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a b s t r a c t

Among the computational intelligence techniques employed to solve classification prob-
lems, Fuzzy Rule-Based Classification Systems (FRBCSs) are a popular tool because of their
interpretable models based on linguistic variables, which are easier to understand for the
experts or end-users.

The aim of this paper is to enhance the performance of FRBCSs by extending the Knowl-
edge Base with the application of the concept of Interval-Valued Fuzzy Sets (IVFSs). We
consider a post-processing genetic tuning step that adjusts the amplitude of the upper
bound of the IVFS to contextualize the fuzzy partitions and to obtain a most accurate solu-
tion to the problem.

We analyze the goodness of this approach using two basic and well-known fuzzy rule
learning algorithms, the Chi et al.’s method and the fuzzy hybrid genetics-based machine
learning algorithm. We show the improvement achieved by this model through an exten-
sive empirical study with a large collection of data-sets.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Fuzzy Rule-Based Classification Systems (FRBCS) [26] is an useful tool to deal with the classification problem, stressing
the significance of linguistic variables and fuzzy logic [40,41]. They are widely employed because of their capability to built
a linguistic model interpretable to the users and the possibility of mixing different information as the one coming from
expert knowledge and information coming from mathematical models or empiric measures. The significance of FRBCSs
can be observed by the high quantity of real applications in which they have been applied including, but not limited to,
detection of intrusions [36], medical applications [1,37], Shewhart control charts [42], among others.

As we state above, one of the main advantages of the FRBCSs is the high interpretability of the output model. However,
the disadvantage of these systems is their lack of accuracy when dealing with some complex systems, due to the inflexibility
of the concept of linguistic variable, which imposes hard restrictions to the fuzzy rule structure [7]. For example, sometimes
when the classes are overlapped, we have not exact knowledge about the membership degree of some elements to the fuzzy
sets that characterize the attributes defining the class. This fact suggests to represent the membership degrees of the objects
to the fuzzy set by means of an interval. That is, to employ the Interval-Valued Fuzzy Sets (IVFSs) to characterize the linguis-
tic labels that compound the attributes of the problem.
. All rights reserved.
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In [29,33] the authors show that IVFSs are a particular case of Type-2 Fuzzy Sets. They are natural concepts addressing
the apparent paradox, faced by standard fuzzy sets, of modeling imprecise concepts using precise membership functions
(MFs) (see foreword by Dubois in [8]). IVFSs allow to take into account the effect of the ignorance of the expert in the MF
definition (see [10]). IVFSs have also been applied in other topics like decision making [30,38] or image processing [9],
among others.

The aim of this paper is to enhance the performance of FRBCSs by extending the Knowledge Base (KB) with the application
of the concept of IVFSs. The main novelty of our approach is the use of IVFSs in the Fuzzy Reasoning Method (FRM), which
will allow us to handle the uncertainty that is inherent to the definition process of the MFs. In this sense, we want to stress
that the learning algorithms we will use are those proposed in the original works.

Furthermore, we consider the application of a post-processing genetic tuning step in order to adjust the amplitude of the
upper bound of the IVFS to contextualize the fuzzy partitions and to obtain a most accurate solution to the problem. This
issue is due to the fact that the length of the intervals representing the membership of each element to the IVFS does not
need to be the same, because the expert does not have the same ignorance in the definition of the MFs to each element.

In the specialized literature we can find different proposals that performs a genetic tuning to the KB of the fuzzy system,
both applied to modeling and classification problems [2,4,17]. These approaches try to induce a better cooperation among
the rules by acting on one or two different model components: the fuzzy partition parameters stored in the Data Base
(DB) and the Rule Base (RB). The amplitude of the support of each label determines the specificity and involves a potential
accuracy improvement, since it could determine the best covering region of the labels. For example, in [3] the authors pro-
pose to tune the MF of each label adjusting both the position (performing lateral displacements) and the length of the sup-
port (performing variations in the amplitude).

We analyze the goodness of this approach using two basic and well-known fuzzy rule learning algorithms, the Chi et al.’s
method [11] and the Fuzzy Hybrid Genetics-Based Machine Learning (FH-GBML) algorithm by Ishibuchi and Yamamoto [28].
We have chosen [11] since it is one of the most widely used algorithms, and [28] due to the fact that it is a more robust fuzzy
rule extraction algorithm which allows us to obtain a higher quality RB [32]. Both algorithms are available within the KEEL
software tool [5] (http://www.keel.es).

To carry out the empirical analysis, we have selected 24 data-sets from UCI repository [6], using the standard accuracy
rate as evaluation measure. All the results from the comparisons appear along the text in different tables showing the
improvements obtained by adapting to the IVFSs the two cited methods. To strengthen further our experimental study,
we also compare our results with those obtained by a recent method proposed by Dombi and Gera in [15] (called along
the paper GAGRAD method). Furthermore, our experimental results are supported by means of a strong statistical study
using non-parametric tests as stated in [14,19,21].

