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Abstract. Learning in imbalanced domains is one of the recent chal-
lenges in machine learning and data mining. In imbalanced classification,
data sets present many examples from one class and few from the other
class, and the latter class is the one which receives more interest from
the point of view of learning. One of the most used techniques to deal
with this problem consists in preprocessing the data previously to the
learning process.

This contribution proposes a method belonging to the family of the
nested generalized exemplar that accomplishes learning by storing objects
in Euclidean n-space. Classification of new data is performed by comput-
ing their distance to the nearest generalized exemplar. The method is opti-
mized by the selection of the most suitable generalized exemplars based on
evolutionary algorithms. The proposal is compared with the most repre-
sentative nested generalized exemplar learning approaches and the
results obtained show that our evolutionary proposal outperforms them
in accuracy and requires to store a lower number of generalized examples.

1 Introduction

In the last years, the class imbalance problem is one of the emergent challenges in
data mining [20]. The problem appears when the data presents a class imbalance,
which consists in containing many more examples of one class than the other
one, being the less representative class the most interesting one [4]. Imbalance
in class distribution is pervasive in a variety of real-world applications, including
but not limited to telecommunications, WWW, finance, biology and medicine.

Usually, the instances are grouped into two type of classes: the majority or
negative class, and the minority or positive class. The minority or positive class
is often of interest and also accompanied with a higher cost of making errors. A
standard classifier might ignore the importance of the minority class because its
representation inside the data set is not strong enough. As a classical example, if
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the ratio of imbalance presented in the data is 1:100 (that is, there is one positive
instance in one hundred instances), the error of ignoring this class is only 1%.

A main process in data mining is the one known as data reduction [16]. In
classification, it aims to reduce the size of the training set mainly to increase
the efficiency of the training phase (by removing redundant data) and even to
reduce the classification error rate (by removing noisy data). Instance Selection
(IS) is one of the most known data reduction techniques in data mining.

The Nested Generalized Exemplar (NGE) theory was introduced in [17] and
makes several significant modifications to the exemplar-based learning model.
The most important one is that it retains the notion of storing verbatim exam-
ples in memory but, it also allows examples to be generalized. In NGE theory,
generalizations take the form of hyperrectangles or rules in a Euclidean n-space.
The generalized examples may be nested one inside another and inner general-
ized examples serve as exceptions to surroundings generalizations.

Several works argue the benefits of using generalized instances together with
instances to form the classification rule [19,6,15]. With respect to instance-based
classification [1], the use of generalizations increases the comprehension of the
data stored to perform classification of unseen data and the achievement of a sub-
stantial compression of the data, reducing the storage requirements. Considering
rule induction [10], the ability of modeling decision surfaces by hybridizations
between distance-based methods (Voronoi diagrams) and parallel axis separa-
tors could improve the performance of the models in domains with clusters of
exemplars or exemplars strung out along a curve. In addition, NGE learning
allows capture generalizations with exceptions.

Evolutionary Algorithms (EAs) [7] are general purpose search algorithms that
use principles inspired by nature to evolve solutions to problems. EAs have been
successfully used in data mining problems [9,14]. Their capacity of tackling IS
as a combinatorial problem is especially useful [3].

In this contribution, we propose the use of EAs for generalized instances selec-
tion in imbalanced classification tasks. Our objective is to increase the accuracy
of this type of representation by means of selecting the best suitable set of
generalized examples to improve the classification performance for imbalanced
domains. We compare our approach with the most representative models of NGE
learning: BNGE [19], RISE [6] and INNER [15]. The empirical study has been
contrasted via non-parametrical statistical testing [5,11,12], and the results show
an improvement of accuracy whereas the number of generalized examples stored
in the final subset is much lower.

The rest of this contribution is organized as follow: Section 2 reviews the prelim-
inary theoretical study. Section 3 explains the evolutionary selection of generalized
examples. Section 4 describes the experimental framework used and presents the
analysis of results. Finally, in Section 5, we point out the conclusions achieved.

2 Background and Related Work

This section shows the main topics of the background in which our contribution is
based. Section 2.1 describes the evaluation framework of imbalanced classification.
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Section 2.2 highlights the main characteristics of NGE theory and finally, Section
2.3 shows the EAs in which our model is based.

