units of importance of Brazil, Spain, UK, and USA.

The main idea we get from the observation of the figures is the
correct focus on a different efficient frontier region depending on
the scenario and its weights of importance. It can be clearly seen
how a plant manager from UK will not obtain the same solutions
than another from Brazil or Spain in every problem instance. How-
ever, depending on the instance, the features of the Pareto fronts
for the same scenario can change. For example, the USA scenario
gets much more solutions and a wider efficient solution set in
the barthol2 instance than in weemag. Thus, to get a more fine-
grained front it is necessary to study the specific instance in depth
and to set different units of importance for each of them.

Generally, Brazil and UK scenarios are more interested in the
extremes of the Pareto fronts since their units of importance are
clearly towards one objective (as stated, that happens because of
the high difference between the costs associated to each of the
two objectives). When the deviation of the units of importance
are high, as in these cases, the obtained approximations of the effi-
cient frontiers are narrower than in Spain and USA scenarios, in
which the area of interest is more vaguely described.

We should notice that, in some instances and locations, the
MACS variants with units of importance cannot achieve an equal
convergence to the efficient frontier than the ‘‘MACS no specific
location”, which is able to get some efficient solutions not provided
by the other MACS variants.

4.4. Setting the plant manager preferences by means of goals for the
objectives m and A

The aim of goal programming is to find a solution which will
minimise the deviation d between the achievement of the goal
and the aspiration target t (Romero, 1991). These goals can be used
as a set of preferences defined by the expert. There can be different
types of goal criteria, from which we have chosen four of the most
important, that is: less-than-equal-to (f(x) 6 t), greater-than-equal-
to (f(x) P t), equal-to (f(x) = t) and within a range (f(x) 2 [tl, tu]). For
example, we can set that the total area of an industry plant I could
be less than a number of specified squared metres or our number
of stations needs to be, if possible, within an interval of 100 and
200. In our specified scenarios, some preference relations can be
established by an expert, as done in Table 6 (Chica et al., 2009).
We have not considered the greater-than-equal-to relation since it
does not make sense in a minimisation problem like the TSALBP.

Deb proposed a technique to transform goal programming into
MOO problems which are then solved using an EMO algorithm
(Deb, 1999; Deb & Branke, 2005). The objective function of the
EMO algorithm attempts to minimise the absolute deviation from
the targets to the objectives. This approach was only used to per-
form the transformation from goals to objectives in Deb (1999).
However, it can be also used to incorporate preferences into any
MOO algorithm, like our MACS algorithm for the TSALBP-1/3
variant.

The goal programming problem can be modified to incorporate
preferences to the objective function by changing the original
objective functions as follows:
Goal
 Objective function
fi(x) 6 tj
 Minimise hfj(x) � tji

fi(x) P tj
 Minimise htj � fj(x)i

fi(x) = tjh i
 Minimise jfj(x) � tjj

fiðxÞ 2 tl

j; t
u
j

Minimise

max tl
j � fjðxÞ

D E
; fjðxÞ � tu

j

D E� �
Here, the operator h i returns the value of the operand if it is posi-
tive, otherwise it gives value zero. We have translated our prefer-
ence goals for each country in Table 6 to modified objective
functions following the conversion of Deb’s approach. Since our de-
fined goals are generic, our six initial scenarios have been grouped
into only three, that is, Spain, Japan, and UK. Due to their economic
characteristics, Spain is focused on line configurations that give
more importance to the labour costs (objective m, the number of
stations), UK needs solutions with less industrial cost (i.e., objective



Fig. 6. Pareto fronts for the barthol2 and barthold instances for different
scenarios using Deb’s alternative.

Fig. 7. Pareto fronts for the weemag and Nissan instances for different scenarios
using Deb’s alternative.
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A, the maximum area of the stations), and Japan is more interested
in a trade-off between the two costs. The Pareto fronts generated by
MACS with the goals in Table 6 for the different scenarios are shown
in Figs. 6 and 7.