In order to do that, this paper is organized as follows. First, we present in Section 2 the basic concepts employed in the
paper for FRBCSs and IVFSs. In Section 3 we describe in detail the IVFSs model, showing the modifications introduced in the
FRM, and the proposal to tune the amplitude of the upper bound of the IVFSs. Section 4 shows our experimental framework
and the experimental analysis carried out. Finally, some concluding remarks are presented in Section 5.
2. Preliminaries: Fuzzy rule-based classification systems and interval-valued fuzzy sets

In this section we carry out a brief introduction of FRBCSs and the IVFSs theory. First, we will describe the type of fuzzy
rules used in this work, together with the rule weight and the FRM. Next, we will present the rule learning algorithms used:
the Chi et al.’s rule generation approach [11] and the FH-GBML algorithm [28]. Finally, we will define some basic concepts of
the IVFSs theory.
2.1. Fuzzy rule-based classification systems

To deal with the classification problem there exists a lot of techniques in the data mining field. Among them, FRBCSs pro-
vides an interpretable model by means of the use of linguistic labels in their rules.

Consider m labeled patterns xp = (xp1, . . .,xpn), p = 1,2, . . . ,m where xpi is the ith attribute value (i = 1,2, . . . ,n). We have a set
of linguistic values (and their MFs) describing each attribute. We use fuzzy rules of the following form:
Rule Rj : If x1 is Aj1 and . . . and xn is Ajn then Class ¼ Cj with RWj; ð1Þ
where Rj is the label of the jth rule, x = (x1 , . . . ,xn) is an n-dimensional pattern vector, Aji is an antecedent fuzzy set represent-
ing a linguistic term, Cj is a class label, and RWj is the rule weight [25]. Specifically, the rule weight is computed using the
Penalized Certainty Factor (PCF) defined in [27] as:
PCFj ¼
P

xp2ClassCj
lAj
ðxpÞ �

P
xpRClassCj

lAj
ðxpÞPm

p¼1lAj
ðxpÞ

: ð2Þ
If xp = (xp1, . . . ,xpn) is a new pattern and if L denotes the number of rules in the RB and M the number of classes of the prob-
lem, the steps of the FRM [12] are the following:

http://www.keel.es
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1. Matching degree, that is, the strength of activation of the if-part for all rules in the RB with the pattern xp. To compute it we
employ a product or minimum T-norm.
lAj
ðxpÞ ¼ TðlAj1

ðxp1Þ; . . . ;lAjn
ðxpnÞÞ; j ¼ 1; . . . ; L: ð3Þ
2. Association degree. To compute the association degree of the pattern xp with the M classes according to each rule in the RB.
When using rules like (1) this association degree only refers to the consequent class of the rule (i.e. k = Class(Rj)).
bk
j ¼ h lAj

ðxpÞ;RWk
j

� �
k ¼ 1; . . . ;M; j ¼ 1; . . . ; L: ð4Þ
3. Pattern classification soundness degree for all classes. We use an aggregation function that combines the positive degrees of
association calculated in the previous step.
Yk ¼ f bk
j ; j ¼ 1; . . . ; L and bk

j > 0
� �

; k ¼ 1; . . . ;M: ð5Þ
4. Classification. We apply a decision function F over the soundness degree of the system for the pattern classification for all
classes. This function will determine the class label l corresponding to the maximum value.
FðY1; . . . ;YMÞ ¼ arg max
k¼1;...;M

ðYkÞ: ð6Þ
2.2. Chi et al. rule generation algorithm

To generate the fuzzy RB this FRBCSs design method determines the relationship between the variables of the problem
and establishes an association between the space of the features and the space of the classes by means of the following steps:

1. Establishment of the linguistic partitions. Once the domain of variation of each feature Ai is determined, the fuzzy partitions
are computed.

2. Generation of a fuzzy rule for each example xp = (xp1, . . . ,xpn,Cp). For this it is necessary:
2.1 To compute the matching degree l(xp) of the example to the different fuzzy regions using a conjunction operator

(usually modeled with a minimum or product T-norm).
2.2 To assign the example xp to the fuzzy region with the greatest membership degree.
2.3 To generate a rule for the example, whose antecedent is determined by the selected fuzzy region and whose con-

sequent is the label of class of the example.
2.4 To compute the rule weight.

We must remark that rules with the same antecedent can be generated during the learning process. If they have the same
class in the consequent we just remove one of the duplicated rules, but if they have a different class only the rule with the
highest weight is kept in the RB.

2.3. Fuzzy hybrid genetic based machine learning rule generation algorithm

Different genetic fuzzy systems have been proposed in the specialized literature for designing fuzzy rule-based systems in
order to avoid the necessity for linguistic knowledge from domain experts [13,18,23,34].

The basis of the method described here, the FH-GBML algorithm [28], consists in a Pittsburgh approach where each rule
set is handled as an individual. It also contains a Genetic Cooperative Competitive Learning (GCCL) approach (an individual
represents an unique rule), which is used as a kind of heuristic mutation for partially modifying each rule set, because of its
high search ability to efficiently find good fuzzy rules.

This method simultaneously uses four fuzzy set partitions for each attribute, as shown in Fig. 1. As a result, each anteced-
ent attribute is initially associated with 14 fuzzy sets generated by these four partitions as well as a special ‘‘do not care” set,
i.e., 15 in total.