2.1 Evaluation in Imbalanced Classification

The measures of the quality of classification are built from a confusion matrix
(shown in Table 1) which records correctly and incorrectly recognized examples
for each class.

Table 1. Confusion matrix for a two-class problem

Positive Prediction Negative Prediction

Positive Class True Positive (TP) False Negative (FN)

Negative Class False Positive (FP) True Negative (TN)

The most used empirical measure, accuracy, does not distinguish between the
number of correct labels of different classes, which in the ambit of imbalanced
problems may lead to erroneous conclusions. Because of this, more correct met-
rics are considered in imbalanced learning. Specifically, from Table 1 it is possible
to obtain four metrics of performance that measure the classification quality for
the positive and negative classes independently:

– True positive rate TPrate = TP
TP+FN is the percentage of positive cases

correctly classified as belonging to the positive class.
– True negative rate TNrate = TN

FP+TN is the percentage of negative cases
correctly classified as belonging to the negative class.

– False positive rate FPrate = FP
FP+TN is the percentage of negative cases

misclassified as belonging to the positive class.
– False negative rate FNrate = FN

TP+FN is the percentage of positive cases
misclassified as belonging to the negative class.

One appropriate metric that could be used to measure the performance of classifi-
cation over imbalanced data sets is the Receiver Operating Characteristic (ROC)
graphics [2]. In these graphics, the tradeoff between the benefits (TPrate) and
costs (FPrate) can be visualized, and acknowledges the fact that the capacity of
any classifier cannot increase the number of true positives without also increasing
the false positives. The Area Under the ROC Curve (AUC) corresponds to the
probability of correctly identifying which of the two stimuli is noise and which is
signal plus noise. AUC provides a single-number summary for the performance
of learning algorithms.

The way to build the ROC space is to plot on a two-dimensional chart the
true positive rate (Y axis) against the false positive rate (X axis) as shown in
Figure 1. The points (0, 0) and (1,1) are trivial classifiers in which the output
class is always predicted as negative and positive respectively, while the point (0,
1) represents perfect classification. To compute the AUC we just need to obtain
the area of the graphic as:

AUC =
1 + TPrate − FPrate

2
(1)
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Fig. 1. Example of an ROC plot. Two classifiers are represented: the solid line is a
good performing classifier whereas the dashed line represents a random classifier.

2.2 Nested Generalized Exemplar Theory

This subsection provides an overview on learning with generalized instances.
First, we explain the needed concepts to understand the classification rule fol-
lowed by this type of methods. After this, the three main proposals of NGE
learning will be briefly described.

Matching and Classification. The matching process in one of the central
features in NGE learning and it allows some customization, if desired. This pro-
cess computes the distance between a new example and an generalized exemplar
memory object. For remainder of this contribution, we will refer to the example
to be classified as E and the generalized example stored as G, independently of
G is formed by an unique instance or it has some volume.

The model computes a match score between E and G by measuring the Eu-
clidean distance between two objects. The Euclidean distance is well-known when
G is a single point. In case contrary, the distance is computed as follows (numeric
attributes):

DEG =

√
√
√
√

M∑

i=1

(
difi

maxi − mini

)2

where

difi =

⎧

⎪⎨

⎪⎩

Efi − Gupper when Efi > Gupper

Glower − Efi when Efi < Glower

0 otherwise

M is the number of attributes of the data, Efi is the value of the ith feature
of the example, Gupper and Glower are the upper and lower values of G for a
specific attribute and maxi and mini are the maximum and minimum values
for ith feature in training data, respectively.

The distance measured by this formula is equivalent to the length of a line
dropped perpendicularly from the point Efi to the nearest surface, edge or corner
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of G. Note that points internal to a generalized instance have distance 0 to it. In
the case of overlapping generalized examples, a point falling in the area of overlap
belongs to the smaller instance, in terms of volume. The size of a hyperrectangle
is defined in terms of volume. In nominal attributes, if the features are equal,
the distance is zero, else it is one.

