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Abstract Time and space assembly line balancing consid-
ers realistic multi-objective versions of the classical assem-
bly line balancing industrial problems. It involves the joint
optimisation of conflicting criteria such as the cycle time,the
number of stations, and/or the area of these stations. The dif-
ferent problems included in this area also inherit the prece-
dence constraints and the cycle time limitations from assem-
bly line balancing problems. The presence of these hard con-
straints and their multi-criteria nature make these problems
very hard to solve. Multi-objective constructive metaheuris-
tics (in particular, multi-objective ant colony optimisation)
have demonstrated to be suitable approaches to solve time
and space assembly line balancing problems.

The aim of this contribution is to present a new mech-
anism to induce diversity in an existing multi-objective ant
colony optimisation algorithm for the 1/3 variant of the time
and space assembly line balancing problem. This variant is
quite realistic in the automative industry as it involves the
joint minimisation of the number and the area of the sta-
tions given a fixed cycle time limit. The performance of
our proposal is validated considering ten real-like problem
instances. Moreover, the diversity induction mechanism is
also tested on a real-world instance from the Nissan plant in
Barcelona (Spain).
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1 Introduction

An assembly line is made up of a number of workstations,
arranged either in series or in parallel. These stations are
linked together by a transport system that aims to supply
materials to the main flow and to move the production items
from one station to the next one.

Since the manufacturing of a production item is divided
into a set of tasks, a usual and difficult problem is to deter-
mine how these tasks can be assigned to the stations fulfill-
ing certain restrictions. Consequently, the aim is to get an
optimal assignment of subsets of tasks to the stations of the
plant. Moreover, each task requires an operation time for its
execution which is determined as a function of the manufac-
turing technologies and the employed resources.

A family of academic problems –referred to as simple
assembly line balancing problems (SALBP)– was proposed
to model this situation [3] [14]. Taking this family as a base
and adding spatial information to enrich it, Bautista and
Pereira recently proposed a more realistic framework: the
time and space assembly line balancing problem (TSALBP)
[2]. This framework considers an additional space constraint
to become a simplified version of real-world problems. The
new space constraint emerged due to the study of the specific
characteristics of the Nissan plant in Barcelona (Spain).

As many real-world problems, TSALBP formulations
have a multicriteria nature [4] because they contain three
conflicting objectives to be minimised: the cycle time of the
assembly line, the number of the stations, and the area of
these stations. In this paper we deal with the TSALBP-1/3
variant which tries to minimise the number of stations and
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their area for a given product cycle time. We have made this
choice because it is quite realistic in the automotive indus-
try. The final aim is to provide the plant manager with a well
spread Pareto front of solutions with different trade-offsbe-
tween the number of stations and the area of these stations.
This will allow the plant manager to choose the most appro-
priate one for his/her industrial context.

TSALBP-1/3 has an important set of hard constraints
like precedences or cycle time limits for each station. Thus,
the use of constructive approaches like ant colony optimi-
sation (ACO) [10] is more convenient than others like local
or global search procedures [12]. Due to the two aforemen-
tioned reasons, i.e., the multi-objective nature of the prob-
lem and the need to solve it through constructive algorithms,
a sensible choice is to use a Pareto-based multi-objective
ACO (MOACO) algorithm [11]. This family involves differ-
ent variants of ACO algorithms which aim to find not only
one solution, but a set of the best solutions according to sev-
eral conflicting objective functions.

In [5–7], we successfully tackled the TSALBP-1/3 by
means of a specific procedure based on the Multiple Ant
Colony System (MACS) algorithm [1]. However, we noticed
that intensification could be too high in a specific region
of the Pareto front because of the station-oriented approach
[14] that was accomplished. In particular, the approxima-
tions to the Pareto fronts obtained showed a lack of diver-
sity and an excessive convergence to the left-most region of
the objective space. That is an undesirable situation for the
plant managers who should be provided with all the config-
urations of their contextual interest in the objective space.

