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Abstract Time and space assembly line balancing considKeywords Time and space assembly line balancing

ers realistic multi-objective versions of the classicaleam-  problem- ant colony optimisation multi-objective

bly line balancing industrial problems. It involves therjbi  optimisation- automotive industry

optimisation of conflicting criteria such as the cycle tirtie

number of stations, and/or the area of these stations. The di

ferent problems included in this area also inherit the prece1 |ntroduction

dence constraints and the cycle time limitations from assem

bly line balancing problems. The presence of these hard comn assembly line is made up of a number of workstations,

straints and their multi-criteria nature make these prokle arranged either in series or in parallel. These stations are

very hard to solve. Multi-objective constructive metahgur linked together by a transport system that aims to supply

tics (in particular, multi-objective ant colony optimigat)  materials to the main flow and to move the production items

have demonstrated to be suitable approaches to solve tifi®m one station to the next one.

and space assembly line balancing problems. Since the manufacturing of a production item is divided

The aim of this contribution is to present a new mech-into a set of tasks, a usual and difficult problem is to deter-

anism to induce diversity in an existing multi-objectivet an mine how these tasks can be assigned to the stations fulfill-

colony optimisation algorithm for the 1/3 variant of the &m ing certain restrictions. Consequently, the aim is to get an

and space assembly line balancing problem. This variant igptimal assignment of subsets of tasks to the stations of the

quite realistic in the automative industry as it involvee th plant. Moreover, each task requires an operation time $or it

joint minimisation of the number and the area of the staexecution which is determined as a function of the manufac-

tions given a fixed cycle time limit. The performance of turing technologies and the employed resources.

our proposal is validated considering ten real-like proble A family of academic problems —referred to as simple

instances. Moreover, the diversity induction mechanism isssembly line balancing problems (SALBP)— was proposed

also tested on a real-world instance from the Nissan plant ito model this situation [3] [14]. Taking this family as a base

Barcelona (Spain). and adding spatial information to enrich it, Bautista and
Pereira recently proposed a more realistic framework: the
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their area for a given product cycle time. We have made thisnatical formulation of the TSALBP-1/3 is detailed. Finally
choice because it is quite realistic in the automotive industhe main features of the MACS algorithm are briefly de-
try. The final aim is to provide the plant manager with a wellscribed.
spread Pareto front of solutions with different trade-bfés
tween the number of stations and the area of these stations. ' : .
This will allow the plant manager to choose the most appro—zs'1 The Time and Space Assembly Line Balancing
priate one for his/her industrial context. Problem

TSALBP-1/3 has an important set of hard constraints]_

. . . . he manufacturing of a production item is divided up into
like precedences or cycle time limits for each station. Thus ) . o

. . . _a setV of n tasks. Each task requires an operation time
the use of constructive approaches like ant colony optimiz

for its executiont; > 0 that is determined as a function of
sation (ACO) [10] is more convenient than others like local v = :

the manufacturing technologies and the employed resaurces
or global search procedures [12]. Due to the two aforemen; - . X . )
: . S A task j is assigned to a single statidn Each stationk
tioned reasons, i.e., the multi-objective nature of thébpro has thus assigned a subset of taskgS, C V), called its
lem and the need to solve it through constructive algorithms 9 Ak =0

a sensible choice is to use a Pareto-based multi ob'ectivvélorkload'
) Each taskj has a set of direct predecessaf, which

ACO (MOACO) algorithm [11]. This family involves differ- must be accomplished before starting it. These constraints

ent variants of ACO algorithms which aim to find not only .
: . . are normally represented by means of an acyclic precedence
one solution, but a set of the best solutions according to sev . :
. L A graph, whose vertices stand for the tasks and where a di-
eral conflicting objective functions.

