WoS Query Partitioner: A Tool to Retrieve Very Large
Numbers of ltems From the Web of Science Using
Different Source-Based Partitioning Approaches

Sergio Alonso

Software Engineering Department, University of Granada, Granada, Spain. E-mail: zerjioi @ ugr.es

Francisco Javier Cabrerizo

Department of Software Engineering and Computer Systems, Distance Learning University, Spain.

E-mail: cabrerizo @issi.uned.es

Enrique Herrera-Viedma and Francisco Herrera

Computer Science and Artificial Intelligence Department, University of Granada, Granada, Spain.

E-mail: {viedma, herrera}@decsai.ugr.es

Thomson Reuters’ Web of Science (WoS) is undoubtedly
a great tool for scientiometrics purposes. It allows one to
retrieve and compute different measures such as the total
number of papers that satisfy a particular condition; how-
ever, it also is well known that this tool imposes several
different restrictions that make obtaining certain results
difficult. One of those constraints is that the tool does not
offer the total count of documents in a dataset if it is larger
than 100,000 items. In this article, we propose and analyze
different approaches that involve partitioning the search
space (using the Source field) to retrieve item counts for
very large datasets from the WoS. The proposed tech-
niques improve previous approaches: They do not need
any extra information about the retrieved dataset (thus
allowing completely automatic procedures to retrieve the
results), they are designed to avoid many of the restric-
tions imposed by the WoS, and they can be easily applied
to almost any query. Finally, a description of WoS Query
Partitioner, a freely available and online interactive tool
that implements those techniques, is presented.

Introduction

Thomson Reuters’ Web of Science (WoS) (E-Resource-1,
2010) is one of the online resources that allows the retrieval
and computation of different bibliometric measures and indi-
cators (Archambault, Campbell, Gingras, & Larivire, 2009)
such as the total numbers of papers that satisfy a particu-
lar condition or even more complex indices such as the h

Received February 4, 2010; revised March 16, 2010; accepted March 16,
2010

© 2010 ASIS&T e Published online 7 May 2010 in Wiley InterScience
(www.interscience.wiley.com). DOI: 10.1002/asi.21360

index (Alonso, Cabrerizo, Herrera-Viedma, & Herrera, 2009;
Egghe, 2010; Meho & Rogers, 2008). However, this tool
imposes several restrictions to its users:

e One of the most well-known restrictions is that obtained
datasets with more than 100,000 items cannot be fully
retrieved, and even more inconvenient, the total number of
items in the dataset is hidden (marked as >100,000) in the
results count field. Queries that deal with the scientific pro-
duction of countries or research institutions and universities
(Vieira & Gomes, 2009) may be affected by this restriction.

e The maximum number of terms separated by Boolean oper-
ators that can be used in a query is 50. Although this limit
may seem quite high, in certain situations where queries are
chained it may be reached, thus impeding certain searches.

e The Search History (i.e., the list of all the queries created
during a session) has a limit of 100 queries. Altough this
seems to be a quite generosus limit, it could be reached in
some complicated queries series.

These restrictions make difficult to obtain accurate results
for apparently easy queries. For example, to retrieve the
number of items in the WoS for a particular country and
year, a simple query can be designed in the form: PY = year
AND CU = country, where PY and CU stand for Publication
Year and Country, respectively. However, for certain coun-
tries with high production rates, the total count of such a
query is greater than 100,000 and the result thus cannot be
directly computed with such a simple query (Arencibia-Jorge,
Leydesdorff, Chinchilla-Rodriguez, Rousseau, & Paris,
2009; Jacso, 2009; Zhou & Leydesdorft, 2006).

In fact, in the specialized literature, we can find different
approaches to overcome this kind of problem. For example,

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY, 61(8):1582-1597, 2010

in a recent contribution by Arencibia-Jorge et al. (2009), this
issue is tackled for the particular case of the production of
the United States of America and the year 2007. The query
PY =2007 AND CU = USA produces more than 100,000
results, and the authors thus propose a particular way to
obtain an accurate result. Their main idea is to stablish a
partition mainly based in the Source field (SO) to obtain par-
tial results (with <100,000 results) and then to sum them
up to obtain the final result (Arencibia-Jorge et al., 2009).
However, this approach presents an additional difficulty: The
Source field may offer results not only for the name of a
particular source but also for the possible series in which
the source may be included. This leads to the repetition of
some of the results in some executed subqueries. To overcome
this problem, the authors created an additional statement
that finds the number of overlapping elements which is sub-
stracted from the total count to obtain the real result for the
original “simple” query. In Table 1, the used queries are pre-
sented along with their results and the final total number of
papers (n =1500,885). Note that the results differ from those
in the study by Arencibia et al. because of updates in the WoS
database.

This approach certainly solves the aforementioned prob-
lem, but it presents several shortcomings:

e If the results count for the overlapping query (Table 1, Query
8) is greater than 100,000 elements, the procedure cannot be
applied. Note that for a query with approximately 500,000
results, around 23,000 results appeared multiple times in the
subqueries. Although it is difficult to extrapolate, in a query
with a several-times-larger results count, there may be too
many overlapping elements.

e The overlapping query groups all previous subqueries in pairs;
thus, that query grows in size quite fast. In fact, the number of
terms of that query is nTerms = nQueries x (nQueries — 1).
With eight or more subqueries (Any query with >700,000
results requires at least eight subqueries.), we would face the
restriction of a maximum of 50 terms per query. However,
and to be fair, a quite large overlapping query could be easily
split into several overlapping subqueries and finally joined
together. It seems that the WoS does a kind of simplification
of queries; thus, in particular cases, a large overlapping query
can be used, but it cannot be assured when this will happen
as it depends on the original query.

e The overlapping query is effective because an item can be
retrieved just by the name of the source or the name of the
series of the source. However, if the policy of the WoS changes
and, for example, it returns items also based on the name of
a subseries (i.e., a result could be retrieved in three different
subqueries), the overlapping query has to be adapted, and it
would be probably much more complex. Although currently
this fact does not apply, we cannot assure that this strategy
will still work in future versions of the WoS.

e Although the main partition of the search space is made by
restricting the Source field, the authors had to use additional
information (Table 1, Queries 6 and 7) because there are more
than 100,000 results for sources that begin with the letter
J (Note that there are many publications whose titles begin
with the word Journal.) Although using additional informa-
tion about the problem is legitimate, doing so implies that

the method cannot be extrapolated directly to any query, as
no extra information might be available. For example, for the
query TS = cancer (i.e., the number of papers that mention
cancer in the whole WoS database), there is no easy extra infor-
mation that helps us to avoid the more than 100,000 results
for sources that begin with the letter J.

e Although the total number of queries that the authors use to
compute the final solution is quite low (just eight from the
minimum six queries that would be necessary for a results
count of >500,000), it is clear that the design of those state-
ments requires much effort and trials to simplify them. This
work has probably been done manually as there is nothing that
suggests the employment of any automatic system to generate
them. This implies that a quite large amount of time has been
spent in obtaining the queries. A more structured algorithm
could allow the generation of those queries in an automated
manner, avoiding the time consumed in this task.

In this contribution, we present two more general and auto-
matic source-based partitioning approaches that use a simple
mechanism to avoid the use of the overlapping query pro-
posed by Arencibia-Jorge et al. (2009). Thus, both help to
obtain very large results counts for almost any query from
the WoS with little effort and in an efficient manner:

e The first approach consists of a divide-and-conquer strat-
egy, which recursively splits a large query into two or more
subqueries by restricting their results counts by imposing con-
ditions on the source field. This approach is designed to obtain
the results with as few queries as possible, but cannot be
always applied:

(a) It may come up with the 50 terms per query restriction
for some large result sets, and

(b) it presents a theoretical limit of a maximum 10-million
results for a single query.

e The second approach also is a divide-and-conquer strategy in
which a collapsing mechanism is applied to simplify the sub-
queries. In this case, the number of subqueries may be higher
than the first approach (i.e., it is slightly more inefficient),
but it allows the execution of almost any query (i.e., it will
not usually suffer the 50-terms nor the the 10-million results
restrictions), thus being a more reliable strategy.

Both approaches can be incorporated in automatic
retrieval systems, thus minimizing the efforts of the user.
In fact, we have developed the WoS Query Partitioner, a
freely available and online interactive tool which imple-
ments both approaches. This tool has been used to test the
partitioning approaches with the previously presented query
PY =2007 AND CU = USA, obtaining the same final result,
and also to obtain the number of items of more complicated
queries such as TS = cancer or PY = 2007 (i.e., the number
of papers published in 2007 indexed in the WoS database).

To do so, the article is structured as follows. We provide an
improvement over the Arencibia-Jorge et al. (2009) approach
by means of the use of the NOT operator. Then, the source-
based partitioning approaches that use a divide-and-conquer
strategy and some of the previous ideas to automatically
retrieve the results count for a particular query are presented.
Next, we briefly describe the WoS Query Partitioner software,

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—August 2010 1583

DOI: 10.1002/asi

TABLE 1.

Sequence of queries to obtain the total number of papers from the USA in 2007 according to Arencibia-Jorge et al. (2009).