In this paper we aim to induce a new mechanism to avoid
that local convergence behaviour. The goal is to induce the
generation of more diverse solutions by means of a multi-
colony approach [13] based on the use of different station
filling rates in the ants’ construction procedure. Our MACS-
TSALBP-1/3 algorithm with and without the new diversifi-
cation component will be tested on ten real-like TSALBP-
1/3 instances, showing the performance improvement ob-
tained. Furthermore, the designed algorithms will also be
applied to a real-world problem instance from the Nissan
industry plant in Barcelona.

The paper is structured as follows. In Section 2, the prob-
lem formulation and the MACS principles are explained.
Then, the proposed multi-colony approach to improve the
basic MACS algorithm operation mode is described in Sec-
tion 3. The experimentation setup as well as the analysis of
results is presented in Section 4. Finally, some concluding
remarks are discussed in Section 5.

2 Preliminaries

In this section the problem preliminaries are presented. First,
an overview of the TSALBP is discussed. Then, the mathe-

matical formulation of the TSALBP-1/3 is detailed. Finally,
the main features of the MACS algorithm are briefly de-
scribed.

2.1 The Time and Space Assembly Line Balancing
Problem

The manufacturing of a production item is divided up into
a setV of n tasks. Each taskj requires an operation time
for its executiontj > 0 that is determined as a function of
the manufacturing technologies and the employed resources.
A task j is assigned to a single stationk. Each stationk
has thus assigned a subset of tasksSk (Sk ⊆ V ), called its
workload.

Each taskj has a set of direct predecessors,Pj , which
must be accomplished before starting it. These constraints
are normally represented by means of an acyclic precedence
graph, whose vertices stand for the tasks and where a di-
rected arc(i, j) indicates that taski must be finished before
starting taskj on the production line. Thus, ifi ∈ Sh and
j ∈ Sk, thenh ≤ k must be fulfilled. Each stationk presents
a station workload timet(Sk) that is equal to the sum of the
tasks’ lengths assigned to the stationk. SALBP [14] focuses
on grouping tasks in workstations by an efficient and co-
herent way. There is a large variety of exact and heuristic
problem-solving procedures for it [15].

The need of introducing space constraints in the assem-
bly lines’ design is based on two main reasons: (a) the length
of the workstation is limited in the majority of the situa-
tions, and (b) the required tools and components to be as-
sembled should be distributed along the sides of the line.
Hence, an area constraint may be considered by associat-
ing a required areaaj to each taskj and an available area
Ak to each stationk that, for the sake of simplicity, we
shall assume it to be identical for every station and equal
to A : A = max∀k∈{1..n}{Ak}. Thus, each stationk re-
quires a station areaa(Sk) that is equal to the sum of areas
required by the tasks assigned to stationk.

This leads us to a new family of problems called
TSALBP in [2]. It may be stated as: given a set ofn tasks
with their temporaltj and spatialaj attributes (1 ≤ j ≤ n)
and a precedence graph, each task must be assigned to a sin-
gle station such that: (i) every precedence constraint is sat-
isfied, (ii) no station workload time (t(Sk)) is greater than
the cycle time (c), and (iii) no area required by any station
(a(Sk)) is greater than the available area per station (A).

TSALBP presents eight variants depending on three op-
timisation criteria:m (the number of stations),c (the cycle
time) andA (the area of the stations). Within these variants
there are four multi-objective problems and we will tackle
one of them, the TSALBP-1/3. It consists of minimising the
number of stationsm and the station areaA, given a fixed
value of the cycle timec.
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We chose this variant because it is quite realistic in the
automotive industry since the annual production of an indus-
trial plant (and therefore, the cycle timec) is usually set by
some market objectives. For more information we refer the
interested reader to [5].