The main steps of this algorithm are described below:

Step 1: Generate Npop rule sets with Nrule fuzzy rules.
Step 2: Calculate the fitness value of each rule set in the current population.
Step 3: Generate (Npop � 1) rule sets by selection, crossover and mutation in the same manner as the Pittsburgh-style algo-

rithm. Apply a single iteration of the GCCL-style algorithm (i.e., the rule generation and the replacement) to each of
the generated rule sets with a pre-specified probability.

Step 4: Add the best rule set in the current population to the newly generated (Npop � 1) rule sets to form the next population.
Step 5: Return to Step 2 if the pre-specified stopping condition is not satisfied.
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Fig. 1. Four fuzzy partitions for each attribute membership function.
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Next, we will describe every step of the algorithm:

� Initialization: Nrule training patterns are randomly selected. Then, a fuzzy rule from each of the selected training patterns
is generated by choosing probabilistically (as shown in (7)) an antecedent fuzzy set from the 14 candidates
Bk(k = 1,2, . . . ,14) (see Fig. 1) for each attribute. Then each antecedent fuzzy set of the generated fuzzy rule is replaced
with don’t care using a pre-specified probability Pdon0t care.
PðBkÞ ¼
lBk
ðxpiÞP14

j¼1lBj
ðxpiÞ

: ð7Þ
� Fitness computation: The fitness value of each rule set Si in the current population is calculated as the number of correctly
classified training patterns by Si. For the GCCL approach the computation follows the same scheme, counting the number
of correct hits for each single rule.
� Selection: It is based on binary tournament.
� Crossover: The substring-wise and bit-wise uniform crossover are applied in the Pittsburgh-part. In the case of the GCCL-

part only the bit-wise uniform crossover is considered.
� Mutation: Each fuzzy partition of the individuals is randomly replaced with a different fuzzy partition using a pre-spec-

ified mutation probability for both approaches.

For more details about this proposal, please refer to [28].

2.4. Interval-valued fuzzy sets

As we stated in the introduction, in many cases the MF of a fuzzy set representing a linguistic term can not be defined
unequivocally on the basis of available information. The selection of the MF is very difficult to carry out without losing
any information. IVFSs allow to take into account this shortage of information because they assign as membership an inter-
val instead of a single number. These sets were born in 1970’s with the work of Sambuc (see [35]). In the 1980’s, Gorzalczany
denoted these sets for the first time as IVFSs [22].

We must point out that, in the literature, IVFSs are also called Interval Type-2 Fuzzy Sets. Liang and Mendel have carried
out a deep study about these sets in [31] and Wu and Mendel gave uncertainty measures for these sets in [39].

Definition 1. An Interval-valued Fuzzy Set (IVFS) A on the universe U – ; is given by:
A ¼ fðu;AðuÞÞju 2 Ug;
where
AðuÞ ¼ AðuÞ;AðuÞ
h i

2 Lð½0;1�Þ;
being
Lð½0;1�Þ ¼ fx ¼ ½x; �x�jðx; �xÞ 2 ½0;1�2 and x 6 �xg;



Fig. 2. Examples of IVFSs.
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Obviously, AðuÞ ¼ ½AðuÞ;AðuÞ� is the membership degree of u 2 U. Fig. 2 depicts two examples of IVFSs: the interval
½AjðuÞ;Aju� and not a number from [0,1] is assigned as the membership to each element u 2 U.

Referring to the earlier considerations, it seems that the idea of an IVFS, from the point of view of practice, is a sufficiently
complete generalization of the concept of fuzzy set. On the other hand, it is not such a conspicuous generalization that could
have a considerably negative influence on the effectiveness of approximate inference, based on IVFSs, which will be pre-
sented in Section 3.2.
3. Fuzzy rule-based classification systems based on interval-valued fuzzy sets and genetic amplitude tuning

The previous considerations suggest the use of IVFSs to improve the performance of FRBCSs. In order to do that, we model
the fuzzy partitions by means of IVFSs, the rule weight will be composed by two numbers (Section 3.1) and we perform
changes in the FRM (Section 3.2). In the tuning step the amplitude of the upper bound of each IVFS is modified to contex-
tualize the fuzzy partitions to the problem to solve (Section 3.3).
3.1. Interval-valued fuzzy sets based fuzzy partition

From any KB, which can be generated by an ad hoc method, we include the IVFSs model by adding an upper bound for
each fuzzy partition, centered in the maximum of the MF and with a higher amplitude.

In Fig. 3 we can see an example of a linguistic variable represented by 3 labels (IVFSs) in the initial state. The solid lines
represent the lower bounds (Aj) and the dashed lines represent the upper bounds ðAjÞ. We must point out that in the initial
situation the amplitude of the upper bound is 50% greater than the one of the lower bound (see Section 3.3.1). We must re-
mark that we note ‘‘upper” and ‘‘lower” bounds referring to the corresponding fuzzy labels, following the standard notation
of the IVFSs literature.