Query Items >

#1 PY=2007 AND CU=USA AND (SO=A* OR SO=B*) 92,166 92,166
#2 PY=2007 AND CU=USA AND (SO=C* OR SO=D* OR SO=E* OR SO=F* OR SO=G*) 92,785 184,951
#3 PY=2007 AND CU=USA AND (SO=H* OR SO=I* OR SO=K* OR SO=L* OR SO=M%*) 83,859 268,810
#4 PY=2007 AND CU=USA AND (SO=N* OR SO=0* OR SO=P* OR SO=Q* OR SO=R*) 85,187 353,997
#5 PY=2007 AND CU=USA AND (SO=S* OR SO=T* OR SO=U* OR SO=V* OR SO=W* 60,122 414,119

OR SO=X* OR SO=Y* OR SO=Z* OR SO=1* OR SO=2* OR SO=3* OR SO=4* OR

SO=5* OR SO=6* OR SO=7* OR SO=8* OR SO=9%)
#6 PY=2007 AND CU=USA AND SO=J* AND AD=CA 17,089 431,208
#7 PY=2007 AND CU=USA AND SO=J* NOT AD=CA 93,194 524,402
#8 (1 AND 2) OR (1 AND 3) OR (1 AND 4) OR (1 AND 5) OR (1 AND 6) OR (1 AND 7) OR 23,517 500,885

(2 AND 3) OR (2 AND 4) OR (2 AND 5) OR (2 AND 6) OR (2 AND 7) OR (3 AND 4) (Overlapping) QO #1.. #T-#8)

OR (3 AND 5) OR (3 AND 6) OR (3 AND 7) OR (4 AND 5) OR (4 AND 6) OR (4 AND 7)

OR (5 AND 6) OR (5 AND 7) OR (6 AND 7)

TABLE 2. Sequence of queries to obtain the total number of papers from the USA in 2007 avoiding the overlapping query by using the NOT operator.

Query Ttems >
#1 PY=2007 AND CU=USA AND (SO=A* OR SO=B¥*) 92,166 92,166
#2 PY=2007 AND CU=USA AND (SO=C* OR SO=D* OR SO=E* OR SO=F* OR 91,987 184,153
SO=G*)NOT 1
#3 PY=2007 AND CU=USA AND (SO=H* OR SO=I* OR SO=K* OR SO=L* OR SO=M*) 80,952 265,105
NOT 1 NOT 2
#4 PY=2007 AND CU=USA AND (SO=N* OR SO=0%* OR SO=P* OR SO=Q* OR SO=R*) 78,963 344,068
NOT 1 NOT 2 NOT 3
#5 PY=2007 AND CU=USA AND (SO=S* OR SO=T* OR SO=U* OR SO=V* OR SO=W* 46,775 390,843
OR SO=X* OR SO=Y* OR SO=Z* OR SO=1* OR SO=2* OR SO=3* OR SO=4* OR
SO=5* OR SO=6* OR SO=7* OR SO=8* OR SO=9*) NOT 1 NOT 2 NOT 3 NOT 4
#6 PY=2007 AND CU=USA AND SO=J* AND AD=CA NOT 1 NOT 2 NOT 3 NOT 4 NOT 5 17,029 407,372
#7 PY=2007 AND CU=USA AND SO=J* NOT AD=CA NOT 1 NOT 2 NOT 3 NOT 4 NOT 5 NOT 6 93,013 500,885

and some conclusions are discussed. Finally, the Appendix
shows the results of two larger query tests that were carried
out with the WoS Query Partitioner tool.

Improving the Existing Methodology by the
Use of the NOT Operator

As shown in the previous section, it is possible to deter-
mine the total number of elements in the WoS for a query
such as PY =2007 AND CU = USA by creating a partition
of the search space using the Source field and some additional
information for the particular case of the source that begin
with with the letter J. To do so, an overlapping detection query
can be used to detect when particular results may have been
double-counted (because the Source field may return results
from both the name of the publication and its possible series).

However, there is a simpler way to avoid the repetition
of elements in the subqueries that would allow avoiding
the overlapping query and even would allow simplifying the
complexity of the proposed queries. The main idea of this
improvement is to avoid in each subsequent query the repe-
tition of the results in the previous queries. To do so, we can
use the NOT operator to restrict the results to only the not

previously serlected items; that is, Subquery 2 should restrict
its results to the ones that have not been selected in Subquery
1 with the restriction NOT 1, Subquery 3 should restrict its
results to the ones not selected in Queries 1 and 2 with the
restriction NOT 1 NOT 2, and so on. Thus, the queries pre-
sented in the previous section can be rewritten as shown in
Table 2, obtaining the exact same final result, but avoiding
the overlapping statement (and its problems).

Note that this simple mechanism easily allows simplify-
ing even more the queries needed to obtain the final results
count. For example, with a reordering and simplification,
the same result can be obtained with the queries shown in
Table 3. In this case, Subquery 6 retrieves all the publica-
tions from the USA and published in 2007 that have not
been previously found with Subqueries 1 to 5. This kind
of “wild card” subquery is interesting because allows the
simplification of queries and assures that every paper that
complies with the condition is retrieved. For example, in the
original Arencibias-Jorge et al. (2009) formulation, sources
that begin with the number O are not considered (Nowadays,
there are no sources that begin with 0.) However, if some
publications that start with 0 are added in a WoS update,
their proposal will not count them. On the contrary, this last

1584 JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—August 2010

DOI: 10.1002/asi

TABLE 3. Simplified sequence of queries to obtain the total number of papers from the USA in 2007.

Query Items >
#1 PY=2007 AND CU=USA AND (SO=A* OR SO=B*) 92,166 92,166
#2 PY=2007 AND CU=USA AND (SO=C* OR SO=D* OR SO=E* OR SO=F* OR SO=G*) NOT #1 91,987 184,153
#3 PY=2007 AND CU=USA AND (SO=H* OR SO=I* OR SO=K* OR SO=L* OR SO=M*) NOT #1 NOT #2 80,952 265,105
#4 PY=2007 AND CU=USA AND (SO=N* OR SO=0* OR SO=P* OR SO=Q* OR SO=R*) NOT #1 NOT #2 NOT #3 78,963 344,068
#5 PY=2007 AND CU=USA AND SO=J* NOT AD=CA NOT #1 NOT #2 NOT #3 NOT #4 93,100 437,168
#6 PY=2007 AND CU=USA NOT #1 NOT #2 NOT #3 NOT #4 NOT #5 63,717 500,885

0. PendingQueries = OriginalQuery
TotalResults = 0
NotPart = {}
1. WHILE PendingQueries NOT EMPTY
2. CurrentQuery = FIRST QUERY OF PendingQueries
3. APPEND NotPart TO CurrentQuery
4, NumberResults = EXECUTE CurrentQuery IN WoS
5. IF NumberResults > 100000 THEN
6. EXPAND CurrentQuery
7. NewSubqueries = SPLIT CurrentSubquery
8. ADD NewSubqueries TO PendingQueries
9. ELSE
10. TotalResults = TotalResults + NumberResults
11. APPEND CurrentQuery TO NotPart
12. END IF
13. REMOVE CurrentQuery FROM PendingQueries
14. END WHILE
15. WildCard = OriginalQuery + NotPart
16. NumberResults = EXECUTE WildCard IN WoS
17. FinalResult = TotalResults + NumberResults

FIG. 1. Pseudocode for the first source-based divide-and-conquer partitioning strategy.

proposal, with the addition of this wild card subquery, would
count them.

Source-Based Divide-and-Conquer
Partitioning Strategies

In this section, we present two different source-based par-
titioning approaches to obtain results counts from the WoS for
queries larger than 100,000. Both of them do not use any other
external source of information about the query, but act in a
recursive way by splitting the query into different subqueries
until their results counts are smaller than 100,000. Then, all
partial results are summed to obtain the final results counts
(aclassical divide-and-conquer strategy). The first strategy is
a more efficient approach (as it usually needs less subqueries
to be executed), but presents some reliability issues. The sec-
ond one has been adapted to overcome those reliability issues,
thus achieving the final result for any given query.

Both approaches need to define at least two mechanisms
to split a query: The first approach is used to expand the
query using the Source field, and the second approach is used
to really split the query into two subqueries. Next, we will
describe those mechanisms and provide some examples of
the use of both approaches using some real-world queries
with large results counts.

Initial Description of the Strategies

Apart from the aforementioned expansion and splitting
mechanisms, which will be described in the following sec-
tion, the first strategy also uses the idea of restricting the
results found in previous queries by incorporating negation
operators (doscuused earlier) to avoid the overlapping of
elements in the different subqueries and to assure that the
retrieval process acquires all desired results via the use of a
wild card subquery.

From now on, assume that the queries and subqueries we
are using have the following form:

ORIGINAL QUERY AND SO_PART NOT_PART

where the SO _PART has a set of terms in the form
(SO =Prefix1* OR OR SO =PrefixN*) and the
NOT_PART is in the form NOT Sentencel ... NOT Sen-
tenceM. Note that at the beginning of the process, both SO
and NOT parts are empty. A pseudocode description of this
approach is shown in Figure 1.

Expansion Mechanism

To be able to split a particular query into subqueries with
smaller results counts, it is neccesary to expand the original

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—August 2010 1585

DOI: 10.1002/asi

. Terms = list of terms in the SO part of the query to split

// Exit if no expansions are done

// According to the sources with its prefix
ExpandedTerms = GET PREFIXES THAT BEGIN WITH PREFIX OF Term

IF (SIZE OF ExpandedTerms + SIZE OF Terms - 1) < 41 THEN

// We have expanded. Try another time
// Exit the FOR loop

0

1. Expand = true

2. WHILE (Expand)

3. Expand = false

4. SORT Terms

5. FOR EACH Term IN Terms

6.

7.

8. REMOVE Term FROM Terms
9. ADD ExpandedTerms TO Terms
10. Expand = true

11. BREAK

12. END IF

13. END FOR

14. END WHILE

FIG. 2. Pseudocode for the expansion mechanism.

query. In our proposal, this expansion will be done using the
Source field. For example, if a query ORIGINAL QUERY
has a results count of more than 100,000 elements, it could
be expanded to an equivalent query (with the same number of
results) in the form ORIGINAL AND (SO =A* OR SO =B*
OR ... OR SO=28%* OR SO =9%). The only factor that we
have to take into account is that the prefixes for the SO fields
are all that can be in the WoS database. At this point, those
prefixes are the letters A to Z and the numbers 1 to 9. Once
this expansion is done, the query is easily splitable just by
maintaining the original query part and redistributing the SO
terms into several new subqueries (discussed later).