In [5-7], we successfully tackled the TSALBP-1/3 by rected ard, j) indicates that taskmust be finished before

. ; i kj h ion line. Thus, if
means of a specific procedure based on the Multiple An?tartlng taskj on the production line. Thus, if € S, and

. ) ., thenh < k must be fulfilled. Each statiohpresents
Colony System (MACS) algorithm [1]. However, we noticed ’ < S’?’ i ; op
. e T o . a station workload time(Sj) that is equal to the sum of the
that intensification could be too high in a specific region ) .
. . tasks’ lengths assigned to the statiofSALBP [14] focuses
of the Pareto front because of the station-oriented approac ) : . L
X . .~ on grouping tasks in workstations by an efficient and co-
[14] that was accomplished. In particular, the approximas . . o
) ) . herent way. There is a large variety of exact and heuristic
tions to the Pareto fronts obtained showed a lack of diver-

. . i (E)froblem—solving procedures for it [15].
sity and an excessive convergence to the left-most region . . L
o . . o The need of introducing space constraints in the assem-
the objective space. That is an undesirable situation for thbI lines’ design is based on two main reasons: (a) the length
plant managers who should be provided with all the config- y g X 9

. ; . . . of the workstation is limited in the majority of the situa-
urations of their contextual interest in the objective gpac . :
. ) ) . .élons, and (b) the required tools and components to be as-
In this paper we aim to induce a new mechanism to avoi

. ) . sembled should be distributed along the sides of the line.
that local convergence behaviour. The goal is to induce th . . .
. . . .Hence, an area constraint may be considered by associat-
generation of more diverse solutions by means of a multi: . i .
. ._ing a required area; to each taski and an available area
colony approach [13] based on the use of different station . L
. ) , . Ay, to each stationk that, for the sake of simplicity, we
filling rates in the ants’ construction procedure. Our MACS- . . . .
. . . : .~ shall assume it to be identical for every station and equal
TSALBP-1/3 algorithm with and without the new diversifi- :
. : : to A : A = maxyreqi.ny{Ax}. Thus, each statioh re-
cation component will be tested on ten real-like TSALBP- . : ]
: . . quires a station are®(Sy) that is equal to the sum of areas
1/3 instances, showing the performance improvement ob-__ - ;
) : i ) required by the tasks assigned to station
tained. Furthermore, the designed algorithms will also be . .
This leads us to a new family of problems called

applied to a real-world problem instance from the NissanTSALBP in [2]. It may be stated as: given a setrotasks

industry plant !n Barcelona. . with their temporak; and spatiak; attributes { < j < n)
The paper is structured as follows. In Section 2, the prob- ; .
. o . and a precedence graph, each task must be assigned to a sin-

lem formulation and the MACS principles are explained.

Then. the pronosed multi-colonv approach to improve theqle station such that: (i) every precedence constrainttis sa
' brop Y app P isfied, (ii) no station workload timet(Sy)) is greater than

basic MACS algorithm operation mode is described in SecfPe cycle time ¢), and (jii) no area required by any station

tion 3. The experlmeptatlon 'setup as well as the analy5|§ a(Sy)) is greater than the available area per statidh (
results is presented in Section 4. Finally, some concludin . . )
. ) . TSALBP presents eight variants depending on three op-
remarks are discussed in Section 5. o o .
timisation criteria:m (the number of stationsy, (the cycle
time) andA (the area of the stations). Within these variants
2 Preliminaries there are four multi-objective problems and we will tackle
one of them, the TSALBP-1/3. It consists of minimising the
In this section the problem preliminaries are presentadt,Fi number of stations: and the station ared, given a fixed
an overview of the TSALBP is discussed. Then, the mathevalue of the cycle time.



We chose this variant because it is quite realistic in the— U B,,, is the upper bound of the number of stations. In

automotive industry since the annual production of an indus

trial plant (and therefore, the cycle tinagis usually set by

some market objectives. For more information we refer th(?aS

interested reader to [5].

2.2 TSALBP-1/3 Formulation

According to the TSALBP formulation [2], the 1/3 variant
deals with the minimisation of the number of stations,
and the area ocuppied by those statioAsjn the assem-
bly line configuration. We can mathematically formulatesthi
TSALBP variant as follows:

UB,,
. 0 _ _ .
Min fU(z)=m= 3  max (1)
k=1
1) — A — -
floy=A=_ ma ,Zlaj ik @
i=
subject to:
L;
xjk::17 .7_1727 y (3)
k=E;
UB,,
Z S max  xjp <m 4)
Jj=1,2,...,n
k=1
Ytz <e k=1,2,..,UBy, (5)
j=1
> ajzp <A, k=12, UBy, (6)
i=1
L; L;j
S kww <Y kagk, j=1,2,..m Vie P, (7)
k=FE; k=E;
zir€{0,1}, j=1,2..,n; k=1,2,..UB, (8)
where:

n is the number of tasks,

x ;1 is a decision variable taking value 1 if tagks as-
signed to statioik, and0 otherwise,

a; is the area information for task

U B, is the upper bound for the number of stations

— E; isthe earliest station to which tagknay be assigned,
— L; is the latest station to which tagkmay be assigned,

our case, it is equal to the number of tasks, and

Constraint in equation 3 restricts the assignment of every
k to just one station, 4 limits decision variables to ttalt
number of stations, 5 and 6 are concerned with time and area
upper bounds, 7 denotes the precedence relationship among
tasks, and 8 expresses the binary nature of variables