2.2 TSALBP-1/3 Formulation

According to the TSALBP formulation [2], the 1/3 variant
deals with the minimisation of the number of stations,m,
and the area ocuppied by those stations,A, in the assem-
bly line configuration. We can mathematically formulate this
TSALBP variant as follows:

Min f0(x) = m =

UBm
∑

k=1

max
j=1,2,...,n

xjk, (1)

f1(x) = A = max
k=1,2,...,UBm

n
∑

j=1

ajxjk (2)

subject to:

Lj
∑

k=Ej

xjk = 1, j = 1, 2, ..., n (3)

UBm
∑

k=1

max
j=1,2,...,n

xjk ≤ m (4)

n
∑

j=1

tjxjk ≤ c, k = 1, 2, ..., UBm (5)

n
∑

j=1

ajxjk ≤ A, k = 1, 2, ..., UBm (6)

Li
∑

k=Ei

kxik ≤

Lj
∑

k=Ej

kxjk, j = 1, 2, ..., n; ∀i ∈ Pj (7)

xjk ∈ {0, 1}, j = 1, 2, ..., n; k = 1, 2, ..., UBm (8)

where:

– n is the number of tasks,
– xjk is a decision variable taking value 1 if taskj is as-

signed to stationk, and0 otherwise,
– aj is the area information for taskj,
– UBm is the upper bound for the number of stationsm,
– Ej is the earliest station to which taskj may be assigned,
– Lj is the latest station to which taskj may be assigned,

– UBm is the upper bound of the number of stations. In
our case, it is equal to the number of tasks, and

Constraint in equation 3 restricts the assignment of every
task to just one station, 4 limits decision variables to the total
number of stations, 5 and 6 are concerned with time and area
upper bounds, 7 denotes the precedence relationship among
tasks, and 8 expresses the binary nature of variablesxjk.

2.3 Multiple ant colony system

MACS was proposed as a multi-objective extension of
the Ant Colony System (ACS) [9]. MACS uses a single
pheromone trail matrixτ and several heuristic information
functionsηk (in our case,η0 for the operation timetj of each
taskj andη1 for its areaaj). From now on, we restrict the
description of the algorithm to the case of two objectives. In
this way, an ant moves from nodei to nodej by applying
the following transition rule:

j =

{

arg maxj∈Ω(τij · [η
0
ij ]

λβ · [η1
ij ]

(1−λ)β), if q ≤ q0,

î, otherwise.

(9)

whereΩ represents the current feasible neighbourhood of
the ant,β weights the relative importance of the heuristic in-
formation with respect to the pheromone trail, andλ is com-
puted from the ant indexh asλ = h/M , with M being the
number of ants in the colony,q0 ∈ [0, 1] is an exploitation-
exploration parameter,q is a random value in[0, 1], and î
is a node selected according to the probability distribution
p(j):

p(j) =

{

τij ·[η
0
ij ]

λβ ·[η1
ij ]

(1−λ)β

∑

u∈Ω τiu·[η0
iu

]λβ ·[η1
iu

](1−λ)β , if j ∈ Ω,

0, otherwise.
(10)

Every time an ant crosses edge< i, j >, it performs the
local pheromone update as follows:

τij = (1 − ρ) · τij + ρ · τ0 (11)

Initially, τ0 is calculated by taking the average costs,f̂0

and f̂1, of each of the two objective functions,f0 andf1,
from a set of heuristic solutions by applying the expression:

τ0 =
1

f̂0 · f̂1
(12)

However, the value ofτ0 is not fixed during the algo-
rithm run, as usual in ACS, but it undergoes adaptation. At
the end of each iteration, every complete solution built by
the ants is compared to the Pareto archivePA which was
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generated till that moment. This is done in order to check if
a new solution is a non-dominated one. If so, it is included
in the archive and all the dominated solutions are removed.
Then,τ ′

0 is calculated by applying equation (12) with the av-
erage values of each objective function taken from the cur-
rent solutions of the Pareto archive. Ifτ ′

0 > τ0, beingτ0 the
initial pheromone value, pheromone trails are reinitialised
to the new valueτ0 = τ ′

0. Otherwise, a global update is per-
formed with each solutionS of the Pareto set approximation
contained inPA applying the following rule on its compos-
ing edges< i, j >:

τij = (1 − ρ) · τij +
ρ

f0(S) · f1(S)
(13)

3 A new diversitiy induction mechanism in MACS for
the TSALBP-1/3

This section presents our proposal of a new mechanism to
induce diversity in a MACS algorithm for the TSALBP-1/3.
Section 3.1 reviews our previous approach based on MACS
to tackle the TSALBP-1/3. Then, Section 3.2 details our di-
versity induction mechanism.