There will be certain moments in which the expansion
does not need to incorporate all possible letters and num-
bers. For example, if in a more deeper recursion level the
query ORIGINAL QUERY AND (SO = X*) has more than
100,000 results, it could be expanded to just ORIGINAL
QUERY AND (SO =X—* OR SO =XE* OR SO =XTI* OR
SO = XU%*), as there are no sources that begin with any other
combinations of an initial X and other symbols. Indeed, to
avoid the expansion of many nodes that would not retrieve
any result (because there are no sources with particular prefix
combinations), an almost complete list of sources in the WoS
(16,328 in total) have been downloaded from the Thomson
Reuters Master Journal List (E-Resource-2, 2010). From this
list, a file of possible minimum, different, and unique pre-
fixes has been created which allows identification of each
one of the sources. To this list, some extra prefixes (basically
numerical prefixes) have been added to cover some sources
that are not included in the Thomson Reuters Master Journal
List (e.g., many conference proceedings’ titles start with a
number). Note that some of the sources of documents in the
WoS may not be reflected in that list; however, the use of a
final wild card subquery at the end of the retrieval process
will take care of the few results that might not be covered
there.

The described expansion can be repeated as many times as
we want, thus increasing the granularity of the SO part of the
query. Obviously, we are not interested in expanding every
possible prefix because the size of the query would grow

to more than 16,000 terms (which would not be allowed by
the WoS to be executed); however, note that the granularity
of the SO part is large enough to try to find partitions with
a similar number of results being this number as large as
possible (but not surpassing the 100,000 limit).

To find a particular balance with the granularity of the SO
part of the query, two policies have been fixed:

e The maximum number of terms in the expanded SO part will
be 40. This allows us to split the query into two subqueries
of a maximum of 20 terms (to avoid reaching the 50-terms
restriction) in the SO part.

e The expansion mechanism first tries to expand the term whose
number of sources that have that particular prefix is larger.
This heuristic is introduced because if a given prefix identifies
alarger amount of sources than other, it will probably produce
alarger results count and, thus, dividing it will probably obtain
subqueries with larger and more balanced numbers of queries
(which will reduce the number of needed divisions). To do so,
all terms in the SO part are sorted from having more sources
with that particular prefix to the one having less sources with
that prefix, and the first expansion is done to the first term.
For example, if we have the query ORIGINAL QUERY AND
(SO =1J* AND SO = X*) and we want to expand it, the first
term to be expanded is SO =J* because there are more than
1,000 sources that begin with the prefix J and only 10 sources
that begin with X thus, the part that most likely is contributing
more results to the query (increasing the number of results
>100,000) is the first one.

A pseudocode description of the expansion mechanism
is presented in Figure 2, where the GET PREFIXES THAT
BEGIN WITH PREFIX OF Term function just returns all
the possible larger (but with the same length) prefixes from
the list of prefixes that begin with the prefix of the term. For
example, if the term is SO = X*, it would return the set of
terms SO = X-*, SO = XE*, SO = XI*, SO = XU*.

Split Mechanism

The split mechanism of this first approach creates two dif-
ferent subqueries from an expanded query. To do so, it just

1586 JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—August 2010

DOI: 10.1002/asi

Q1 = NEW QUERY
Q2 = NEW QUERY
Count = 0
FOR EACH Term IN Terms
IF (Count % 2) == 0 THEN
ADD Term TO Q1
ELSE
ADD Term TO Q2
END IF
END FOR

O 00N Uk WwN RO

[y
o

Terms = list of terms in the SO part of the query to split
(COPY ORIGINAL QUERY)
(COPY ORIGINAL QUERY)

FIG. 3.

redistributes the elements in the SO part of the query in two
different sets. As the terms in the SO part are ordered accord-
ing to the number of sources with that particular prefix, the
split mechanism will alternatively put each term in one of
the two new subqueries to try to obtain a balanced distribution
of the elements. For example, the following query ORIG-
INAL QUERY AND (SO=1J* OR SO=A* OR SO=Y*
OR SO =X%*) would be split in the following two sub-
queries: ORIGINAL QUERY AND (SO =J* OR SO =Y¥)
and ORIGINAL QUERY AND (SO=A* OR SO=X%*). A
pseudocode description of the split mechanism is presented
in Figure 3.

Examples of Application and Discussion (PY = 2007
AND CU=USA)

Several tests have been done to this first divide-and-
conquer approach. In fact, we used the WoS Query Par-
titioner application (described earlier), which interactively
produces the queries and subqueries that have to be executed
through the WoS interface. This application only requires as
inputs the query from which we want to obtain the number
of results and the number of results that each particular sub-
query introduced in the WoS interface produced. Thus, the
task of the user is merely copying and pasting queries from
the application to the WoS Web interface and copying and
pasting the number of results from the WoS interface to the
WoS Query Partitioner.

One of the first tests that was to try the query presented
earlier, PY =2007 AND CU = USA. The application only
needed the 14 queries presented in Table 4 to obtain the exact
final result. Although this number is clearly larger than the
sets of queries from the previous sections, note that no extra
knowledge about the problem has been introduced and that
no previous queries have been tested (which is clearly not
the case from the manual approaches presented earlier). In
addition, the generated queries are clearly more complicated
ones, but as they are not inteded to be used manually (i.e., just
copied and pasted into the WoS interface), this is not really
an issue.

In addition to the raw data, in Figure 4, the actual parti-
tion made with the subqueries is depicted. The area of each
rectangle is proportional to the number of results obtained

Pseudocode for the split mechanism (% is the usual modulus operation).

for that particular query. A green reference square has been
included, with an area equivalent to 100,000 results. Thus,
all leaf subqueries should have an area smaller than that of
the square.

In addition, the total number of results for the much more
complex query TS =cancer is 908155. Thirty-two differ-
ent queries had to be executed in the WoS interface (which
required about 5 min of copying and pasting). The actual
queries and a graphical description for this partition can be
found at http://sci2s.ugr.es/software/WoSQP/ For this partic-
ular example, note that the wild card subquery found a few
results that were not retrieved by the 31 previous queries.

As has been shown, this approach is able to retrieve results
counts for large datasets. In addition, it obtains the results in
an automatic way, without needing any special knowledge
about the problem, which allows the use of this method with
almost any query. However, the presented approach does have
some limitations:

e For queries with really large results counts, more than 100
subqueries might be needed. This imposes a theoretical limit
of a maximum 10-million results for a single query; however,
as partial results counts are usually smaller than 100,000, this
limit will usually be reached earlier.

e The complexity of the generated subqueries increases as new
NOT operators are included. This fact could lead to quite large
queries (i.e., with >50 terms) that the WoS would not be able
to process. In fact, this limit was reached when trying to obtain
the results count for the query PY = 2007.

Thus, to solve these two problems and to allow obtaining
results for queries with larger datasets, a second approach has
been developed and is described next.

Source-Based Divide-and-Conquer Partitioning Strategy
With Collapsing Mechanism

The second approach tries to solve the problems of the pre-
vious approach to be able to obtain results counts from almost
any query from the WoS. The basic scheme of this approach
alsois based in a recursive partitioning by means of the Source
field. However, in this case, we have adapted the expansion
and split mechanisms to avoid mixing prefixes with different
lengths in the SO part of the queries. This change allows

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—August 2010 1587

DOI: 10.1002/asi

TABLE 4. Queries produced by the first source-based partitioning approach for the query PY=2007 AND CU=USA.

Query

Items

#1
#2

#3

#4

#5

#6

#7

#8

#9

#10

#11

PY=2007 AND CU=USA

PY=2007 AND CU=USA AND (SO=J* OR SO=C* OR SO=I* OR SO=S* OR SO=E* OR SO=N* OR
SO=F* OR SO=H* OR SO=0% OR SO=Z* OR SO=W* OR SO=U* OR SO=Y* OR SO=X* OR SO=3*
OR SO=5* OR SO=7* OR SO=9%)

PY=2007 AND CU=USA AND (SO=JOURNAL * OR SO=I* OR SO=E* OR SO=F* OR SO=0* OR
SO=W* OR SO=JA* OR SO=JU* OR SO=JE* OR SO=JI* OR SO=JOURNALS* OR SO=JN* OR SO=JOI*
OR SO=3* OR SO=7* OR SO=JM* OR SO=JS* OR SO=JOG* OR SO=JOK¥*)

PY=2007 AND CU=USA AND (SO=JOURNAL O* OR SO=E* OR SO=0* OR SO=JA* OR
SO=JOURNAL D* OR SO=JE* OR SO=JOURNALS* OR SO=JOI* OR SO=3* OR SO=JM* OR
SO=JOG* OR SO=JOURNAL I*)

PY=2007 AND CU=USA AND (SO=E* OR SO=0%* OR SO=JOURNAL OF A* OR SO=JOURNAL OF
M* OR SO=JOURNAL OF S* OR SO=JOURNAL OF B* OR SO=JOURNAL OF F* OR SO=JA* OR
SO=JOURNAL OF R* OR SO=JOURNAL OF L* OR SO=JOURNAL OF D* OR SO=JOURNAL D* OR
SO=JOURNAL OF K* OR SO=JOURNAL OF Z* OR SO=JOURNAL OF Q* cumulated OR SO=JOURNALS*
OR SO=JOURNAL OF X* OR SO=JM* OR SO=JOURNAL I*)