2.3 Multiple ant colony system

MACS was proposed as a multi-objective extension of
the Ant Colony System (ACS) [9]. MACS uses a single
pheromone trail matrix and several heuristic information
functionsn” (in our casey” for the operation time; of each
taskj andn! for its areaa;). From now on, we restrict the
description of the algorithm to the case of two objectivas. |
this way, an ant moves from nodeo node; by applying
the following transition rule:

otherwise.

{
©)

where (2 represents the current feasible neighbourhood of
the ant,6 weights the relative importance of the heuristic in-
formation with respect to the pheromone trail, and com-
puted from the ant indek as\ = h/M, with M being the
number of ants in the colony, < [0, 1] is an exploitation-
exploration parametey, is a random value irf0, 1], and

is a node selected according to the probability distrilsutio

p(j):

arg max;eo(7ij - [U%]Aﬁ : [Uilj](li)\)ﬁ)v if ¢ < qo,

Z,

(1-38 L
a—2p> if Jj e,

otherwise.

Tij -[n?jlw'[ﬂ}j]
Z weR T'iu'[n?u])\ﬁ‘[nilu]

t

Every time an ant crosses edgei, j >, it performs the
local pheromone update as follows:

(10)

p(J)

Tij =1 =p) Tij +p-70 (11)

Initially, 7, is calculated by taking the average cogts,

and f1, of each of the two objective functiong? and f*,
from a set of heuristic solutions by applying the expression

1
o fo. f1
However, the value ofy is not fixed during the algo-
rithm run, as usual in ACS, but it undergoes adaptation. At

the end of each iteration, every complete solution built by
the ants is compared to the Pareto archive which was

T0 (12)



generated till that moment. This is done in order to check if ~ As usual in the SALBP, tasks having a large value of
a new solution is a non-dominated one. If so, it is includedime (a large duration) and area (occupying a lot of space)
in the archive and all the dominated solutions are removedare preferred to be firstly allocated in the stations. Apart
Then,r{ is calculated by applying equation (12) with the av-from area and time information, we have added another in-
erage values of each objective function taken from the curformation related to the number of successors of the task
rent solutions of the Pareto archiverff > 7, beingr, the  which was already used in [2]. Tasks with a larger number
initial pheromone value, pheromone trails are reinitedis of successors are preferred to be allocated first.
to the new valuey, = 7. Otherwise, a global update is per- Heuristic information is one-dimensional since it is only
formed with each solutiof' of the Pareto set approximation assigned to tasks. In addition, it can be noticed that heuris
contained inP4 applying the following rule on its compos- tic information has static and dynamic components. Tasks’
ing edges< 4, j >: time t; and areau; are always fixed while the successors
rate is changing through the constructive procedure. Bhis i
p because it is calculated by means of the candidate list of fea
Tij =1 —p) T + W (13)  sible and non-assigned tasks at that moment.

3.1.2 Pheromone trail and = calculation

3 A new diversitiy induction mechanism in MACS for
the TSALBP-1/3 The pheromone trail information has to memorise which
tasks are the most appropriate to be assigned to a sta-
This section presents our proposal of a new mechanism féon. Hence, pheromone has to be associated to a pair
induce diversity in a MACS algorithm for the TSALBP-1/3. (stationy,task;), beingk = 1,..,n andj = 1,...,n. In
Section 3.1 reviews our previous approach based on MACHis way, contrary to heuristic information, our pheromone
to tackle the TSALBP-1/3. Then, Section 3.2 details our ditrail matrix has a bi-dimensional nature since it links sk
versity induction mechanism. with stations.
In every ACO algorithm, an initial value for the
pheromone trails has to be set up. This value is catied
3.1 A MACS algorithm for the TSALBP-1/3 and it is normally obtained from an heuristic algorithm. We
have used two station-oriented single-objective greegly-al
In this section we describe the customisation made on alithms, one per heuristic, to compute it. These algorithms
the components of the general MACS algorithm scheme tepen the first station and select the best possible task ac-