3.1 A MACS algorithm for the TSALBP-1/3

In this section we describe the customisation made on all
the components of the general MACS algorithm scheme to
build our solution methodology.

3.1.1 Heuristic information

MACS works with two different heuristic information val-
ues,η0

j andη1
j , each of them associated to one criterion. In

our case,η0
j is related with the required operation time for

each task andη1
j with the required area:

η0
j =

tj
c
·

| Fj |

maxi∈Ω | Fi |
(14)

η1
j =

aj

UBA

·
| Fj |

maxi∈Ω | Fi |
(15)

whereUBA is the upper bound for the area (the sum of all
tasks’ areas) andFj is the set of tasks that come after taskj.
The second term in both formulae represents a ratio between
the number of successors of the taskj (the cardinality of the
successors setFj) and the maximum number of successors
of any eligible task belonging to the ant’s feasible neigh-
bourhoodΩ. Both sources of heuristic information range in
[0, 1], with 1 being the most preferable.

As usual in the SALBP, tasks having a large value of
time (a large duration) and area (occupying a lot of space)
are preferred to be firstly allocated in the stations. Apart
from area and time information, we have added another in-
formation related to the number of successors of the task
which was already used in [2]. Tasks with a larger number
of successors are preferred to be allocated first.

Heuristic information is one-dimensional since it is only
assigned to tasks. In addition, it can be noticed that heuris-
tic information has static and dynamic components. Tasks’
time tj and areaaj are always fixed while the successors
rate is changing through the constructive procedure. This is
because it is calculated by means of the candidate list of fea-
sible and non-assigned tasks at that moment.

3.1.2 Pheromone trail and τ0 calculation

The pheromone trail information has to memorise which
tasks are the most appropriate to be assigned to a sta-
tion. Hence, pheromone has to be associated to a pair
(stationk, taskj), beingk = 1, ..., n andj = 1, ..., n. In
this way, contrary to heuristic information, our pheromone
trail matrix has a bi-dimensional nature since it links tasks
with stations.

In every ACO algorithm, an initial value for the
pheromone trails has to be set up. This value is calledτ0

and it is normally obtained from an heuristic algorithm. We
have used two station-oriented single-objective greedy algo-
rithms, one per heuristic, to compute it. These algorithms
open the first station and select the best possible task ac-
cording to their heuristic information (related either with the
duration time and successors rateη0

j , or the area and succes-
sors rateη1

j ). This process is repeated till there is not any
task that can be included because of the cycle time limit.
Then, a new station must be opened. When no more tasks
are to be assigned, the greedy algorithm finishes.τ0 is then
computed from the costs of the two solutions obtained by
the greedy algorithm using the following MACS equation:

τ0 =
1

f0(Stime) · f1(Sarea)
(16)

3.1.3 Randomised station closing scheme and transition
rule

Our approach follows astation-oriented procedure [14],
which starts opening a station and selecting the most suit-
able task to be assigned. When the current station is loaded
maximally, it is closed and the next one is opened and ready
to be filled. In order to diversify the search, allowing to
build solutions composed of stations with small, medium,
and large loads, we introduced a new mechanism in the con-
struction algorithm to close the station according to a prob-
ability, given by the filling rate of the station:
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p (closing k) =

∑

i∈Sk
ti

c
(17)

whereSk represents the subset of tasks assigned to the sta-
tion k, ti indicates the operation time required by taski for
its execution, andc is the cycle time.

This probability distribution is updated at each construc-
tion step. A random number is uniformly generated in[0, 1]

after each update to decide whether the station is closed or
not. If the decision is not to close the station, the ant chooses
the next task among all the candidate tasks using the MACS
transition rule and the procedure goes on.