PY=2007 AND CU=USA AND (SO=JOURNAL OF T* OR SO=JOURNAL OF C* OR SO=JOURNAL OF
P* OR SO=JOURNAL OF E* OR SO=JOURNAL OF N* OR SO=JOURNAL OF I* OR SO=JOURNAL OF
H* OR SO=JOURNAL OF G* OR SO=JOURNAL OF O* OR SO=JOURNAL OF V* OR SO=JOURNAL
OF W* OR SO=JOURNAL OF J* OR SO=JOURNAL OF U* OR SO=JE* OR SO=JOURNAL OF Y* OR
SO=JOI* OR SO=3* OR SO=JOG*) NOT #5

PY=2007 AND CU=USA AND (SO=I* OR SO=F* OR SO=W* OR SO=JOURNAL F* OR SO=JU* OR
SO=JI* OR SO=JN* OR SO=JOURNAL A* OR SO=7* OR SO=JS* OR SO=JOK* OR SO=JOURNAL N*)
NOT #5 NOT #6

PY=2007 AND CU=USA AND (SO=C* OR SO=S* OR SO=N* OR SO=H* OR SO=Z* OR SO=U* OR
SO=Y* OR SO=X* OR SO=JC* OR SO=JOURNALI* OR SO=JB* OR SO=JOA* OR SO=JOR* OR SO=5%*
OR SO=9* OR SO=JP* OR SO=JOE* OR SO=JOH* OR SO=JOM*) NOT #5 NOT #6 NOT #7

PY=2007 AND CU=USA AND (SO=A* OR SO=P* OR SO=B* OR SO=M* OR SO=R* OR SO=T* OR
SO=G* OR SO=D* OR SO=L* OR SO=V* OR SO=K* OR SO=Q* OR SO=2* OR SO=1* OR SO=4* OR
SO=6* OR SO=8* OR SO=0%) NOT #5 NOT #6 NOT #7 NOT #8

PY=2007 AND CU=USA AND (SO=A* OR SO=B* OR SO=R* OR SO=G* OR SO=L* OR SO=K* OR
SO=2* OR SO=4* OR SO=8%) NOT #5 NOT #6 NOT #7 NOT #8

PY=2007 AND CU=USA AND (SO=B* OR SO=G* OR SO=AC* OR SO=AR* OR SO=K* OR SO=AU*

>100,000
>100,000

>100,000

>100,000

69,279

69,807

54,345

95,187

>100,000

>100,000

52,522

69,279

139,086

193,431

288,618

341,140

OR SO=AP* OR SO=AG* OR SO=AT* OR SO=AB* OR SO=AV* OR SO=AA* OR SO=AK* OR

SO=A * OR SO=8%*) NOT #5 NOT #6 NOT #7 NOT #8

#12 PY=2007 AND CU=USA AND (SO=R* OR SO=AN* OR SO=L* OR SO=AM* OR SO=AD* OR SO=AS*

75,274 416,414

OR SO=AL* OR SO=AF* OR SO=AQ* OR SO=AI* OR SO=2* OR SO=AE* OR SO=AJ* OR SO=4*

OR SO=AX*) NOT #5 NOT #6 NOT #7 NOT #38 NOT #11

#13 PY=2007 AND CU=USA AND (SO=P* OR SO=M* OR SO=T* OR SO=D* OR SO=V* OR SO=Q*

84,471 500,885

OR SO=1* OR SO=6* OR SO=0%) NOT #5 NOT #6 NOT #7 NOT #8 NOT #11 NOT #12

#14 PY=2007 AND CU=USA NOT #5 NOT #6 NOT #7 NOT #8 NOT #11 NOT #12 NOT #13 0

500,885

us to incorporate a collapsing mechanism that minimizes
the complexity of the next subqueries (avoiding the
50-terms limit) by collapsing certain branches of the search
space. Moreover, the collapsing mechanism allows removing
queries from the search history, which solves the maximum
limit of 100 subqueries of the approach presented earlier.

In the following, we will describe the modified expansion
and split mechanisms, the new collapsing mechanism, and
some examples and discussion about the application of this
new approach.

New expansion mechanism. The expansion mechanism for
this approach is simpler than the previous one. In this case,
we will expand the query only if there is just one term in
the SO part (or none, just for the case of the first query). In
doing so, we assure that all the terms in the SO part will have
the same prefix.

This expansion mechanism has a small disadvantage: As
there will be less terms in the SO part of the query, we will not

be able to try to balance both subqueries when divided by the
split mechanism; thus, more subqueries usually will be gener-
ated for the original query. In fact, as the examples will show,
there will be some queries with a larger number of generated
sub-queries when using this new expansion mechanism. This
is not an issue because the queries could be executed in an
automatic way via a specific retrieval application.

New split mechanism. As in the previous approach, this
split mechanism will try to balance the number of results
between the two new subqueries based on the numbers of the
sources that begin with each particular prefix in the SO part.
To avoid the NOT parts of the queries growing too much, it
is interesting to try to maintain to the left of the search tree
the SO terms which presumably will produce more results
(because the distribution of journals that begin with particular
perfixes is quite skewed).

Thus, this split mechanism will sort the SO terms in the
SO part of the query and include on the first subquery the first

1588 JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—August 2010

DOI: 10.1002/asi

FIG. 4. Actual partition for the queries in Table 4.

Q1 = NEW QUERY
Q2 = NEW QUERY

ADD FirstTerm to Q1

REMOVE FirstTerm FROM Terms
FOR EACH Term IN Terms

© 00 ~NO U WN -

-
o

ADD Term TO Q1
CumulatedSources
ELSE
ADD Term TO Q2
CumulatedSources
15. END IF
. END FOR

=
N =

-
w

H
IS

-
o))

0. Terms = list of terms in the SO part of the query to split
TotalNumberSources = TOTAL NUMER OF SOURCES IN Terms

(COPY ORIGINAL QUERY)

(COPY ORIGINAL QUERY)

FirstTerm = FIRST TERM OF Terms

CumulatedSources = NUMBER OF SOURCES FOR FirstTerm
SourcesCount = NUMBER OF SOURCES FOR for Term
IF CumulatedTerms + SourcesCount < TotalNumberSources / 2 THEN

CumulatedSources + SourcesCount

INFINITY // Avoid adding any more to Q1

FIG.5. Pseudocode for the new split mechanism.

terms which have a total number of sources as close to the
sum of the sources of the rest of terms. For example, if the
query has the following SO part: SO =1J* OR SO=A* OR
SO =Y* OR SO = X*, and the number of sources that begin
with J is 1,000, with A is 500, with Y is 25, and with X is 10,
then the SO part of the first subquery would include only the
SO =J* term, and the SO part of the second subquery would
include the rest: SO = A* OR SO =Y* OR SO = X*. A pseu-
docode description of this new split mechanism is presented
in Figure 5.

Collapsing mechanism. This new collapsing mechanism
has a quite important role in this second approach. In fact,

this collapsing mechanism is the one that allows overcoming
the 50-terms restriction by simplifying the NOT parts of the
subqueries and avoiding the 100 queries in the search-history
problem because it makes every subquery independent from
the previous ones: The NOT parts will not just be applied to
previous queries but will be composed directly by adding the
SO terms that were previously executed in the search tree.
The basic idea of the collapsing mechanism is that once
all the child subqueries of a particular query have been exe-
cuted, there is no need to add both subqueries to the NOT part
of the next queries to be executed but they could be replaced
for the more general parent query. For example, suppose that
a query with a SO part has been split into subqueries with

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—August 2010 1589

DOI: 10.1002/asi

the following SO parts: SO =X—*, SO =XE*, SO = XT*,
SO = XU*. According to the first approach presented in pre-
vious sections, the next queries to be executed should have
a NOT part in the form of NOT SO =X—* NOT SO = XE*
NOT SO = XI* NOT SO = XU*. However, it is quite obvi-
ous that a NOT part in the form NOT SO = X* would be
equivalent but much more simple. Hence, we would avoid
the subsequent queries growing excessively.

Only one important clarification in this mechanism needs
to be introduced. As previously mentioned, the list of sources
downloaded from the WoS might not be complete (and, in
fact, is not complete because it includes only journals), which
could lead to situations where some results are not retrieved.
To get this around the collapsing mechanism will add an extra
wild card subquery to assure that no results are omitted from
that particular branch in the search space. Continuing with
the previous example, once the four subqueries for the X
prefix have been completed, an additional wild card query
in the form SO = X* NOT (SO =X—* OR SO =XE* OR
SO =XTI* OR SO =XU*) would be added to the pending
queries list. From the examples in the next section, it can be
seen that these queries usually retrieve a quite low number of
results (In many of them, no new result is obtained.)

Examples and discussion (PY =2007 AND CU=USA). To
test this new approach, we first used the same query as in the
previous section: PY =2007 AND CU = USA. As expected,
this approach produced a higher amount of queries to obtain
the same result. Concretely, it produced 29 different queries
(see Table 5). In addition, Figure 6 shows the partition of
the search space for this set of queries. Note that some of the
queries drawn have three child subqueries. The third of those
subqueries corresponds to a wild card subquery produced
by the collapsing mechanism. From Figure 6, we also can
appreciate from the particular split mechanism that we have
included in this approach how the search is skewed toward
the left (We first try to solve the subqueries with SO terms
with more sources for their prefix.) Note also how many of
the subqueries have been simplified.

In addition, a much larger query has been tested with this
second approach. The query PY =2007 has been resolved to
have a results count of 1,786,644. To obtain this result, this
second approach has produced 67 different queries that were
executed in less than 15 min in the WoS Web interface. Note
that those queries have been generated automatically, with-
out any external source of extra information. Obtaining that
result without any previous information about the problem in
a manual manner would probably have required much more
effort and many more trial-and-error tests. Raw data for this
particular query along with its partition figure are included
in the Appendix.