build our solution methodology. cording to their heuristic information (related eitherihe
duration time and successors rafe or the area and succes-
3.1.1 Heuristic information sors ratenjl-). This process is repeated till there is not any

task that can be included because of the cycle time limit.
MACS works with two different heuristic information val- Then, a new station must be opened. When no more tasks
ues,n;’ andn}, each of them associated to one criterion. Inare to be assigned, the greedy algorithm finishgss then
our casen? is related with the required operation time for computed from the costs of the two solutions obtained by

each task and} with the required area: the greedy algorithm using the following MACS equation:
o_ti_ IE| 14 ™= (16)
L Cc maX;en | F; | f (Stime) : f (Sarea>

3.1.3 Randomised station closing scheme and transition
F. rule

pl= -4
7 UBa maxeq | F; |

Our approach follows astation-oriented procedure [14],
whereU B4 is the upper bound for the area (the sum of allwhich starts opening a station and selecting the most suit-
tasks’ areas) andl; is the set of tasks that come after tgsk able task to be assigned. When the current station is loaded
The second term in both formulae represents a ratio betweanaximally, it is closed and the next one is opened and ready
the number of successors of the tggkhe cardinality of the to be filled. In order to diversify the search, allowing to
successors séf;) and the maximum number of successorsbuild solutions composed of stations with small, medium,
of any eligible task belonging to the ant’s feasible neigh-and large loads, we introduced a new mechanism in the con-
bourhoodf?. Both sources of heuristic information range in struction algorithm to close the station according to a prob
[0, 1], with 1 being the most preferable. ability, given by the filling rate of the station:



was not considered, the solutions were concentrated in the
S ot left-most region of the objective space. Thus, they corre-
p (closing k) = =5+ * (17)  sponded to the lowest number of stations completely filled
¢ and requiring a very high station area. Nevertheless, that
whereS;. represents the subset of tasks assigned to the steegion of the objective space could not be achieved when
tion k, ¢; indicates the operation time required by taskr ~ the proposed station closing scheme was introduced. The
its execution, and is the cycle time. MACS-based TSALBP-1/3 algorithm proposed did not pro-
This probability distribution is updated at each construcvide enough diversification in those Pareto front regions.
tion step. A random “Umper is uniformly gengratgd)ml] Therefore, there is a need to find a better intensification-
after each update to decide whether the station is closed g egification trade-off. This objective can be achievgd b
not. If the decision is not to close.the station, thg ant chsos introducing different filling thresholds associated toines.
the next task among all the candidate tasks using the MACﬁ new diversity induction mechanism randomly deciding

transition rule and the procedure goes on. when to close the current station taking as a base both the

~ Because of the one-dimensional nature of the heuristigi.iion closing probability distribution and an ant filling
information, the original MACS transition rule (Equation 9 . <hoida. can thus be proposed.

that chooses among all the candidate tasks at each step, has ) o
been modified: At each construction step, the current station filling rate

is computed. In case it is lower than the ant’s filling pereent
age threshold; (i.e., when it is lower thamn; - ¢), the station
o {arg max;e (ks - [N - [t EP), i g < qo, is directly kept opened. Otherwise, the station closingparo
J= 7, otherwise, bility distribution is updated using equation 17 and a rando
(18) number is uniformly generated [f, 1] to take the decision
whether the station is closed or not. If the decision is teelo
wherei is a node selected by means of the following probathe station, a new station is created to allocate the remgini

bility distribution: tasks. Otherwise, the station will be kept opened. Once the
latter decision has been taken, the next task is chosen among
g [0 [y A28 - all the candidate tasks using the MACS transition rule to be
p(j) = { S o Tou DO L[ R0B if j €12, (19) aSS|.gned to the current station as usual. The progedure goes
0, otherwise. on till there are no more remaining tasks to be assigned.

Thus, the higher the ants threshold, the higher the prob-
ability of a totally filled station, andice versa. This is due
to the fact that there are less possibilities to close itrdyri
the construction process.