Because of the one-dimensional nature of the heuristic
information, the original MACS transition rule (Equation 9)
that chooses among all the candidate tasks at each step, has
been modified:

j =

{

arg maxj∈Ω(τkj · [η
0
j ]λβ · [η1

j ](1−λ)β), if q ≤ q0,

î, otherwise,

(18)

wherêi is a node selected by means of the following proba-
bility distribution:

p(j) =

{

τkj ·[η
0
j ]λβ ·[η1

j ](1−λ)β

∑

u∈Ω τku·[η0
u]λβ ·[η1

u](1−λ)β , if j ∈ Ω,

0, otherwise.
(19)

3.2 A diversity induction mechanism based on a
multi-colony approach for the MACS-TSALBP-1/3
algorithm

The randomised station closing scheme proposed in [5–7]
and described in Section 3.1.3 aimed to avoid that all the so-
lutions generated lie in the Pareto front regions with the min-
imum number of stations. Indeed, our preliminary experi-
ments following a station-oriented procedure without such
a scheme provided solutions in a narrow part of the Pareto
front (see [6]). That was due to the fact that we initially de-
cided to close every station only if it was full according to
the fixed cycle timec, as usual in SALBP and TSALBP ap-
plications. The Pareto fronts likewise achieved did not have
enough diversity.

However, the randomised station closing scheme pro-
posed to avoid such behaviour entailed an important draw-
back. Since the closing probability was updated at each con-
struction step and it was proportional to the sum of the over-
all processing time of the station (i.e., the sum of the pro-
cessing times of all the tasks assigned to i, see equation 17),
there was a low probability of filling stations completely.
Notice that, when the randomised station closing scheme

was not considered, the solutions were concentrated in the
left-most region of the objective space. Thus, they corre-
sponded to the lowest number of stations completely filled
and requiring a very high station area. Nevertheless, that
region of the objective space could not be achieved when
the proposed station closing scheme was introduced. The
MACS-based TSALBP-1/3 algorithm proposed did not pro-
vide enough diversification in those Pareto front regions.

Therefore, there is a need to find a better intensification-
diversification trade-off. This objective can be achieved by
introducing different filling thresholds associated to theants.
A new diversity induction mechanism randomly deciding
when to close the current station taking as a base both the
station closing probability distribution and an ant filling
thresholdαi can thus be proposed.

At each construction step, the current station filling rate
is computed. In case it is lower than the ant’s filling percent-
age thresholdαi (i.e., when it is lower thanαi ·c), the station
is directly kept opened. Otherwise, the station closing proba-
bility distribution is updated using equation 17 and a random
number is uniformly generated in[0, 1] to take the decision
whether the station is closed or not. If the decision is to close
the station, a new station is created to allocate the remaining
tasks. Otherwise, the station will be kept opened. Once the
latter decision has been taken, the next task is chosen among
all the candidate tasks using the MACS transition rule to be
assigned to the current station as usual. The procedure goes
on till there are no more remaining tasks to be assigned.

Thus, the higher the ants threshold, the higher the prob-
ability of a totally filled station, andvice versa. This is due
to the fact that there are less possibilities to close it during
the construction process.

In this way, by using different filling thresholds, the ant
population will show a highly diverse search behaviour, al-
lowing the algorithm to properly explore the different parts
of the optimal Pareto front by appropriately distributing the
generated solutions. Hence, these thresholds make the dif-
ferent ants in the colony have a different search behaviour.
Thus, the ACO algorithm becomes multi-colony [13].

4 Experimentation

In this section, we first explain the instances and the used pa-
rameters for the different algorithms. Then, the performance
indicators used to compare the algorithms are commented.
Finally, the analysis of the achieved results as well as the
application of the algorithms to the real instance of Nissan
are described.



6

Fig. 1 C performance indicator values represented by means of boxplotscomparing MACS with and without multi-colony scheme (i.e. variable
filling thresholds).