Although this approach solves the problems presented in
the previous one (thus making this new approach more reli-
able), it is more inefficient in the way it splits the search
space by producing a higher number of queries. However,
because it is able to solve much more complex queries, it is

1590
DOI: 10.1002/asi

probably more suitable as a general source-based partition-
ing approach. Note that the number of queries issued by this
second approach could lower if the source list that we use
was complete; however, obtaining such an up-to-date list is
indeed a difficult task that should be solved in the future.

Finally, there is a small limitation of source-based partition
approaches for the WoS (not only for the two presented meth-
ods but for any other possible one). For some extremely large
results counts, there is a limit which cannot be surpassed with
a pure source-based partitioning approach: If for a particular
source there exist more than 100,000 results indexed in the
WoS, it is clear that no additional source partitioning would
be possible. However, these situations will not usually hap-
pen, as there are only a few of the more than 16,000 sources
that do indeed offer more than 100,000 results for them-
selves (e.g., the journal Nature has more than 100,000 results
indexed in the WoS). In those cases, a special partitioning
scheme based on another field should be used.

WoS Query Partitioner Tool

In this section, we present a brief description of the WoS
Query Partitioner tool. This application implements both
source-based divide-and-conquer partitioning approaches
presented in previous sections. It has been programmed as a
Java Applet and thus can be executed from almost any modern
browser and operating system.

The application (along with some instructions and a
description) is hosted in http://sci2s.ugr.es/software/WoSQP/
and can be freely accessed and used.

The WoS Query Partitioner not only implements those two
approaches but also produces some graphs and tables simi-
lar to the ones presented in this article to help researchers
incorporate them in their experimentation.

The use of the WoS Query Partitioner is quite simple and
can be summarized in three steps:

1. The user must insert the WoS query to split in the Query
field and press the Begin Query Partitioning button. For
example, a user could input the query PY =2007 AND
CU =USA (Figure 7).

2. A new window will open asking to execute a particular
query to the WoSinterface and requesting to input the num-
ber of results obtained in the blank field. To help the copy-
and-paste mechanism into the WoS Web page, the query
to execute is automatically inserted into the system clip-
board. If the results count of the executed query is
greater than 100,000 (>100000), the field must be left
blank. The Next Iteration button should then be pressed
(Figure 8).

3. Step 2 will be repeated several times until a final results
count is obtained. Once this count is shown (Figure 9), the
graphs and table for the query will be generated.

Note that although it has not been done, it is rather simple
to extend this (or any similar) application to make it fully
automatic (i.e., allowing it to make the queries directly to
the WoS).

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—August 2010

TABLE 5. Queries produced by the second source-based partitioning approach for the query PY=2007 AND CU=USA.
Query Items >
#1 PY=2007 AND CU=USA >100,000
#2 PY=2007 AND CU=USA AND (SO=J* OR SO=A* OR SO=C* OR SO=P* OR SO=I*) >100,000
#3 PY=2007 AND CU=USA AND (SO=J%) >100,000
#4 PY=2007 AND CU=USA AND (SO=JO%) >100,000
#5 PY=2007 AND CU=USA AND (SO=JOU*) >100,000
#6 PY=2007 AND CU=USA AND (SO=JOURNAL *) >100,000
#7 PY=2007 AND CU=USA AND (SO=JOURNAL O%) >100,000
#8 PY=2007 AND CU=USA AND (SO=JOURNAL OF T* OR SO=JOURNAL OF C* OR SO=JOURNAL OF A* OR 48,632 48,632
SO=JOURNAL OF P%*)
#9 PY=2007 AND CU=USA AND (SO=JOURNAL OF M* OR SO=JOURNAL OF E* OR SO=JOURNAL OF S* 59,039 107,671
OR SO=JOURNAL OF N* OR SO=JOURNAL OF B* OR SO=JOURNAL OF I* OR SO=JOURNAL OF F* OR
SO=JOURNAL OF H* OR SO=JOURNAL OF G* OR SO=JOURNAL OF R* OR SO=JOURNAL OF O*
OR SO=JOURNAL OF L* OR SO=JOURNAL OF V* OR SO=JOURNAL OF D* OR SO=JOURNAL OF W*
OR SO=JOURNAL OF J* OR SO=JOURNAL OF K* OR SO=JOURNAL OF U* OR SO=JOURNAL OF Z*
OR SO=JOURNAL OF Q* OR SO=JOURNAL OF Y* OR SO=JOURNAL OF X*) NOT (SO=JOURNAL OF T*
OR SO=JOURNAL OF C* OR SO=JOURNAL OF A* OR SO=JOURNAL OF P%*)
#10 PY=2007 AND CU=USA AND (SO=JOURNAL O*) NOT (SO=JOURNAL OF T* OR SO=JOURNAL OF C* 1 107,672
OR SO=JOURNAL OF A* OR SO=JOURNAL OF P#*) NOT (SO=JOURNAL OF M* OR SO=JOURNAL OF E*
OR SO=JOURNAL OF S* OR SO=JOURNAL OF N* OR SO=JOURNAL OF B* OR SO=JOURNAL OF I*
OR SO=JOURNAL OF F* OR SO=JOURNAL OF H* OR SO=JOURNAL OF G* OR SO=JOURNAL OF R*
OR SO=JOURNAL OF O* OR SO=JOURNAL OF L* OR SO=JOURNAL OF V* OR SO=JOURNAL OF D*
OR SO=JOURNAL OF W* OR SO=JOURNAL OF J* OR SO=JOURNAL OF K* OR SO=JOURNAL OF U*
OR SO=JOURNAL OF Z* OR SO=JOURNAL OF Q* OR SO=JOURNAL OF Y* OR SO=JOURNAL OF X*)
#11 PY=2007 AND CU=USA AND (SO=JOURNAL F* OR SO=JOURNAL D* OR SO=JOURNAL A* OR SO=JOURNAL 345 108,017
I* OR SO=JOURNAL N*) NOT (SO=JOURNAL O%)
#12 PY=2007 AND CU=USA AND (SO=JOURNAL *) NOT (SO=JOURNAL O*) NOT (SO=JOURNAL F* OR 0 108,017
SO=JOURNAL D* OR SO=JOURNAL A* OR SO=JOURNAL I* OR SO=JOURNAL N¥*)
#13 PY=2007 AND CU=USA AND (SO=JOURNALI* OR SO=JOURNALS*) NOT (SO=JOURNAL *) 311 108,328
#14 PY=2007 AND CU=USA AND (SO=JOU*) NOT (SO=JOURNAL *) NOT (SO=JOURNALI* OR SO=JOURNALS*) 0 108,328
#15 PY=2007 AND CU=USA AND (SO=JOA* OR SO=JOI* OR SO=JOR* OR SO=JOE* OR SO=JOG* OR SO=JOH* 178 108,506
OR SO=JOK* OR SO=JOM*) NOT (SO=JOU¥*)
#16 PY=2007 AND CU=USA AND (SO=JO*) NOT (SO=JOU*) NOT (SO=JOA* OR SO=JOI* OR SO=JOR* OR 4 108,510
SO=JOE* OR SO=JOG* OR SO=JOH* OR SO=JOK* OR SO=JOM*)
#17 PY=2007 AND CU=USA AND (SO=JA* OR SO=JU* OR SO=JE* OR SO=JC* OR SO=JI* OR SO=JB* OR 1773 110,283
SO=JN* OR SO=JM* OR SO=JP* OR SO=JS*) NOT (SO=JO*)
#18 PY=2007 AND CU=USA AND (SO=J*) NOT (SO=JO*) NOT (SO=JA* OR SO=JU* OR SO=JE* OR SO=JC* OR 0 110,283
SO=JI* OR SO=JB* OR SO=JN* OR SO=JM* OR SO=JP* OR SO=JS*)
#19 PY=2007 AND CU=USA AND (SO=A* OR SO=C* OR SO=P* OR SO=I*) NOT (SO=J*) >100,000
#20 PY=2007 AND CU=USA AND (SO=A*) NOT (SO=J*) 67,025 177,308
#21 PY=2007 AND CU=USA AND (SO=C* OR SO=P* OR SO=I*) NOT (SO=J*) NOT (SO=A*) >100,000
#22 PY=2007 AND CU=USA AND (SO=C#*) NOT (SO=J*) NOT (SO=A*) 41,214 218,522
#23 PY=2007 AND CU=USA AND (SO=P* OR SO=I*) NOT (SO=J*) NOT (SO=A*) NOT (SO=C¥*) 82,682 301,204
#24 PY=2007 AND CU=USA AND (SO=B* OR SO=S* OR SO=M* OR SO=E* OR SO=R* OR SO=N* OR SO=T* OR >100,000
SO=F* OR SO=G* OR SO=H* OR SO=D* OR SO=0% OR SO=L* OR SO=Z* OR SO=V* OR SO=W?* OR SO=K*
OR SO=U* OR SO=Q* OR SO=Y* OR SO=2* OR SO=X* OR SO=1* OR SO=3* OR SO=4* OR SO=5* OR SO=6*
OR SO=7* OR SO=8* OR SO=9* OR SO=0%) NOT (SO=J* OR SO=A* OR SO=C* OR SO=P* OR SO=I*)
#25 PY=2007 AND CU=USA AND (SO=B* OR SO=S* OR SO=M* OR SO=E*) NOT (SO=J* OR SO=A* OR SO=C* 86,175 387,379
OR SO=P* OR SO=I*)
#26 PY=2007 AND CU=USA AND (SO=R* OR SO=N* OR SO=T* OR SO=F* OR SO=G* OR SO=H* OR SO=D* OR >100,000
SO=0* OR SO=L* OR SO=Z* OR SO=V* OR SO=W* OR SO=K* OR SO=U* OR SO=Q* OR SO=Y* OR SO=2*
OR SO=X* OR SO=1* OR SO=3* OR SO=4* OR SO=5* OR SO=6* OR SO=7* OR SO=8* OR SO=9* OR SO=0%)
NOT (SO=J* OR SO=A* OR SO=C* OR SO=P* OR SO=I*) NOT (SO=B* OR SO=S* OR SO=M* OR SO=E¥*)
#27 PY=2007 AND CU=USA AND (SO=R* OR SO=N* OR SO=T* OR SO=F*) NOT (SO=J* OR SO=A* OR SO=C* 48,809 436,188
OR SO=P* OR SO=I*) NOT (SO=B* OR SO=S* OR SO=M* OR SO=E*)
#28 PY=2007 AND CU=USA AND (SO=G* OR SO=H* OR SO=D* OR SO=0* OR SO=L* OR SO=Z* OR SO=V* 64,697 500,885
OR SO=W#* OR SO=K* OR SO=U* OR SO=Q* OR SO=Y* OR SO=2* OR SO=X* OR SO=1* OR SO=3*
OR SO=4* OR SO=5* OR SO=6* OR SO=7* OR SO=8* OR SO=9* OR SO=0%) NOT (SO=J* OR SO=A*
OR SO=C* OR SO=P* OR SO=I*) NOT (SO=B* OR SO=S* OR SO=M* OR SO=E*) NOT (SO=R* OR SO=N*
OR SO=T* OR SO=F%)
#29 PY=2007 AND CU=USA NOT (SO=J* OR SO=A* OR SO=C* OR SO=P* OR SO=I*) NOT (SO=B* OR SO=S* 0 500,885
OR SO=M* OR SO=E* OR SO=R* OR SO=N* OR SO=T* OR SO=F* OR SO=G* OR SO=H* OR SO=D* OR
SO=0* OR SO=L* OR SO=Z* OR SO=V* OR SO=W* OR SO=K* OR SO=U* OR SO=Q* OR SO=Y* OR SO=2%
OR SO=X* OR SO=1* OR SO=3* OR SO=4* OR SO=5* OR SO=6* OR SO=7* OR SO=8* OR SO=9* OR SO=0%)
JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—August 2010 1591