We will employ rules in the form presented in Section 2.1 where each Aji will be an IVFS instead of a fuzzy set.
3.2. Fuzzy reasoning method

The modifications in the structure of the fuzzy labels, also implies an extension of the original FRM used for classifying
new patterns. The general model of fuzzy reasoning for classification, presented in the Section 2.1, will be modified in the
following way (being xp = (xp1, . . . ,xpn) a new pattern):
0.0 1.0

1.0

Fig. 3. Example of the interval-valued fuzzy sets. The solid line is the lower bounds (Aj) and the dashed line is the upper bounds ðAjÞ.
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1. We have two matching degrees because we are working with an interval, each one will be associated with the lower and
the upper bound respectively and will be calculated applying a T-norm in the following way:
Fig. 4.
amplitu
lLAjðxpÞ ¼ TðAj1ðxp1Þ; . . . ;AjnðxpnÞÞ; j ¼ 1; . . . ; L: ð8Þ

lUAjðxpÞ ¼ TðAj1ðxp1Þ; . . . ;AjnðxpnÞÞ; j ¼ 1; . . . ; L: ð9Þ
We apply a T-norm to both lower and upper bounds. Therefore, the matching degrees obtained form the following interval:
½lLAjðxpÞ;lUAjðxpÞ�:
2. As association degree we take the mean of the product of the matching degree by the rule weight, which is composed by
two numbers, associated to the lower and the upper bound respectively. The rule weights will be denoted as PCFLj and
PCFUj and their computation will be done following the Expression (2), considering the lower and the upper bounds as
the terms in each case. That is:
PCFLj ¼
P

xp2ClassCj
AjðxpÞ �

P
xpRClassCj

AjðxpÞPm
p¼1AjðxpÞ

; ð10Þ

PCFUj ¼
P

xp2ClassCj
AjðxpÞ �

P
xpRClassCj

AjðxpÞPm
p¼1AjðxpÞ

: ð11Þ
The final association degree will be computed as follows:
bk
j ¼

lLAjðxpÞ � PCFLjk þ lUAjðxpÞ � PCFUjk

2
k ¼ 1; . . . ;M; j ¼ 1; . . . ; L:
At this point we have already a single value associated to the class. According to this, we can apply the rest of the algo-
rithm in the same way than in the general FRM presented in [12].

3.3. Genetic tuning of the fuzzy rule-based classification systems

The goal of basic linguistic fuzzy modeling methods is to determine the set of fuzzy rules that compounds the RB of the
model. The MFs, usually obtained by experts knowledge or by a normalization process, remains fixed in the rule set deriva-
tion process. So, the fuzzy partitions are not adapted to the context of each variable. Furthermore, the rule set derivation
process can include some rules with bad performance and hence the cooperative behavior of the rules may not be optimal.

In order to improve the accuracy of the FRBCSs we propose to adjust the MFs making variations in the support of the
upper bounds of the IVFSs by means of a Genetic Algorithm (GA); specifically we consider the use of CHC algorithm [16].
We have named this methodology as genetic amplitude tuning, and it is described in the remaining of this section.

3.3.1. Genetic amplitude tuning
We have added the upper bound of the IVFSs with a fixed amplitude but, as the data distribution does not need to be

uniform, the support can be different for each linguistic label. We apply a post-processing genetic tuning step in order to
improve the behavior of the FRBCSs performing slight changes of the amplitude in the upper bound of the IVFSs. We must
point out that the amplitude of lower bound remains fixed.

The modification of the amplitude is given by a number within the interval [0,1], that is, from the overlapping of both
bounds (value 0) to twice the amplitude of the upper with respect to the lower bound (value 1). The amplitude of the upper
bound will be uniformly increased according to intermediate values being 0.5 the initial situation, that is, when the ampli-
tude of the upper bound is 50% greater than of the lower bound. This situations are depicted in Fig. 4.
(b) Gene = 0.5 (c) Gene = 1.0(a) Gene = 0.0

Gene values representation in the genetic amplitude tuning. (a) Upper and lower bounds are overlapped. (b) Initial situation. (c) Upper bound
de is twice than the one of the lower bound.



3680 J.A. Sanz et al. / Information Sciences 180 (2010) 3674–3685
3.3.2. Genetic algorithm for tuning: the CHC algorithm
GAs has been widely used to derive fuzzy systems. In this paper, we will consider the use of the CHC algorithm [16] be-

cause it presents a good trade-off between diversity and convergence, being a good choice in complex problems. The genetic
model makes use of a mechanism of ‘‘Selection of Populations”. M parents and their corresponding offspring are put together
to select the best M individuals to take part of the next population (with M being the population size).

To provoke diversity in the population, the CHC approach makes use of an incest prevention mechanism and a restarting
approach, instead of the well-known mutation operator. The components needed to design this process are explained below:

1. Coding Scheme: A real coding is considered, where each gene of the chromosome represents the amplitude modifier as
defined above. Thus, there are as many genes as fuzzy partitions in the DB.

2. Chromosome Evaluation: We use as fitness function the standard accuracy rate.
3. Initial Gene Pool: The initial pool is obtained with the first individual having all genes with value ‘0.5’ (the initial FRBCS).

The second and the third individuals having all genes with values 0 and 1 respectively, whereas the remaining individuals
are generated at random in [0,1].