3.2 A diversity induction mechanism based on a
multi-colony approach for the MACS-TSALBP-1/3

algorithm
In this way, by using different filling thresholds, the ant

The randomised station closing scheme proposed in [5—fopulation will show a highly diverse search behaviour, al-
and described in Section 3.1.3 aimed to avoid that all the sdowing the algorithm to properly explore the different gart
lutions generated lie in the Pareto front regions with the-mi of the optimal Pareto front by appropriately distributimg t
imum number of stations. Indeed, our preliminary experi-generated solutions. Hence, these thresholds make the dif-
ments following a station-oriented procedure without sucHerent ants in the colony have a different search behaviour.
a scheme provided solutions in a narrow part of the Paretdhus, the ACO algorithm becomes multi-colony [13].
front (see [6]). That was due to the fact that we initially de-
cided to close every station only if it was full according to
the fixed cycle time, as usual in SALBP and TSALBP ap-
plications. The Pareto fronts likewise achieved did nothav
enough diversity. _ _

However, the randomised station closing scheme pro# Experimentation
posed to avoid such behaviour entailed an important draw-
back. Since the closing probability was updated at each conn this section, we first explain the instances and the used pa
struction step and it was proportional to the sum of the overrameters for the different algorithms. Then, the perforoean
all processing time of the station (i.e., the sum of the proindicators used to compare the algorithms are commented.
cessing times of all the tasks assigned to i, see equatign 1 Hinally, the analysis of the achieved results as well as the
there was a low probability of filling stations completely. application of the algorithms to the real instance of Nissan
Notice that, when the randomised station closing schemare described.
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Fig. 1 C performance indicator values represented by means of boxqaatparing MACS with and without multi-colony scheme (i.e. valga

filling thresholds).

4.1 Problem instances and parameter values

lected for the experimentatiorar c111 with cycle time
limits of ¢ = 5755 andc = 7520 (P1 and P2)bar t hol 2
(P3),bar t hol d (P4),heski a (P5),l ut z2 (P6),l ut z3
(P7),mukherj e (P8),schol I (P9), andweenag (P10).

tel Pentiud™™ D with two CPUs at 2.80GHz, and CentOS
Linux 4.0. On the one hand, the values of the parameters
Ten problem instances with different features have been s&S€d in all the MACS algorithms with and without the new
diversification component are as follows. We consider ten
different ants,3 = 2, andp = 0.2. Different values of
the transition rule parametey are also studied. In partic-
ular: ¢ = 0.2,0.5,0.8. On the other hand, the parameters

Originally, these instances were SALBP-1 instances onlyFOncerning our proposal on using different filling thresfsol
having time information. However, we have created theil@dre as follows. There are two ants for each of the five ants’

MACS 0.8 (thr)

area information by reverting the task graph to make thenthresholds considered0.2,0.4,0.6,0.7,0.9}.

bi-objective (as done in [2]). In addition, we have conséder

a real-world problem instance corresponding to the assem-
bly process of the Nissan Pathfinder engine, assembled at
the Nissan industrial plant in Barcelona (Spain) [2]. Akth 4 5 Multi-objective performance indicators
TSALBP-1/3 instances considered are publicly available at
http://mww.nissanchair.conV TSALBP.

We will consider two different multi-objective performasc
We run each algorithm 10 times with different randomindicators (wrongly called metrics in the past) [8, 16] talev
seeds, setting the time as stopping criteria (900 seconds)ate the performance of the two variants of the MACS-based

All the algorithms were launched in the same computer: INTSALBP-1/3 algorithm.




Table 1 Mean and standard deviation values (in brackets) ofifier performance indicator for all the problem instances.

Al: MACS 0.2 (without thr.) A2: MACS 0.5 (without thr.) A3: MACS 0.8 (without thr.)
A4: MACS 0.2 (with thr.),A5: MACS 0.5 (with thr.),A6: MACS 0.8 (with thr.)

P1 P2 P3 P4 P5

Al | 0.91(0.005) 0.91(0.006) 0.86(0.008) 0.93 (0.005).96(0.002)
A2 | 0.91(0.003) 0.91(0.008) 0.86(0.006) 0.93 (0.005).96(0.002)
A3 | 0.91(0.005) 0.91(0.005) 0.85(0.005) 0.93 (0.005).96(0.001)
A4 | 0.99(0.001) 0.99(0.002) 0.98(0.001) 0.97(0.001) 0.96(0.006)
A5 | 0.98(0.002) 0.99(0.002) 0.98(0.001) 0.97(0.001) 0.95 (0.003)
A6 | 0.98(0.001) 0.98 (0.001) 0.98(0.001) 0.97 (0.002) 0.94 (0.005)