DOI: 10.1002/asi

1592

FIG. 6. Actual partition for the queries in Table 5.

Query:

PY=2007 AND CU=USA

<l [»

Partitioning Approach: |Divide & Conquer Ivl

V Begin Query Partitioning

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—August 2010

FIG. 7. Initial screen of the WoS Query Partitioner.

DOI: 10.1002/asi

|%| ©) New Query (1): #2

Execute the Query (in the clipboard):

©Oe ®

30 #1) - PY=2007 AND CU=USA ; -H
[y 1 #2) - PY=2007 AND CU=USA

50=5" ORSO=7* ORS0=9")

PY=2007 AND CU=USA AND (SO=J* ORSO=C* ORSO=I* OR
50=5* OR SO=E* OR SO=N* OR SO=F* OR SO=H* OR SO=0" OR
50=Z* ORSO=W" ORSO=U* OR SO=Y* OR SO=X* OR SO=3" OR

<]

and insert the numbre of results (empty if >100000):

V Next Iteration

X ABORT

«] [»

FIG. 8. Window with the subquery to execute.

®

% (©) Query ended —)

@ Total Results: S00885 [14 queries]

FIG. 9. Final results count is shown by the WoS Query Partitioner.

Conclusions

In this contribution, we have presented two partitioning
approaches based on the source field for the WoS that allow
the user to avoid the >100,000 restriction. Both work in a
divide-and-conquer fashion by splitting the search space in a
recursive way. They are designed to work without needing any
extra information about the query being executed and could
indeed be incorporated into automatic retrieval applications.

The first approach was designed trying to minimize the
number of queries that have to be executed to obatin a solu-
tion; however, this approach may encounter other limitations
present in the WoS interface (e.g., the >50 terms-per-query
restriction). To overcome this issue, a second, more reliable
approach has been deployed. Although this second approach
produces a higher number of queries, it does not suffer from
the restrictions of the first approach and is able to obtain
accurate results for more complex queries.

Both approaches have been implemented into the WoS
Query Partitioner application and tested with a well-known
query that has been shown to produce a set of more than
500,000 results. The application is freely accessible and can
be used in any future research. In addition, more complex
queries with results counts of about 1 and 2 million also have
been succesfully tested.

Future research and development might include discov-
ering new heuristics to split the queries, which may offer
better efficiency (i.e., less queries to be produced to solve the

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—August 2010

problem), developing more complex partitioning schemes not
only based on the source field but with a combination of other
fields, and incorporating these approaches into automatic
retrieval tools.

Acknowledgments

This article has been developed with financing of the
Andalucian Excellence Project (TIC05299), and FEDER
funds in the PETRI project (PET2007-0460) and in the
FUZZYLING project (TIN2007-61079).

References

Alonso, S., Cabrerizo, F., Herrera-Viedma, E., & Herrera, F. (2009). h-index:
A review focused in its variants, computation and standardization for
different scientific fields. Journal of Informetrics, 3(4), 273-289.

Archambault, E., Campbell, D., Gingras, Y., & Lariviare, V. (2009). Compar-
ing bibliometric statistics obtained from the web of science and scopus.
Journal of the American Society for Information Science and Technology,
60(7), 1320-1326.

Arencibia-Jorge, R., Leydesdorff, L., Chinchilla-Rodriguez, Z., Rousseau,
R., & Paris, S. (2009). Retrieval of very large numbers of items in the
web of science: An exercise to develop accurate search strategies. El
Profesional de la Informacion, 18(5), 529-533.

E-Resource-1. (2010). Web of science. Retrieved April 28, 2010, from
http://wokinfo.com/products_tools/multidisciplinary/webofscience/

E-Resource-2. (2010). Thomson reuters master journal list. Retrieved April
28, 2010, from http://science.thomsonreuters.com/mjl/

Egghe, L. (2010). The hirsch index and related impact measures. Annual
Review of Information Science and Technology, 44.

Jacso, P. (2009). Errors of omission and their implications for computing sci-
entometric measures in evaluating the publishing productivity and impact
of countries. Online Information Review, 33, 376-385.

Meho, L., & Rogers, Y. (2008). Citation counting, citation ranking, and
h-index of human—computer interaction researchers: A comparison of sco-
pus and web of science. Journal of the American Society for Information
Science and Technology, 59(11), 1711-1726.

Vieira, E., & Gomes, J. (2009). A comparison of scopus and web of science
for a typical university. Scientometrics, 81(2), 587-600.

Zhou, P., & Leydesdorff, L. (2006). The emergence of China as a leading
nation in science. Research Policy, 35, 83-104.

1593
DOI: 10.1002/asi

Appendix for the query PY =2007 using the second source-based
divide-and-conquer partition approach with collapsing mech-
anism. In Figure Al, the actual partition of those 67
queries is presented. Note that the results counts for some

In Table Al, we present the list of 67 queries that queries are so small that they are not actually visible in the
had to be executed to obtain the total number of results figure.

Application of the Second Source-Based
Partition Approach to PY = 2007

TABLE A1l. Queries produced by the second source-based divide-and-conquer partitioning approach with collapsing mechanism for the query PY =2007.

Query Items >
#1 PY=2007 >100,000
#2 PY=2007 AND (SO=J* OR SO=A* OR SO=C* OR SO=P* OR SO=I*) >100,000
#3 PY=2007 AND (SO=J*) >100,000
#4 PY=2007 AND (SO=JO%*) >100,000
#5 PY=2007 AND (SO=JOU*) >100,000
#6 PY=2007 AND (SO=JOURNAL *) >100,000
#7 PY=2007 AND (SO=JOURNAL O%) >100,000
#8 PY=2007 AND (SO=JOURNAL OF T* OR SO=JOURNAL OF C* OR SO=JOURNAL OF >100,000
A* OR SO=JOURNAL OF P¥*)
#9 PY=2007 AND (SO=JOURNAL OF T%*) 36,593 36,593
#10 PY=2007 AND (SO=JOURNAL OF C* OR SO=JOURNAL OF A* OR SO=JOURNAL OF 97,750 134,343
P*) NOT (SO=JOURNAL OF T%*)
#11 PY=2007 AND (SO=JOURNAL OF M* OR SO=JOURNAL OF E* OR SO=JOURNAL >100,000