BNGE: Batch Nested Generalized Exemplar. BNGE is a batch version
of the first model of NGE (also known as EACH [17]) and it is proposed to
alleviate some drawbacks presented in it [19]. The generalization of examples is
done by expanding its frontiers just to cover the desired example and it only
merges generalized instances if the new generalized example dos not cover (or
overlap with) any other stored example from any other classes. It does not permit
overlapping or nesting.

RISE: Unifying Instance-Based and Rule-Based Induction. RISE [6]
is an approach proposed to overcome some of the limitations of instance-based
learning and rule induction by unifying the two. It follows similar guidelines
explained above, but it furthermore introduces some improvements regarding
distance computations and selection of the best rule using the Laplace correction
used by many existing rule-induction techniques [10]).

INNER: Inflating Examples to Obtain Rules. INNER [15] starts by se-
lecting a small random subset of examples, which are iteratively inflated in order
to cover the surroundings with examples of the same class. Then, it applies a set
of elastic transformations over the rules, to finally obtain a concise and accurate
rule set to classify.

2.3 CHC Algorithm

We have studied its main characteristics to select it as the baseline EA which
will guide the search process of our model. During each generation, the CHC
algorithm [8] develops the following steps:

1. It uses a parent population of size R to generate an intermediate population
of R individuals, which are randomly paired and used to generate R potential
offspring.

2. Then, a survival competition is held where the best R chromosomes from the
parent and offspring populations are selected to form the next generation.

CHC also implements HUX recombination operator. HUX exchanges half of
the bits that differ between parents, where the bit position to be exchanged
is randomly determined. It also employs a method of incest prevention: Before
applying HUX to two parents, the Hamming distance between them is measured.
Only those parents who differ from each other by some number of bits (mating
threshold) are mated. If no offspring is inserted into the new population then
the threshold is reduced.
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No mutation is applied during the recombination phase. Instead, when the
search stops making progress the population is reinitialized to introduce new
diversity. The chromosome representing the best solution found is used as a
template to re-seed the population, randomly changing 35% of the bits in the
template chromosome to form each of the other chromosomes in the population.

We have selected CHC because it has been widely studied, being now a well-
known algorithm on evolutionary computation. Furthermore, previous studies
like [3,13] support the fact that it can perform well on data reduction problems.

3 Selection of Generalized Examples Using the
Evolutionary Model CHC

The approach proposed in this contribution, named Evolutionary Generalized
Instance Selection by CHC (EGIS-CHC), is explained in this section. The specific
issues regarding representation and fitness function complete the description of
the proposal.

Let us assume that there is a training set TR with P instances and each one of
them has M input attributes. Let us also assume that there is a set of generalized
instances GS with N generalized instances and each one of the N generalized
instances has M conditions which can be numeric conditions, expressed in terms
of minimum and maximum values in interval [0, 1]; or they can be categorical
conditions, assuming that there are v different values for each attribute. Let
S ⊆ GS be the subset of selected generalized instances resulted in the run of a
generalized instances selection algorithm.

Generalized instance selection can be considered as a search problem in which
EAs can be applied. We take into account two important issues: the specification
of the representation of the solutions and the definition of the fitness function.

– Representation: The search space associated is constituted by all the subsets
of GS. This is accomplished by using a binary representation. A chromosome
consists of N genes (one for each sample in GS) with two possible states: 0
and 1. If the gene is 1, its associated generalized example is included in the
subset of GS represented by the chromosome. If it is 0, this does not occur.

– Fitness Function: Let S be a subset of samples of GS and be coded by a
chromosome. We define a fitness function based on AUC evaluated over TR
through the rule described in Section 2.2.

Fitness(S) = α · AUC + (1 − α) · red rate.

AUC denotes the computation of the AUC measure from TR using S.
red rate denotes the ratio of generalized examples selected.
The objective of the EAs is to maximize the fitness function defined. We
preserve the value of α = 0.5 used in previous works related to instance
selection [3].

The same mechanisms to perform a classification of a unseen example
exposed in [17] are used in our approach. In short, they are:
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• If no rule covers the example, the class of the nearest generalized instance
defines the prediction.

• If various rules cover the example, the one with lowest volume is the
chosen to predict the class, allowing exceptions within generalizations.
The volume is computed following the indications given in [19].