4. Crossover Operator: We consider the Parent Centric BLX (PCBLX) operator [24], which is based on the BLX-a. Fig. 5 depicts
the behavior of these kinds of operators. PCBLX is described as follows. Let us assume that X = (x1� � � xn) and Y = (y1� � �yn),
ðxi; yi 2 ½ai; bi� � R; i ¼ 1 � � �nÞ, are two real-coded chromosomes that are going to be crossed. PCBLX operator generates
the two following offspring:
� O1 = (o11� � �o1n), where o1i is a randomly (uniformly) chosen number from the interval l1

i ;u
1
i

h i
, with l1

i ¼ maxfai; xi � Iig,
u1

i ¼ minfbi; xi þ Iig, and Ii = jxi � yij.
� O2 = (o21� � �o2n), where o2i is a randomly (uniformly) chosen number from the interval l2

i ;u
2
i

h i
, with l2

i ¼ maxfai; yi � Iig
and u2

i ¼ minfbi; yi þ Iig.
On the other hand, the incest prevention mechanism will be only considered in order to apply the PCBLX operator. In our
case, two parents are crossed if their hamming distance divided by 2 is above a predetermined threshold, L. Since we con-
sider a real coding scheme, we have to transform each gene considering a Gray Code (binary code) with a fixed number of
bits per gene (BITSGENE), that is determined by the system expert. In this way, the threshold value is initialized as:
L ¼ ð#Genes � BITSGENEÞ=4:0;

where #Genes stands for the total length of the chromosome. Following the original CHC scheme, L is decremented by one
(BITSGENE in this case) when there are no new individuals in the next generation.

5. Restarting approach: When the threshold value is lower than zero, all the chromosomes are regenerated at random within
the interval [0,1]. Furthermore, the best global solution found is included in the population to increase the convergence of
the algorithm.

4. Experimental study

In this section, we will first present the experimental framework and the configuration parameters of the learning algo-
rithms selected for this study and then we will present the empirical study carried out.
4.1. Experimental set-up

We have selected twenty-four data-sets from UCI repository [6]. The data are summarized in Table 1, showing the data-
set name, the number of examples (#Ex.), attributes (#Atts.) and classes (#Class.).

To carry out the different experiments we consider a 5-folder cross-validation model, i.e., 5 random partitions of data with a
20%, and the combination of 4 of them (80%) as training and the remaining one as test. For each data-set we consider the
average results of the five partitions.

We will apply the same configuration for both FRBCS approaches (Chi and FH-GBML), consisting in product T-norm as
conjunction operator, together with Penalized Certainty Factor approach [27] for the rule weight and FRM of the winning
Fig. 5. Scheme of the behavior of the BLX and PCBLX operators.



Table 1
Summary description for the data-sets of the study.

Data-set #Ex. #Atts. #Class.

Australian 690 14 2
Autos 159 25 5
Balance 625 4 3
Bupa 345 6 2
Car 1728 6 4
Cleveland 297 13 5
Contraceptive 1473 9 3
Crx 125 15 2
Ecoli 336 7 8
German 1000 20 2
Glass 214 9 6
Haberman 306 3 2
Hepatitis 155 19 2
Iris 150 4 3
Magic 1902 10 2
New-Thyroid 215 5 3
Page blocks 548 10 5
Penbased 1099 16 10
Pima 768 8 2
Ring 768 8 2
Tae 151 5 3
Vehicle 846 18 4
Wine 178 13 3
Wisconsin 683 9 2
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rule. Furthermore, we have selected the use of 3 labels per variable in the case of the Chi FRBCS and, for the FH-GBML algo-
rithm, we consider the following values for the specific parameters of the genetic process:

� Number of fuzzy rules: 5 � d rules.
� Number of rule sets: 200 rule sets.
� Crossover probability: 0.9.
� Mutation probability: 1/d.
� Number of replaced rules: All rules except the best-one (Pittsburgh-part, elitist approach), number of rules/ 5 (GCCL-part).
� Total number of generations: 1000 generations.
� Don’t care probability: 0.5.
� Probability of the application of the GCCL iteration: 0.5.

where d stands for the dimensionality of the problem (number of variables).
Finally, we indicate the values that have been considered for the parameters of the genetic tuning:

� Population Size: 50 individuals.
� Number of evaluations: 5000 � number of variables.
� Bits per gene for the Gray codification (for incest prevention): 30 bits.

The GAGRAD algorithm [15], used for comparison with our proposed methodology, considers two trapezoidal fuzzy sets
per variable and represents a set of rules by a constrained neural network with the following configuration:

� The activation functions are squashing functions with a = 1/2 and k = 1.
� The weights are zero or one.
� The number of hidden layers is just 1 layer.

The GAGRAD method refines the system in two steps. The first step is the rule set optimization by means of a GA and the
second one is a gradient based local optimization of the fuzzy sets.

� The GA parameters are:
– Population size: 100 individuals.
– Total number of generations: 100 generations.
– Crossover probability: 0.6.
– Mutation probability: 0.02.
� The gradient based local optimization parameters are:
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– b (power of the approximation): is increased along the process starting from 2 and stopping when is greater than 101.
– Number of hidden neurons: 4 � number of variables.