OF S* OR SO=JOURNAL OF N* OR SO=JOURNAL OF B* OR SO=JOURNAL OF
I* OR SO=JOURNAL OF F* OR SO=JOURNAL OF H* OR SO=JOURNAL OF G* OR
SO=JOURNAL OF R* OR SO=JOURNAL OF O* OR SO=JOURNAL OF L* OR
SO=JOURNAL OF V* OR SO=JOURNAL OF D* OR SO=JOURNAL OF W*
OR SO=JOURNAL OF J* OR SO=JOURNAL OF K* OR SO=JOURNAL OF U* OR
SO=JOURNAL OF Z* OR SO=JOURNAL OF Q* OR SO=JOURNAL OF Y* OR
SO=JOURNAL OF X*) NOT (SO=JOURNAL OF T* OR SO=JOURNAL OF C* OR
SO=JOURNAL OF A* OR SO=JOURNAL OF P*)
#12 PY=2007 AND (SO=JOURNAL OF M* OR SO=JOURNAL OF E* OR SO=JOURNAL OF 71,004 205,347
S$* OR SO=JOURNAL OF N*) NOT (SO=JOURNAL OF T* OR SO=JOURNAL OF C* OR
SO=JOURNAL OF A* OR SO=JOURNAL OF P*)
#13 PY=2007 AND (SO=JOURNAL OF B* OR SO=JOURNAL OF I* OR SO=JOURNAL 90,840 296,187
OF F* OR SO=JOURNAL OF H* OR SO=JOURNAL OF G* OR SO=JOURNAL OF R*
OR SO=JOURNAL OF O* OR SO=JOURNAL OF L* OR SO=JOURNAL OF V*
OR SO=JOURNAL OF D* OR SO=JOURNAL OF W* OR SO=JOURNAL OF J*
OR SO=JOURNAL OF K* OR SO=JOURNAL OF U* OR SO=JOURNAL OF Z* OR
SO=JOURNAL OF Q* OR SO=JOURNAL OF Y* OR SO=JOURNAL OF X*) NOT
(SO=JOURNAL OF T* OR SO=JOURNAL OF C* OR SO=JOURNAL OF A* OR
SO=JOURNAL OF P*) NOT (SO=JOURNAL OF M* OR SO=JOURNAL OF E* OR
SO=JOURNAL OF S* OR SO=JOURNAL OF N*)
#14 PY=2007 AND (SO=JOURNAL O*) NOT (SO=JOURNAL OF T* OR SO=JOURNAL OF 6 296,193
C* OR SO=JOURNAL OF A* OR SO=JOURNAL OF P*) NOT (SO=JOURNAL OF M* OR
SO=JOURNAL OF E* OR SO=JOURNAL OF S* OR SO=JOURNAL OF N* OR
SO=JOURNAL OF B* OR SO=JOURNAL OF I* OR SO=JOURNAL OF F* OR
SO=JOURNAL OF H* OR SO=JOURNAL OF G* OR SO=JOURNAL OF R*
OR SO=JOURNAL OF O* OR SO=JOURNAL OF L* OR SO=JOURNAL OF V* OR
SO=JOURNAL OF D* OR SO=JOURNAL OF W* OR SO=JOURNAL OF J* OR
SO=JOURNAL OF K* OR SO=JOURNAL OF U* OR SO=JOURNAL OF Z* OR
SO=JOURNAL OF Q* OR SO=JOURNAL OF Y* OR SO=JOURNAL OF X*)

#15 PY=2007 AND (SO=JOURNAL F* OR SO=JOURNAL D* OR SO=JOURNAL A* OR 1,532 297,725
SO=JOURNAL I'* OR SO=JOURNAL N*) NOT (SO=JOURNAL O%*)

#16 PY=2007 AND (SO=JOURNAL *) NOT (SO=JOURNAL O*) NOT (SO=JOURNAL F* OR 0 297,725
SO=JOURNAL D* OR SO=JOURNAL A* OR SO=JOURNAL I* OR SO=JOURNAL N*)

#17 PY=2007 AND (SO=JOURNALI* OR SO=JOURNALS*) NOT (SO=JOURNAL *) 442 298,167

#18 PY=2007 AND (SO=JOU*) NOT (SO=JOURNAL *) NOT (SO=JOURNALI* OR 0 298,167
SO=JOURNALS¥*)

#19 PY=2007 AND (SO=JOA* OR SO=JOI* OR SO=JOR* OR SO=JOE* OR 603 298,770
SO=JOG* OR SO=JOH* OR SO=JOK* OR SO=JOM*) NOT (SO=JOU¥*)

#20 PY=2007 AND (SO=JO*) NOT (SO=JOU*) NOT (SO=JOA* OR SO=JOI* OR SO=JOR* OR 12 298,782

SO=JOE* OR SO=JOG* OR SO=JOH* OR SO=JOK* OR SO=JOM*)

(Continued)

1594 JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—August 2010
DOI: 10.1002/asi

TABLE A1l.

(Continued)

Query

Items

z

#21

#22

#23

#24

#25
#26

#27

#28

#29

#30
#31
#32
#33

#34

#35
#36
#37
#38
#39
#40

#41

#42
#43
#44

#45

#46

#47

PY=2007 AND (SO=JA* OR SO=JU* OR SO=JE* OR SO=JC* OR SO=JT* OR SO=JB* OR
SO=JN* OR SO=JM* OR SO=JP* OR SO=JS*) NOT (SO=JO%)

PY=2007 AND (SO=J*) NOT (SO=JO*) NOT (SO=JA* OR SO=JU* OR

SO=JE* OR SO=JC* OR SO=JI* OR SO=JB* OR SO=JN* OR SO=JM* OR SO=JP* OR
SO=JS*)

PY=2007 AND (SO=A* OR SO=C* OR SO=P* OR SO=I*) NOT (SO=J%)

PY=2007 AND (SO=A*) NOT (SO=J*)

PY=2007 AND (SO=AN* OR SO=AC* OR SO=AR*) NOT (SO=J*)

PY=2007 AND (SO=AM+* OR SO=AD* OR SO=AU* OR SO=AS* OR SO=AP* OR SO=AL*
OR SO=AG* OR SO=AF* OR SO=AT* OR SO=AQ* OR SO=AB* OR SO=AI* OR SO=AV*
OR SO=AA* OR SO=AE* OR SO=AK* OR SO=AJ* OR SO=A * OR SO=AX*) NOT (SO=J*)
NOT (SO=AN* OR SO=AC* OR SO=AR*)

PY=2007 AND (SO=AM?* OR SO=AD* OR SO=AU*) NOT (SO=I*) NOT (SO=AN* OR
SO=AC* OR SO=AR¥)

PY=2007 AND (SO=AS* OR SO=AP* OR SO=AL* OR SO=AG* OR SO=AF* OR SO=AT*
OR SO=AQ* OR SO=AB* OR SO=AI* OR SO=AV* OR SO=AA* OR SO=AE* OR
SO=AK* OR SO=AT* OR SO=A * OR SO=AX*) NOT (SO=J*) NOT (SO=AN* OR SO=AC*
OR SO=AR¥*) NOT (SO=AM?* OR SO=AD* OR SO=AU%*)

PY=2007 AND (SO=A*) NOT (SO=J*) NOT (SO=AN* OR SO=AC* OR SO=AR*) NOT
(SO=AM?* OR SO=AD* OR SO=AU* OR SO=AS* OR SO=AP* OR SO=AL* OR SO=AG*
OR SO=AF* OR SO=AT* OR SO=AQ* OR SO=AB* OR SO=AI* OR SO=AV* OR SO=AA*
OR SO=AE* OR SO=AK* OR SO=AJ* OR SO=A * OR SO=AX¥)

PY=2007 AND (SO=C* OR SO=P* OR SO=I*) NOT (SO=J*) NOT (SO=A*)

PY=2007 AND (SO=C*) NOT (SO=J*) NOT (SO=A*)

PY=2007 AND (SO=CO* OR SO=CA*) NOT (SO=J*) NOT (SO=A%)

PY=2007 AND (SO=CH* OR SO=CU* OR SO=CL* OR SO=CE* OR SO=CR* OR SO=CI*
OR SO=CY* OR SO=CZ* OR SO=CM* OR SO=CN* OR SO=CC* OR SO=CF* OR SO=CB*
OR SO=CS* OR SO=CT* OR SO=CW*) NOT (SO=J*) NOT (SO=A*) NOT (SO=CO*

OR SO=CA¥*)

PY=2007 AND (SO=C*) NOT (SO=J*) NOT (SO=A*) NOT (SO=CO* OR SO=CA*) NOT
(SO=CH* OR SO=CU* OR SO=CL* OR SO=CE* OR SO=CR* OR SO=CI* OR SO=CY*
OR SO=CZ* OR SO=CM?* OR SO=CN* OR SO=CC* OR SO=CF* OR SO=CB* OR SO=CS*
OR SO=CT* OR SO=CW+)

PY=2007 AND (SO=P* OR SO=I*) NOT (SO=J*) NOT (SO=A*) NOT (SO=C*)

PY=2007 AND (SO=P*) NOT (SO=J*) NOT (SO=A*) NOT (SO=C*)

PY=2007 AND (SO=PR* OR SO=PH*) NOT (SO=J*) NOT (SO=A*) NOT (SO=C*)
PY=2007 AND (SO=PR*) NOT (SO=J*) NOT (SO=A*) NOT (SO=C*)

PY=2007 AND (SO=PH*) NOT (SO=J*) NOT (SO=A*) NOT (SO=C*) NOT (SO=PR*)
PY=2007 AND (SO=PA* OR SO=PO* OR SO=PE* OR SO=PS* OR SO=PL* OR SO=PU*
OR SO=PT* OR SO=PF* OR SO=PM* OR SO=PT* OR SO=PY* OR SO=P * OR SO=PC*
OR SO=PN* OR SO=PP*) NOT (SO=J*) NOT (SO=A*) NOT (SO=C*) NOT (SO=PR* OR
SO=PH¥)

PY=2007 AND (SO=P*) NOT (SO=J*) NOT (SO=A*) NOT (SO=C*) NOT (SO=PR* OR
SO=PH*) NOT (SO=PA* OR SO=PO* OR SO=PE* OR SO=PS* OR SO=PL* OR SO=PU*
OR SO=PI* OR SO=PF* OR SO=PM* OR SO=PT* OR SO=PY* OR SO=P * OR SO=PC*
OR SO=PN* OR SO=PP¥)

PY=2007 AND (SO=I*) NOT (SO=J*) NOT (SO=A*) NOT (SO=C*) NOT (SO=P*)
PY=2007 AND (SO=IN*) NOT (SO=J*) NOT (SO=A*) NOT (SO=C*) NOT (SO=P*)
PY=2007 AND (SO=IE* OR SO=IR* OR SO=IS* OR SO=IM* OR SO=IZ* OR SO=IC* OR
SO=IT* OR SO=ID* OR SO=IL* OR SO=IB* OR SO=I0* OR SO=IG* OR SO=IT*

OR SO=IU* OR SO=IA* OR SO=IF* OR SO=IH* OR SO=IK* OR SO=IP*) NOT (SO=J*)
NOT (SO=A*) NOT (SO=C*) NOT (SO=P*) NOT (SO=IN*)