These approximations of the efficient frontiers show how the
use of goals in the scenarios gets solutions belonging to different
areas. The solutions for the Spanish plant manager will have the
lowest number of stations while those for the British expert will
have the minimum station area of the whole Pareto front. In the
case of the Japan scenario, configurations with a good trade-off be-
tween number of stations and area are achieved. Only in barthol2

instance (Fig. 6), Japanese expert’s solutions overlap those for the
British expert. In the rest of instances, each scenario has its own
Pareto front area, distinct to the others.

Generally, the convergence of the algorithm with goal prefer-
ences is the same than in ‘‘MACS no specific location”, although
the pseudo-optimal solutions sometimes belongs to ‘‘MACS no spe-
cific location” and others to a location-specific MACS.

4.5. A comparison between both approaches

In Fig. 8, boxplots based on the C metric comparing first,
Branke’s approach-based MACS variants with the general MACS
(we remind that Japan-Mexico location used the MACS algorithm
without preferences) and second, MACS variants with Deb’s ap-
proach are shown. In the first boxplot, we can see how MACS for
Japan-Mexico gets a low number of solutions dominated by the
other algorithms. The reason is that MACS for Japan-Mexico
spreads its search along all the Pareto front region, and this is
not done by the other variants. In the second boxplot, the same re-
sults for the comparison among MACS variants using goals appear.
Although the big picture is the same, a slightly better convergence
of MACS without preferences with respect to MACS with prefer-
ences can be observed using Deb’s goals.

Again, bearing in mind Fig. 8, we can compare how the MACS
algorithm for a given location behaves in comparison with MACS
for the other locations. In this case, the result of both approaches
is quite similar in terms of convergence. Since the location-specific
MACS focuses on a different Pareto front region, its solutions will
not be dominated by the others and will dominate the rest of the
variants’ solutions.

Hence, we cannot affirm with no doubt which of both ap-
proaches performs better and they can be considered in principle
as alternative approaches. The introduction of preferences in the
objective space with units of importance, that is, Branke’s ap-
proach, drive the search towards the interesting solutions for the
expert with the same accuracy as Deb’s approach using goals does.
In addition, the number of solutions got by Branke and Deb’s ap-
proaches in the different scenarios depends on the problem
instance.

However, the main difference of both approaches is the repre-
sentation of the preferences, since to be able to define goals we
need to know exactly which values of our objectives we want to
achieve. In contrast, defining our preferences by means of units
of importance can be easily done and there is no need to know



Fig. 8. C metric values represented by means of boxplots comparing the general
MACS with the specific variants for different scenarios using first, Brake’s and
second, Deb’s alternative.
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the specific context of each problem instance. In this sense,
Branke’s approach would be easier to be applied for plant manager
DMs in real scenarios.
5. Concluding remarks

In this contribution, we have studied the inclusion of prefer-
ences based on domain knowledge to tackle the TSALBP-1/3, both
in the decision and objective spaces. A previous MOACO proposal
based on the MACS algorithm was extended and improved by
using them. Bi-objective variants of three real-like ALB problem in-
stances as well as a real problem from a Nissan industrial plant in
Spain have been used in an experimental study for six different
Nissan scenarios.

From the obtained results we have found out that the enrich-
ment of MACS with domain knowledge related to the obtaining
of a well-balanced configuration of the station workloads and areas
provides excellent results. The number of solutions in the Pareto
set having the same objective values is reduced, what simplifies
the selection of the best assembly line configuration for plant ex-
perts as they need to check a lower number of alternatives. More-
over, a better convergence is obtained with respect not to
considering the expert knowledge.

Two ways of incorporating preferences in the objective space to
achieve only the Pareto front region which has the desirable trade-
off between the number of stations m and their area A were applied
by means of units of importance and goals. The application of these
advanced preferences to the different Nissan scenarios was actu-
ally successful since they helped the MOACO algorithm to provide
efficient solutions sets only focused on the solutions that plant
managers are more interested on.

Some future works arise from this contribution: (i) more ad-
vanced ways of incorporating a priori expert knowledge in the
algorithm must be studied, and (ii) the use of interactive proce-
dures within the algorithm can also be beneficial (Hanne, 2000;
Molina et al., 2009).
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