Statistical analysis needs to be carried out in order to find significant differences among the results obtained by the stud-
ied methods [19,20]. We consider the use of non-parametric tests, according to the recommendations made in [14,21] where
it is presented a set of simple, safe and robust non-parametric tests for statistical comparisons of classifiers. In this empirical
study we will apply pairwise comparisons between the algorithms using the Wilcoxon Signed–Ranks Test, setting at 0.05 the
level of confidence (a) in all cases (a complete description of the test and software for its use can be found in the website:
http://sci2s.ugr.es/sicidm/).
4.2. Analysis of the IVFSs and genetic tuning performance

The results for the Chi et al.’s method are shown in Table 2. We can observe the good behavior of IVFS model with genetic
amplitude tuning with respect to the simple KB obtained by the original method, since it obtains the best results in most of
the data-sets of the study. In order to compare both approaches, we carry out a Wilcoxon test (Table 3), which shows sig-
nificant differences in favour of the model that uses IVFSs.

Regarding the FH-GBML approach, the results are shown in Table 4. Our approach obtains better or equal results than the
basic FH-GBML algorithm in all data-sets but bupa. The statistical analysis shown in Table 5 also supports the quality of our
approach, and confirms the goodness of the proposed methodology for both algorithms used in this study, since our meth-
odology outperforms the initial FRBCS model.

Additionally, Table 6 shows the results from SCBRDs using IVFSs with genetic amplitude tuning for both the Chi et al.’s
method and the FH-GBML algorithm on one hand, and from Dombi and Gera original model [15] on the other hand. We ob-
serve that the average behavior of FH-GBML_IVFS_Amp and that of GAGRAD are good. However, our technique applied to the
FH-GBML algorithm obtains better results than GAGRAD in 17 out of 24 data-sets. This superiority is clearly reflected in the
Table 2
Table of results for the Chi et al.’s method in Train (Tr) and Test (Tst) with their respective standard deviations.

Data-set Chi Chi-IVFS-Amp

AccTr AccTst AccTr AccTst

Australian 91.76 ± 0.40 78.55 ± 3.50 92.38 ± 0.78 83.33 ± 2.40
Autos 92.55 ± 2.15 57.24 ± 5.14 94.29 ± 2.14 66.71 ± 7.64
Balance 91.62 ± 0.22 89.92 ± 1.75 92.18 ± 0.20 90.88 ± 1.21
Bupa 60.73 ± 1.21 57.68 ± 1.59 61.09 ± 1.15 57.68 ± 1.59
Car 97.31 ± 0.27 76.10 ± 3.11 98.39 ± 0.19 91.44 ± 1.03
Cleveland 92.22 ± 2.15 36.01 ± 6.39 92.81 ± 2.20 50.50 ± 6.41
Contraceptive 52.32 ± 1.45 40.26 ± 3.57 59.44 ± 0.66 48.00 ± 2.96
Crx 91.45 ± 0.75 81.78 ± 2.56 92.14 ± 0.77 85.46 ± 2.56
Ecoli 76.18 ± 1.35 72.64 ± 7.01 77.37 ± 0.85 71.45 ± 7.22
German 99.47 ± 0.10 18.20 ± 2.61 99.57 ± 0.14 46.20 ± 24.71
Glass 66.28 ± 2.65 57.95 ± 1.34 69.21 ± 3.55 59.86 ± 5.24
Haberman 74.57 ± 0.83 72.88 ± 0.84 74.73 ± 0.58 72.88 ± 0.84
Hepatitis 98.73 ± 0.71 17.50 ± 8.15 98.73 ± 0.71 20.00 ± 8.15
Iris 92.94 ± 0.75 92.67 ± 1.49 97.31 ± 0.70 94.67 ± 2.98
Magic 75.98 ± 0.61 74.87 ± 1.79 77.06 ± 0.35 75.08 ± 1.78
Newthyroid 86.32 ± 1.06 84.65 ± 3.89 86.43 ± 1.27 85.12 ± 3.53
Pageblocks 92.73 ± 0.50 91.42 ± 0.84 92.87 ± 0.53 91.42 ± 1.04
Penbased 98.66 ± 0.35 94.27 ± 1.59 98.95 ± 0.26 94.36 ± 0.52
Pima 75.45 ± 0.72 72.53 ± 1.13 76.30 ± 0.75 72.39 ± 2.41
Ring 59.53 ± 0.39 52.70 ± 0.83 59.66 ± 0.49 52.43 ± 1.13
Tae 61.94 ± 3.44 50.30 ± 6.02 65.44 ± 2.24 52.28 ± 7.17
Vehicle 65.85 ± 0.59 60.88 ± 2.76 68.99 ± 1.18 60.05 ± 3.50
Wine 98.73 ± 0.59 92.67 ± 5.53 99.86 ± 0.31 94.33 ± 6.71
Wisconsin 98.17 ± 0.29 90.49 ± 1.78 98.39 ± 0.24 96.05 ± 1.68

Mean 82.98 ± 0.98 67.26 ± 3.13 84.32 ± 0.93 71.36 ± 4.35

Table 3
Wilcoxon’s tests to compare our proposal starting from the Chi et al. method. R+ corresponds to the sum of the ranks for the basic Chi et al.’s method and R� to
Chi with IVFS and genetic amplitude tuning.