PY=2007 AND (SO=I*) NOT (SO=J*) NOT (SO=A*) NOT (SO=C*) NOT (SO=P*) NOT
(SO=IN*) NOT (SO=IE* OR SO=IR* OR SO=IS* OR SO=IM* OR SO=IZ* OR SO=IC*
OR SO=IT* OR SO=ID* OR SO=IL* OR SO=IB* OR SO=I0* OR SO=IG* OR SO=II* OR
SO=IU* OR SO=IA* OR SO=IF* OR SO=IH* OR SO=IK* OR SO=IP*)

PY=2007 AND (SO=B* OR SO=S* OR SO=M* OR SO=E* OR SO=R* OR SO=N* OR
SO=T* OR SO=F* OR SO=G* OR SO=H* OR SO=D* OR SO=0%* OR SO=L* OR SO=Z*
OR SO=V* OR SO=W* OR SO=K* OR SO=U* OR SO=Q* OR SO=Y* OR SO=2* OR
SO=X* OR SO=1* OR SO=3* OR SO=4* OR SO=5* OR SO=6* OR SO=7* OR SO=8* OR
SO=9* OR SO=0%*) NOT (SO=J* OR SO=A* OR SO=C* OR SO=P* OR SO=I*)

PY=2007 AND (SO=B* OR SO=S* OR SO=M* OR SO=E*) NOT (SO=J* OR SO=A* OR
SO=C* OR SO=P* OR SO=I*)

7,189

>100,000
>100,000

88,910
>100,000

63,672

67,228

>100,000
>100,000
56,200
91,530

95

>100,000
>100,000
>100,000
75,351
44,317
61,177

37

>100,000
77,288
70204

55

>100,000

>100,000

305,971

305,971

394,881

458,553

525,781

525,781

581,981
673,511

673,606

748,957

793,274
854,451

854,488

931,776
1,001,980

1,002,035

(Continued)

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—August 2010

DOI: 10.1002/asi

1595

TABLE Al.

(Continued)

Query

Items

z

#48
#49

#50

#51

#52

#53

#54

#55

#56

#57

#58

#59

#60

#61

#62

#63

#64

#65

#66

#67

PY=2007 AND (SO=B*) NOT (SO=J* OR SO=A* OR SO=C* OR SO=P* OR SO=I*)
PY=2007 AND (SO=S* OR SO=M* OR SO=E*) NOT (SO=J* OR SO=A* OR SO=C* OR
SO=P* OR SO=I*) NOT (SO=B*)

PY=2007 AND (SO=S*) NOT (SO=J* OR SO=A* OR SO=C* OR SO=P* OR SO=I*) NOT
(SO=B*)

PY=2007 AND (SO=M* OR SO=E*) NOT (SO=J* OR SO=A* OR SO=C* OR SO=P* OR
SO=T*) NOT (SO=B*) NOT (SO=S*)

PY=2007 AND (SO=M*) NOT (SO=J* OR SO=A* OR SO=C* OR SO=P* OR SO=I*) NOT
(SO=B*) NOT (SO=S*)

PY=2007 AND (SO=E*) NOT (SO=J* OR SO=A* OR SO=C* OR SO=P* OR SO=I*) NOT
(SO=B*) NOT (SO=S*) NOT (SO=M*)

PY=2007 AND (SO=R* OR SO=N* OR SO=T* OR SO=F* OR SO=G* OR SO=H* OR
SO=D* OR SO=0%* OR SO=L* OR SO=Z* OR SO=V* OR SO=W* OR SO=K* OR SO=U*
OR SO=Q* OR SO=Y* OR SO=2* OR SO=X* OR SO=1* OR SO=3* OR SO=4* OR SO=5*
OR SO=6* OR SO=7* OR SO=8* OR SO=9* OR SO=0%) NOT (SO=J* OR SO=A*

OR SO=C* OR SO=P* OR SO=I*) NOT (SO=B* OR SO=S* OR SO=M?* OR SO=E*)
PY=2007 AND (SO=R* OR SO=N* OR SO=T* OR SO=F*) NOT (SO=J* OR SO=A*

OR SO=C* OR SO=P* OR SO=I*) NOT (SO=B* OR SO=S* OR SO=M* OR SO=E*)
PY=2007 AND (SO=R*) NOT (SO=J* OR SO=A* OR SO=C* OR SO=P* OR SO=I*) NOT
(SO=B* OR SO=S* OR SO=M* OR SO=E*)

PY=2007 AND (SO=N* OR SO=T* OR SO=F#) NOT (SO=J* OR SO=A* OR SO=C* OR
SO=P* OR SO=I*) NOT (SO=B* OR SO=S* OR SO=M* OR SO=E*) NOT (SO=R¥)
PY=2007 AND (SO=N*) NOT (SO=J* OR SO=A* OR SO=C* OR SO=P* OR SO=I*) NOT
(SO=B* OR SO=S* OR SO=M* OR SO=E*) NOT (SO=R*)

PY=2007 AND (SO=T* OR SO=F#) NOT (SO=J* OR SO=A* OR SO=C* OR SO=P* OR
SO=I*) NOT (SO=B* OR SO=S* OR SO=M* OR SO=E*) NOT (SO=R*) NOT (SO=N*)
PY=2007 AND (SO=G* OR SO=H* OR SO=D* OR SO=0%* OR SO=L* OR SO=Z* OR
SO=V* OR SO=W* OR SO=K* OR SO=U* OR SO=Q* OR SO=Y* OR SO=2* OR SO=X*
OR SO=1* OR SO=3* OR SO=4* OR SO=5* OR SO=6* OR SO=7* OR SO=8* OR SO=9*
OR SO=0%) NOT (SO=J* OR SO=A* OR SO=C* OR SO=P* OR SO=I*) NOT (SO=B* OR
SO=S* OR SO=M* OR SO=E*) NOT (SO=R* OR SO=N* OR SO=T* OR SO=F*)
PY=2007 AND (SO=G* OR SO=H* OR SO=D*) NOT (SO=J* OR SO=A* OR SO=C*

OR SO=P* OR SO=I*) NOT (SO=B* OR SO=S* OR SO=M* OR SO=E*) NOT (SO=R*
OR SO=N* OR SO=T* OR SO=F*)

PY=2007 AND (SO=G*) NOT (SO=J* OR SO=A* OR SO=C* OR SO=P* OR SO=I*)
NOT (SO=B* OR SO=S* OR SO=M?* OR SO=E*) NOT (SO=R* OR SO=N* OR SO=T* OR
SO=F*)

PY=2007 AND (SO=H* OR SO=D*) NOT (SO=J* OR SO=A* OR SO=C* OR SO=P*

OR SO=I*) NOT (SO=B* OR SO=S* OR SO=M* OR SO=E*) NOT (SO=R* OR SO=N* OR
SO=T* OR SO=F*) NOT (SO=G*)

PY=2007 AND (SO=0%* OR SO=L* OR SO=Z* OR SO=V* OR SO=W* OR SO=K* OR
SO=U* OR SO=Q* OR SO=Y* OR SO=2* OR SO=X* OR SO=1* OR SO=3* OR SO=4*
OR SO=5* OR SO=6* OR SO=7* OR SO=8* OR SO=9* OR SO=0*) NOT (SO=J* OR
SO=A* OR SO=C* OR SO=P* OR SO=I*) NOT (SO=B* OR SO=S* OR SO=M* OR SO=E*)
NOT (SO=R* OR SO=N* OR SO=T* OR SO=F*) NOT (SO=G* OR SO=H* OR SO=D*)
PY=2007 AND (SO=0%* OR SO=L*) NOT (SO=J* OR SO=A* OR SO=C* OR SO=P* OR
SO=I*) NOT (SO=B* OR SO=S* OR SO=M* OR SO=E*) NOT (SO=R* OR SO=N* OR
SO=T* OR SO=F*) NOT (SO=G* OR SO=H* OR SO=D*)

PY=2007 AND (SO=Z* OR SO=V* OR SO=W* OR SO=K* OR SO=U* OR SO=Q* OR
SO=Y* OR SO=2* OR SO=X* OR SO=1* OR SO=3* OR SO=4* OR SO=5* OR SO=6* OR
SO=7* OR SO=8* OR SO=9* OR SO=0%*) NOT (SO=J* OR SO=A* OR SO=C* OR SO=P*
OR SO=I*) NOT (SO=B* OR SO=S* OR SO=M* OR SO=E*) NOT (SO=R* OR SO=N* OR
SO=T* OR SO=F*) NOT (SO=G* OR SO=H* OR SO=D*) NOT (SO=0* OR SO=L*)
PY=2007 NOT (SO=J* OR SO=A* OR SO=C* OR SO=P* OR SO=I*) NOT (SO=B* OR
SO=S8* OR SO=M* OR SO=E* OR SO=R* OR SO=N* OR SO=T* OR SO=F* OR SO=G*
OR SO=H* OR SO=D* OR SO=0* OR SO=L* OR SO=Z* OR SO=V* OR SO=W* OR
SO=K* OR SO=U* OR SO=Q* OR SO=Y* OR SO=2* OR SO=X* OR SO=1* OR SO=3*
OR SO=4* OR SO=5* OR SO=6* OR SO=7* OR SO=8* OR SO=9* OR SO=0%)

81,487
>100,000

75,041

>100,000

76,826

92,762

>100,000

>100,000

41,987

>100,000

69,994

86,270

>100,000

>100,000

33,426

71,420

>100,000

60,670

94,726

1,083,522

1,158,563

1,235,389

1,328,151

1,370,138

1,440,132

1,526,402

1,559,828

1,631,248

1,691,918

1,786,644

1,786,644

1596 JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—August 2010
DOI: 10.1002/asi

FIG. A1. Actual partition for the query PY =2007 (Table A1).

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—August 2010 1597
DOI: 10.1002/asi