– There is a detail not specified yet. It refers to the building of the initial set of
generalized instances. In this first approach, we have used a heuristic which
is fast and obtain acceptable results. The heuristic yields a generalization
from each example in the training set. For each one, it finds the K − 1
nearest neighbours being the Kth neighbour an example of different class.
Then each generalization is built getting the minimal an maximal values
(in case of numerical attributes) to represent the interval in such attribute
or getting all the different categorical values (in case of nominal attributes)
of all the examples belonging to its set of K − 1 neighbours. Once all the
generalizations are obtained, the duplicated ones are removed (keeping one
representant in each case), hence |GS| ≤ |TR|.

4 Experimental Framework and Results

This section describes the methodology followed in the experimental study of
the generalized examples based learning approaches. We will explain the con-
figuration of the experiment: used imbalanced data sets and parameters for the
algorithms.

4.1 Experimental Framework

Performance of the algorithms is analyzed by using 18 data sets taken from the
UCI Machine Learning Database Repository [18]. Multi-class data sets are mod-
ified to obtain two-class non-balanced problems, defining one class as positive
and one or more classes as negative.

The data sets are sorted by their Imbalance Ratio (IR) values in an incremen-
tal way. IR is defined as the ratio between number of instances of the negative
class divided by the number of instances of the positive class. Data sets con-
sidered have an IR lower than 9. The main characteristics of these data sets
are summarized in Table 2. For each data set, it shows the number of examples
(#Examples), number of attributes (#Attributes) and class name (minority and
majority).

The data sets considered are partitioned using the ten fold cross-validation
(10-fcv) procedure. The parameters of the used algorithms are presented in
Table 3.

4.2 Results and Analysis

Table 4 shows the results in test data obtained by the algorithms compared by
means of the AUC evaluation measure. It also depicts the number of generalized
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Table 2. Summary Description for Imbalanced Data-Sets

Data-set #Ex. #Atts. Class (min., maj.) %Class(min.; maj.) IR

Glass1 214 9 (build-win-non float-proc; remainder) (35.51, 64.49) 1.82
Ecoli0vs1 220 7 (im; cp) (35.00, 65.00) 1.86
Wisconsin 683 9 (malignant; benign) (35.00, 65.00) 1.86
Pima 768 8 (tested-positive; tested-negative) (34.84, 66.16) 1.90
Glass0 214 9 (build-win-float-proc; remainder) (32.71, 67.29) 2.06
Yeast1 1484 8 (nuc; remainder) (28.91, 71.09) 2.46
Vehicle1 846 18 (Saab; remainder) (28.37, 71.63) 2.52
Vehicle2 846 18 (Bus; remainder) (28.37, 71.63) 2.52
Vehicle3 846 18 (Opel; remainder) (28.37, 71.63) 2.52
Haberman 306 3 (Die; Survive) (27.42, 73.58) 2.68
Glass0123vs456 214 9 (non-window glass; remainder) (23.83, 76.17) 3.19
Vehicle0 846 18 (Van; remainder) (23.64, 76.36) 3.23
Ecoli1 336 7 (im; remainder) (22.92, 77.08) 3.36
New-thyroid2 215 5 (hypo; remainder) (16.89, 83.11) 4.92
New-thyroid1 215 5 (hyper; remainder) (16.28, 83.72) 5.14
Ecoli2 336 7 (pp; remainder) (15.48, 84.52) 5.46
Glass6 214 9 (headlamps; remainder) (13.55, 86.45) 6.38
Yeast3 1484 8 (me3; remainder) (10.98, 89.02) 8.11

Table 3. Parameters considered for the algorithms

Algorithm Parameters

BNGE It has not parameters to be fixed
RISE Q = 1, S = 2
EGIS-CHC Pop = 50, Eval = 10000, α = 0.5
INNER Initial Instances= 10, MaxCycles= 5, Min Coverage= 0.95, Min Presentations= 3000,

Iterations to Regularize= 50, Select Threshold= -50.0

instances maintained for each approach across all the data sets. The best case
in each data set is remarked in bold.

Observing Table 4, we can make the following analysis:

– EGIS-CHC proposal obtains the best average result in AUC measure. It
clearly outperforms the other techniques use in learning from generalized
examples and 1NN.

– The number of generalized instances needed by EGIS-CHC to achieve such
AUC rates is much lower than the needed by BNGE and RISE. In average,
it also needs less generalized instances than INNER.