Comparison R+ R� Hypothesis (a = 0.05) p-value

Chi vs. Chi_IVFS_amp 35 265 Rejected For Chi_IVFS_amp 0.001
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Table 5
Wilcoxon’s tests to compare our proposal starting from the FH-GBML algorithm. R+ corresponds to the sum of the ranks for the basic FH-GBML algorithm and
R� to FH-GBML algorithm with IVFS and genetic amplitude tuning.

Comparison R+ R� Hypothesis (a = 0.05) p-value

FH-GBML vs. FH-GBML_IVFS_amp 17 183 Rejected For 0.000
FH-GBML_IVFS_amp

Table 6
Table of results for our proposals and GAGRAD model in Train (Tr) and Test (Tst) with their respective standard deviations.

Data-set Chi-IVFS-Amp FH-GBML-IVFS-Amp GAGRAD

AccTr AccTst AccTr AccTst AccTr AccTst

Australian 92.38 ± 0.78 83.33 ± 2.40 88.42 ± 0.93 85.51 ± 3.03 85.62 ± 0.55 85.36 ± 3.13
Autos 94.29 ± 2.14 66.71 ± 7.64 75.92 ± 4.69 54.74 ± 7. 99 73.43 ± 3.29 69.25 ± 8.47
Balance 92.18 ± 0.20 90.88 ± 1.21 80.84 ± 1.67 80.48 ± 2.37 82.28 ± 2.41 78.72 ± 3.94
Bupa 61.09 ± 1.15 57.68 ± 1.59 74.33 ± 2.27 62.61 ± 6.43 60.65 ± 2.69 61.16 ± 4.27
Car 98.39 ± 0.19 91.44 ± 1.03 75.33 ± 2.24 73.26 ± 2.40 61.77 ± 7.76 60.83 ± 5.78
Cleveland 92.81 ± 2.20 50.50 ± 6.41 65.26 ± 1.12 56.91 ± 2.35 59.26 ± 1.01 53.89 ± 3.10
Contraceptive 59.44 ± 0.66 48.00 ± 2.96 51.32 ± 1.70 48.27 ± 1.74 50.36 ± 2.58 50.57 ± 3.36
Crx 92.14 ± 0.77 85.46 ± 2.56 88.72 ± 0.59 87.29 ± 2.43 86.41 ± 0.14 86.37 ± 0.62
Ecoli 77.37 ± 0.85 71.45 ± 7.22 81.26 ± 2.81 72.91 ± 4. 05 87.80 ± 0.84 86.32 ± 5.39
German 99.57 ± 0.14 46.20 ± 24.71 75.04 ± 1.17 71.60 ± 2.10 73.43 ± 1.12 71.30 ± 2.56
Glass 69.21 ± 3.55 59.86 ± 5.24 74.27 ± 2.82 57.94 ± 2.37 53.50 ± 6.37 52.86 ± 12.69
Haberman 74.73 ± 0.58 72.88 ± 0.84 78.75 ± 1.01 72.22 ± 2.33 74.43 ± 0.48 73.53 ± 3.17
Hepatitis 98.73 ± 0.71 20.00 ± 8.15 92.06 ± 1.59 83.75 ± 10.46 83.75 ± 0.86 82.50 ± 5.23
Iris 97.31 ± 0.70 94.67 ± 2.98 98.82 ± 0.46 96.00 ± 4.35 94.83 ± 1.37 95.33 ± 4.47
Magic 77.06 ± 0.35 75.08 ± 1.78 81.19 ± 0.78 79.18 ± 1.56 73.36 ± 5.19 72.71 ± 4.62
Newthyroid 86.43 ± 1.27 85.12 ± 3.53 97.66 ± 1.85 93.49 ± 3.03 89.19 ± 3.45 87.91 ± 6.86
Pageblocks 92.87 ± 0.53 91.42 ± 1.04 96.07 ± 0.50 94.16 ± 1.25 90.19 ± 1.11 89.60 ± 1.55
Penbased 98.95 ± 0.26 94.36 ± 0.52 83.85 ± 1.92 78.27 ± 2.79 78.93 ± 4.75 77.73 ± 5.72
Pima 76.30 ± 0.75 72.39 ± 2.41 78.71 ± 1.76 75.00 ± 0.79 75.78 ± 0.96 75.00 ± 3.03
Ring 59.66 ± 0.49 52.43 ± 1.13 88.43 ± 1.61 83.11 ± 4. 00 88.75 ± 1.50 87.03 ± 3.56
Tae 65.44 ± 2.24 52.28 ± 7.17 66.11 ± 2.51 52.32 ± 8.63 56.63 ± 4.67 49.03 ± 10.23
Vehicle 68.99 ± 1.18 60.05 ± 3.50 69.46 ± 2.10 62.30 ± 2.99 60.55 ± 3.46 59.70 ± 2.89
Wine 99.86 ± 0.31 94.33 ± 6.71 98.87 ± 0.80 90.97 ± 6. 24 98.31 ± 1.28 95.44 ± 5.93
Wisconsin 98.39 ± 0.24 96.05 ± 1.68 97.65 ± 0.42 95.75 ± 1.89 93.45 ± 1.28 92.97 ± 1.76

Mean 84.32 ± 0.93 71.36 ± 4.35 81.60 ± 1.64 75.33 ± 3.65 76.36 ± 2.46 74.80 ± 4.68

Table 4
Table of results for the FH-GBML algorithm in Train (Tr) and Test (Tst) with their respective standard deviations.