4.1 Problem instances and parameter values

Ten problem instances with different features have been se-
lected for the experimentation:arc111 with cycle time
limits of c = 5755 andc = 7520 (P1 and P2),barthol2
(P3),barthold (P4),heskia (P5),lutz2 (P6),lutz3
(P7),mukherje (P8),scholl (P9), andweemag (P10).
Originally, these instances were SALBP-1 instances only
having time information. However, we have created their
area information by reverting the task graph to make them
bi-objective (as done in [2]). In addition, we have considered
a real-world problem instance corresponding to the assem-
bly process of the Nissan Pathfinder engine, assembled at
the Nissan industrial plant in Barcelona (Spain) [2]. All the
TSALBP-1/3 instances considered are publicly available at
http://www.nissanchair.com/TSALBP.

We run each algorithm 10 times with different random
seeds, setting the time as stopping criteria (900 seconds).
All the algorithms were launched in the same computer: In-

tel PentiumTM D with two CPUs at 2.80GHz, and CentOS
Linux 4.0. On the one hand, the values of the parameters
used in all the MACS algorithms with and without the new
diversification component are as follows. We consider ten
different ants,β = 2, and ρ = 0.2. Different values of
the transition rule parameterq0 are also studied. In partic-
ular: q0 = 0.2, 0.5, 0.8. On the other hand, the parameters
concerning our proposal on using different filling thresholds
are as follows. There are two ants for each of the five ants’
thresholds considered:{0.2, 0.4, 0.6, 0.7, 0.9}.

4.2 Multi-objective performance indicators

We will consider two different multi-objective performance
indicators (wrongly called metrics in the past) [8,16] to eval-
uate the performance of the two variants of the MACS-based
TSALBP-1/3 algorithm.
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Table 1 Mean and standard deviation values (in brackets) of theHV R performance indicator for all the problem instances.

A1: MACS 0.2 (without thr.),A2: MACS 0.5 (without thr.),A3: MACS 0.8 (without thr.)

A4: MACS 0.2 (with thr.),A5: MACS 0.5 (with thr.),A6: MACS 0.8 (with thr.)

P1 P2 P3 P4 P5

A1 0.91 (0.005) 0.91 (0.006) 0.86 (0.008) 0.93 (0.005)0.96(0.002)
A2 0.91 (0.003) 0.91 (0.008) 0.86 (0.006) 0.93 (0.005)0.96(0.002)
A3 0.91 (0.005) 0.91 (0.005) 0.85 (0.005) 0.93 (0.005)0.96(0.001)
A4 0.99(0.001) 0.99(0.002) 0.98(0.001) 0.97(0.001) 0.96(0.006)
A5 0.98 (0.002) 0.99(0.002) 0.98(0.001) 0.97(0.001) 0.95 (0.003)
A6 0.98 (0.001) 0.98 (0.001) 0.98(0.001) 0.97 (0.002) 0.94 (0.005)

P6 P7 P8 P9 P10

A1 0.89 (0.01) 0.91 (0.008) 0.91 (0.005) 0.87 (0.003) 0.93 (0.007)
A2 0.89 (0.008) 0.91 (0.01) 0.92 (0.008) 0.87 (0.004) 0.93 (0.009)
A3 0.89 (0.008) 0.91 (0.011) 0.92 (0.005) 0.87 (0.004) 0.92 (0.011)
A4 0.99(0.001) 0.99(0.001) 0.99(0.001) 0.99(0.001) 0.99(0.001)
A5 0.99(0) 0.99(0.001) 0.99(0.001) 0.99(0.001) 0.99(0.001)
A6 0.99(0.005) 0.99(0.001) 0.99(0.002) 0.99(0.001) 0.99(0.001)

On the one hand, we selected the hypervolume ratio
(HV R) from the first group. It can be calculated as follows:

HV R =
HV (P )

HV (P ∗)
, (20)

where HV (P ) and HV (P ∗) are the volume (S perfor-
mance indicator) of the approximate Pareto set and the true
Pareto set, respectively. WhenHV R equals1, then the ap-
proximate Pareto front and the true one are equal. Thus,
HV R values lower than1 indicate a generated Pareto front
that is not as good as the true Pareto front.

We should notice that the true Pareto fronts are not
known in our real-world problem instances. Thus, we will
consider a pseudo-optimal Pareto set, i.e. an approximation
of the true Pareto set, obtained by merging all the (approx-

imate) Pareto setsP j
i generated for each problem instance

by all the existing algorithms for the problem in the different
runs [5]. Thanks to this pseudo-optimal Pareto set, we can
computeHV R and consider it in our analysis of results.