P6 P7 P8 P9 P10

Al | 0.89(0.01) 0.91(0.008) 0.91(0.005) 0.87(0.003) 0.930D)0
A2 | 0.89(0.008) 0.91(0.01) 0.92(0.008) 0.87 (0.004) 0.930@)0
A3 | 0.89(0.008) 0.91(0.011) 0.92(0.005) 0.87 (0.004) 0.9Q1D)
A4 | 0.99(0.001) 0.99(0.001) 0.99(0.001) 0.99(0.001) 0.99(0.001)
A5 | 0.990)  0.99(0.001) 0.99(0.001) 0.99(0.001) 0.99(0.001)
A6 | 0.99(0.005) 0.99(0.001) 0.99(0.002) 0.99(0.001) 0.99(0.001)

On the one hand, we selected the hypervolume ratid’'(P, Q) andC(Q, P) have to be considered, Sin€& P, )
(HV R) from the first group. It can be calculated as follows: is not necessarily equal to— C(Q, P).
HV(P) We have used boxplots based on @ig@erformance in-
HVR=——-=, (20) dicator that calculates the dominance degree of the approx-
HV(P*) imate Pareto sets of every pair of algorithms (see Figure 1
where HV (P) and HV (P*) are the volume § perfor- and Figure 3). Each rectangle contains ten boxplots repre-
mance indicator) of the approximate Pareto set and the trugenting the distribution of th€' values for a certain ordered
Pareto set, respectively. Whéhl’ R equalsl, then the ap-  pair of algorithms in the ten problem instances (P1 to P10).
proximate Pareto front and the true one are equal. Thu&ach box refers to algorithml in the corresponding row
HV R values lower than indicate a generated Pareto front and algorithms in the corresponding column and gives the
that is not as good as the true Pareto front. fraction of B covered byA (C(A, B)).
We should notice that the true Pareto fronts are not
known in our real-world problem instances. Thus, we will
consider a pseudo-optimal Pareto set, i.e. an approximatidh-3 Analysis of results

of the true Pareto set, obtained by merging all the (approx- . . )
. 7 . The experimental results obtained by the two MACS vari-
imate) Pareto set®; generated for each problem instance

by all the existing algorithms for the problem in the differe ants with and without the diversity mechanism can be seen

in the C' performance indicator boxplots of Figure 1 and

runs [5]. Thanks to this .psel'Jc!o-opnmaI P"’?reto set, we “@} the HV R values in Table 1. Some conclusions can be
computeH V' R and consider it in our analysis of results.

On the other hand. we have also considered the bina reached from the analysis of tl{e performance indicator

V:

- alues:

set coverage performance indicatdrto compare the ob-

tained Pareto sets two by two based on the following ex-— Comparing both versions of MACS, the original one

pression: with a specific value ofjy and its counterpart multi-
colony extension, we can see that significantly “better”
{qeQ:3IpeP:p=<q} results are provided by the latter MACS with thresholds.
C(P,Q) = Q] ) (21) It happens regardless of the valueggf and it is com-
mon in all the problem instances but P5 (heskia). This
wherep < ¢ indicates that the solutiop, belonging to the is because of the nature of that problem instance, whose
approximate Pareto sét, dominates the solutiog of the pseudo-optimal Pareto front is not wide enough. Every

approximate Pareto s€tin a minimisation problem.
Hence, the valu€’(P, Q) = 1 means that all the solu- 1 When we refer to the best or better performance comparing the

tions in( are dominated by or equal to solutionsfn The C performancg indicator values (_)f two_alg_(_)rlthms we mean that the
Pareto set derived from one algorithm significantly domindtasdane

opposite C'(P, Q) = 0, represents the situation where noneachieved by the other. Likewise, the latter algorithm dogsineminate
of the solutions irQ) are covered by the sét. Note that both  the former one to a high degree.
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Fig. 2 Pareto fronts for the P3 problem instance.

solution of this problem instance is found in the central  for diversity in the randomised task selection procedure
part of the objective space, so the diversity introduced of the algorithm which requires a good diversification-
by means of the filling thresholds is not useful. intensification trade-off.