Data-set FH-GBML FH-GBML-IVFS-Amp

AccTr AccTst AccTr AccTst

Australian 87.19 ± 0.24 84.78 ± 2.56 88.42 ± 0.93 85.51 ± 3.03
Autos 61.02 ± 3.34 45.34 ± 5.48 75.92 ± 4.69 54.74 ± 7.99
Balance 79.04 ± 1.36 77.60 ± 1.26 80.84 ± 1.67 80.48 ± 2.37
Bupa 70.62 ± 0.83 63.48 ± 5.74 74.33 ± 2.27 62.61 ± 6.43
Car 75.03 ± 2.24 73.20 ± 2.80 75.33 ± 2.24 73.26 ± 2.40
Cleveland 61.71 ± 0.97 54.55 ± 2.70 65.26 ± 1.12 56.91 ± 2.35
Contraceptive 47.89 ± 0.76 45.22 ± 2.51 51.32 ± 1.70 48.27 ± 1.74
Crx 88.30 ± 0.48 86.68 ± 1.74 88.72 ± 0.59 87.29 ± 2.43
Ecoli 76.33 ± 1.18 72.91 ± 4.34 81.26 ± 2.81 72.91 ± 4.05
German 73.82 ± 0.38 71.30 ± 1.82 75.04 ± 1.17 71.60 ± 2.10
Glass 69.10 ± 1.77 57.49 ± 3.67 74.27 ± 2.82 57.94 ± 2.37
Haberman 78.26 ± 0.98 71.89 ± 3.38 78.75 ± 1.01 72.22 ± 2.33
Hepatitis 91.75 ± 1.33 81.25 ± 6.25 92.06 ± 1.59 83.75 ± 10.46
Iris 98.49 ± 0.92 95.33 ± 4.47 98.82 ± 0.46 96.00 ± 4.35
Magic 79.02 ± 1.47 78.49 ± 2.46 81.19 ± 0.78 79.18 ± 1.56
Newthyroid 95.32 ± 0.41 92.56 ± 5.55 97.66 ± 1.85 93.49 ± 3.03
Pageblocks 95.88 ± 0.52 94.16 ± 1.25 96.07 ± 0.50 94.16 ± 1.25
Penbased 69.83 ± 1.99 67.18 ± 2.41 83.85 ± 1.92 78.27 ± 2.79
Pima 76.88 ± 1.03 73.96 ± 1.83 78.71 ± 1.76 75.00 ± 0.79
Ring 84.97 ± 1.71 82.84 ± 5.92 88.43 ± 1.61 83.11 ± 4.00
Tae 62.61 ± 3.44 49.01 ± 10.90 66.11 ± 2.51 52.32 ± 8.63
Vehicle 61.47 ± 1.44 58.52 ± 4.01 69.46 ± 2.10 62.30 ± 2.99
Wine 97.45 ± 0.39 90.97 ± 4.76 98.87 ± 0.80 90.97 ± 6.24
Wisconsin 97.58 ± 0.33 95.61 ± 1.63 97.65 ± 0.42 95.75 ± 1.89

Mean 78.31 ± 1.23 73.51 ± 3.73 81.60 ± 1.64 75.33 ± 3.65
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Table 7
Wilcoxon’s tests to compare our proposals against the GAGRAD model. R+ corresponds to the sum of the ranks for GAGRAD method and R� to both Chi et al.’s
method and FH-GBML algorithm with IVFS and genetic amplitude tuning.

Comparison R+ R� Hypothesis (a = 0.05) p-value

GAGRAD vs. Chi_IVFS_amp 181 109 Not Rejected 0.376
GAGRAD vs. FH-GBML_IVFS_amp 99.5 200.5 Not Rejected 0.171

3684 J.A. Sanz et al. / Information Sciences 180 (2010) 3674–3685
statistical analysis (Table 7), where we can observe that the comparison between GAGRAD and FH-GBML with IVFS and ge-
netic amplitude tuning results in favour of this latter approach with a relatively low p-value.
5. Conclusions

In this work we have analyzed the behavior of FRBCSs, starting from a simple KB generated by any rule learning method
and managing the uncertainties derived from different problems of the system by means of the IVFSs theory, which allows to
have a better characterization of the fuzzy labels defining the attributes of the problem. We have adapted the FRM in order to
include this representation model together with the application of a post-processing genetic tuning step in order to adjust
the amplitude of the upper bound of the IVFSs.

The experimental study has determined that this methodology is a suitable solution, using as rule learning methods the
Chi et al.’s and the FH-GBML algorithms, and obtaining a very good performance in both cases. The achieved results showed
that the proposed IVFS model with genetic amplitude tuning enhances the behavior of basic FRBCS models, outperforming
the quality of the solutions obtained by standard fuzzy systems. This allows us to conclude that the introduction of IVFSs
improves the behavior of algorithms which are known to perform well in the fuzzy setting.
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