We have included a second type of table accomplishing a statistical comparison
of methods over multiple data sets. Specifically, we have used the Wilcoxon
Signed-Ranks test [5,11,12]. Table 5 collects results of applying Wilcoxon’s test
between our proposed methods and the rest of generalized instance learning
algorithms studied in this paper over the 18 data sets considered. This table
is divided into two parts: In the first part, the measure of performance used
is the accuracy classification in test set through AUC. In the second part, we
accomplish Wilcoxon’s test by using as performance measure the number of
generalized instances resulted for each approach. Each part of this table contains
one column, representing our proposed methods, and Na rows where Na is the
number of algorithms considered in this study. In each one of the cells can appear
three symbols: +, = or -. They represent that the proposal outperforms (+), is
similar (=) or is worse (-) in performance than the algorithm which appears in
the row (Table 5). The value in brackets is the p-value obtained in the comparison
and the level of significance considered is α = 0.10.
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Table 4. AUC in test data and number of generalized instances resulted from the run
of the approaches used in this study

AUC number of generalized instances

dataset 1NN BNGE INNER RISE EGIS-CHC BNGE RISE INNER EGIS-CHC
glass1 0.7873 0.6420 0.6659 0.6808 0.7870 74.40 63.80 17.30 9.40

ecoli0vs1 0.9630 0.9663 0.9764 0.9283 0.9708 10.40 53.60 5.00 3.00
wisconsin 0.9550 0.9705 0.9176 0.9351 0.9668 61.90 153.10 7.00 2.90

pima 0.6627 0.7099 0.6329 0.6499 0.7223 329.80 436.90 15.90 14.80
glass0 0.8345 0.7698 0.6579 0.7752 0.7579 67.50 69.80 34.00 9.50
yeast1 0.6262 0.6303 0.6467 0.6187 0.7054 817.00 780.30 14.90 16.00

vehicle1 0.6513 0.6143 0.5275 0.6499 0.6872 319.50 293.70 20.00 17.20
vehicle2 0.9521 0.8503 0.5293 0.9132 0.9122 155.30 133.90 26.40 16.80
vehicle3 0.6591 0.5559 0.5127 0.6414 0.7119 311.40 291.30 22.60 17.10

haberman 0.5618 0.5762 0.5962 0.5222 0.5924 211.30 132.40 17.20 7.80
glass0123vs456 0.9235 0.9175 0.8358 0.9199 0.9410 21.80 23.00 6.20 4.60

vehicle0 0.9214 0.6819 0.5342 0.8298 0.8962 214.90 166.70 37.70 12.40
ecoli1 0.7951 0.7983 0.8366 0.8440 0.8759 71.10 109.00 11.60 5.10

new-thyroid2 0.9819 0.9750 0.8861 0.9500 0.9917 12.50 26.60 3.50 2.20
new-thyroid1 0.9778 0.9208 0.9278 0.9583 0.9778 12.40 23.00 5.00 2.20

ecoli2 0.9023 0.8681 0.8528 0.8461 0.8821 66.60 100.20 7.00 5.90
glass6 0.9113 0.8613 0.7835 0.9086 0.9534 17.30 30.20 7.70 3.30
yeast3 0.8201 0.7613 0.8510 0.7588 0.8725 280.80 663.80 14.60 12.10

Average 0.8270 0.7817 0.7317 0.7961 0.8447 169.77 197.29 15.20 9.02

Table 5. Wilcoxon’s test results over AUC and number of generalized instances resulted

EGIS-CHC EGIS-CHC
algorithm AUC num. gen. instances

1NN + (.064)
BNGE + (.000) + (.000)
RISE + (.000) + (.000)
INNER + (.000) + (.000)

We can see that the Wilcoxon test confirms the analysis carried out above.

5 Concluding Remarks

The purpose of this contribution is to present an evolutionary model developed
to tackle data reduction tasks to improve imbalanced classification based on
the nested generalized example learning. The proposal performs an optimized
selection of previously defined generalized examples.

The results show that the use of generalized exemplar selection based on evo-
lutionary algorithms can obtain promising results to optimize the performance
in imbalanced domains.
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