On the other hand, we have also considered the binary
set coverage performance indicatorC to compare the ob-
tained Pareto sets two by two based on the following ex-
pression:

C(P,Q) =
|{q ∈ Q ; ∃p ∈ P : p ≺ q}|

|Q|
, (21)

wherep ≺ q indicates that the solutionp, belonging to the
approximate Pareto setP , dominates the solutionq of the
approximate Pareto setQ in a minimisation problem.

Hence, the valueC(P,Q) = 1 means that all the solu-
tions inQ are dominated by or equal to solutions inP . The
opposite,C(P,Q) = 0, represents the situation where none
of the solutions inQ are covered by the setP . Note that both

C(P,Q) andC(Q,P ) have to be considered, sinceC(P,Q)
is not necessarily equal to1 − C(Q,P ).

We have used boxplots based on theC performance in-
dicator that calculates the dominance degree of the approx-
imate Pareto sets of every pair of algorithms (see Figure 1
and Figure 3). Each rectangle contains ten boxplots repre-
senting the distribution of theC values for a certain ordered
pair of algorithms in the ten problem instances (P1 to P10).
Each box refers to algorithmA in the corresponding row
and algorithmB in the corresponding column and gives the
fraction ofB covered byA (C(A,B)).

4.3 Analysis of results

The experimental results obtained by the two MACS vari-
ants with and without the diversity mechanism can be seen
in the C performance indicator boxplots of Figure 1 and
in the HV R values in Table 1. Some conclusions can be
reached from the analysis of theC performance indicator
values:

– Comparing both versions of MACS, the original one
with a specific value ofq0 and its counterpart multi-
colony extension, we can see that significantly “better”1

results are provided by the latter MACS with thresholds.
It happens regardless of the value ofq0, and it is com-
mon in all the problem instances but P5 (heskia). This
is because of the nature of that problem instance, whose
pseudo-optimal Pareto front is not wide enough. Every

1 When we refer to the best or better performance comparing the
C performance indicator values of two algorithms we mean that the
Pareto set derived from one algorithm significantly dominates that one
achieved by the other. Likewise, the latter algorithm does not dominate
the former one to a high degree.
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Fig. 2 Pareto fronts for the P3 problem instance.

solution of this problem instance is found in the central
part of the objective space, so the diversity introduced
by means of the filling thresholds is not useful.

– We find less performance differences with a lower value
of q0. It makes sense since MACS with higherq0 values
gives more importance to a higher intensification in the
selection procedure and thus, the Pareto fronts are more
similar. Hence, the algorithm does not take advantage of
the diversity induced by the thresholds approach.

– If we compare every MACS variant with and without
thresholds, regardless of the value ofq0, the conclusion
is that MACS 0.2 with thresholds is the best approach. It
gets better results than MACS 0.5 and 0.8 with thresh-
olds in every problem instance. It is only dominated by
MACS 0.2 and 0.5 without thresholds in P5. Even in a
non-common problem instance like the latter, results are
good enough.
Hence, the diversity of the task selection procedure (a
low value ofq0 parameter) as well as the use of variable
station filling thresholds are both important to solve the
problem appropriately. Nevertheless, if we select MACS
0.8 with thresholds and MACS without thresholds with
lower values ofq0 (0.2 and 0.5) to be compared, we can
notice that the former algorithm outperforms the latter
two in five and six problem instances respectively. On
the contrary, the latter two are better in four of them. All
of these algorithms have thus quite similar results. Con-
sequently, the variable filling thresholds in isolation are
not enough to get a good yield. There is also a demand

for diversity in the randomised task selection procedure
of the algorithm which requires a good diversification-
intensification trade-off.

In general terms, we can draw similar conclusions
analysing theHV R values (see Table 1). They are always
higher in variants with thresholds as they better converge
towards the true (i.e., pseudo-optimal) Pareto fronts. Forex-
ample, that is shown in Figure 2 that graphically shows the
aggregated Pareto fronts corresponding to P3.

4.4 Application to the real Nissan problem instance

In this section we consider the application of the algo-
rithms to a real-world problem corresponding to the assem-
bly process of the Nissan Pathfinder engine at the plant of
Barcelona (Spain). The assembly of these engines is divided
into 378 operation tasks, although we have grouped these
operations into 140 different tasks. The Nissan instance data
is also available athttp://www.nissanchair.com/TSALBP.
For more details about the Nissan instance the reader is re-
ferred to [2], where all the tasks and the time and area infor-
mation are set.

TheC performance indicator values are collected in Fig-
ure 3 by means of boxplots. Those values for theHV R per-
formance indicator are shown in Table 2. Besides, Figure 4
shows the Pareto fronts of the algorithms for the Nissan in-
stance.

We can observe that, as happened with the ten real-like
instances, the variants of the new proposal of MACS with
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Fig. 3 C performance indicator values represented by means of boxplotscomparing MACS with and without multi-colony scheme (i.e. variable
filling thresholds) for the Nissan problem instance.

Table 2 Mean and standard deviation values (in brackets) of theHV R performance indicator for the real Nissan problem instance.

A1: MACS 0.2 (without thr.),A2: MACS 0.5 (without thr.),A3: MACS 0.8 (without thr.)

A4: MACS 0.2 (with thr.),A5: MACS 0.5 (with thr.),A6: MACS 0.8 (with thr.)

A1 A2 A3 A4 A5 A6

0.55 (0.023) 0.54 (0.020) 0.54 (0.012) 0.94 (0.015)0.95(0.013) 0.93 (0.017)

the diversity mechanism are the best algorithms. The differ-
ence is clear observing all the performance indicators. The
convergence of MACS with the multi-colony extension is
higher than without taking into account this diversity mech-
anism (see values of theHV R performance indicator in Ta-
ble 2, showing a great difference (from 0.55 to 0.94)). The
boxplots ofC also reinforce the existence of this difference
(Figure 3).

However, the behaviour of the MACS variants with the
multi-colony approach is different with respect to the caseof
the ten real-like instances. In this case, MACS0.5 achieves

the best performance, even better than the MACS0.2, which
was the best variant for the other instances.

To sum up, as it happened with the other problem in-
stances, the MACS with multi-colony mechanism outper-
forms the previous version of MACS considering globally
all the performance indicators as well as the graphical Pareto
front representation. The MACS0.5 is more suitable for the
Nissan problem instance than the0.2 variant. This is because
the real instance needs more intensification in the search
since it has particular characteristics.
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Fig. 4 Pareto fronts for the Nissan problem instance.

5 Concluding remarks

In previous works [5–7] we demonstrated that the use of a
MACS algorithm to tackle the TSALBP-1/3 by considering
a stochastic procedure to decide when to close a station was
a better choice than a pure station-based approach. Never-
theless, that solution still led to situations where intensifica-
tion was too high in a specific Pareto front region. That is
an undesirable situation for the plant managers who should
be provided with all the configurations of their contextual
interest in the objective space.

To solve this problem, in this contribution we showed
a better intensification-diversification trade-off could be
achieved by introducing different filling thresholds associ-
ated to the ants that build the solution. This new mechanism
aimed to provide a different search behaviour to the different
ants in the colony (multi-colony ACO).

Ten well-known problem instances of the literature were
selected to test our proposal. From the obtained results we
have found out that the best yield to globally solve the prob-
lem belongs to the new MACS-TSALBP-1/3 algorithm us-
ing the multi-colony scheme withq0 = 0.2. In addition, the
algorithms were applied to a real instance of Nissan, con-
firming the good performance of the MACS with the multi-
colony mechanism. In this case, the best variant was the
MACS multi-colony variant withq0 = 0.5, followed by that
with theq0 = 0.2.

As future work, we aim to apply a local search to in-
crease the performance of the algorithm. We also aim to

consider other MOACO algorithms to solve the TSALBP-
1/3.
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