We find less performance differences with a lower value

. o In general terms, we can draw similar conclusions
of ¢o. It makes sense since MACS with highgrvalues

) . . 10 a hiaher intensification in th analysing theH V R values (see Table 1). They are always
gives more importance to a higher intensitication in ehigher in variants with thresholds as they better converge

sgle_ction procedure and.thus, the Pareto fronts are mo[fwards the true (i.e., pseudo-optimal) Pareto fronts eier
similar. Hence, the algorithm does not take advantage o mple, that is shown in Figure 2 that graphically shows the

the diversity induced by the thresholds gpproach: aggregated Pareto fronts corresponding to P3.
If we compare every MACS variant with and without

thresholds, regardless of the valueggf the conclusion

is that MACS 0.2 with thresholds is the best approach. 14.4 Application to the real Nissan problem instance

gets better results than MACS 0.5 and 0.8 with thresh-

olds in every problem instance. It is only dominated byln this section we consider the application of the algo-

MACS 0.2 and 0.5 without thresholds in P5. Even in arithms to a real-world problem corresponding to the assem-

non-common problem instance like the latter, results ardly process of the Nissan Pathfinder engine at the plant of

good enough. Barcelona (Spain). The assembly of these engines is divided

Hence, the diversity of the task selection procedure (anto 378 operation tasks, although we have grouped these

low value ofgq parameter) as well as the use of variableoperations into 140 different tasks. The Nissan instante da

station filling thresholds are both important to solve theis also available atttp://www.nissanchair.com/TSALBP.

problem appropriately. Nevertheless, if we select MACSFor more details about the Nissan instance the reader is re-

0.8 with thresholds and MACS without thresholds with ferred to [2], where all the tasks and the time and area infor-

lower values ofyy (0.2 and 0.5) to be compared, we canmation are set.

notice that the former algorithm outperforms the latter ~ TheC performance indicator values are collected in Fig-

two in five and six problem instances respectively. Onure 3 by means of boxplots. Those values for hig R per-

the contrary, the latter two are better in four of them. All formance indicator are shown in Table 2. Besides, Figure 4

of these algorithms have thus quite similar results. Conshows the Pareto fronts of the algorithms for the Nissan in-

sequently, the variable filling thresholds in isolation arestance.

not enough to get a good yield. There is also a demand We can observe that, as happened with the ten real-like
instances, the variants of the new proposal of MACS with
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filling thresholds) for the Nissan problem instance.

Table 2 Mean and standard deviation values (in brackets) ofifier performance indicator for the real Nissan problem instance.

Al: MACS 0.2 (without thr.) A2: MACS 0.5 (without thr.) A3: MACS 0.8 (without thr.)
A4: MACS 0.2 (with thr.),A5: MACS 0.5 (with thr.),A6: MACS 0.8 (with thr.)

Al A2 A3 Al A5 A6

0.55(0.023) 0.54(0.020) 0.54(0.012) 0.94 (0.0150.95(0.013) 0.93(0.017)

the diversity mechanism are the best algorithms. The differthe best performance, even better than the MAQSwhich
ence is clear observing all the performance indicators. Thevas the best variant for the other instances.

convergence of MACS with the multi-colony extension is

higher than without taking into account this diversity mech

anism (see values of thHéV R performance indicator in Ta- To sum up, as it happened with the other problem in-
ble 2, showing a great difference (from 0.55 to 0.94)). Thestances, the MACS with multi-colony mechanism outper-

boxplots ofC' also reinforce the existence of this difference forms the previous version of MACS considering globally
(Figure 3). all the performance indicators as well as the graphicaltBare

front representation. The MAC®5 is more suitable for the
However, the behaviour of the MACS variants with the Nissan problem instance than the variant. This is because
multi-colony approach is different with respect to the cafse the real instance needs more intensification in the search
the ten real-like instances. In this case, MACS achieves since it has particular characteristics.
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Fig. 4 Pareto fronts for the Nissan problem instance.

5 Concluding remarks

consider other MOACO algorithms to solve the TSALBP-
1/3.

In previous works [5-7] we demonstrated that the use of a

MACS algorithm to tackle the TSALBP-1/3 by considering

a stochastic procedure to decide when to close a station Wagferences
a better choice than a pure station-based approach. Never-

theless, that solution still led to situations where iniéces-

tion was too high in a specific Pareto front region. That is
an undesirable situation for the plant managers who should
be provided with all the configurations of their contextual ,

interest in the objective space.

To solve this problem, in this contribution we showed

a better intensification-diversification trade-off coulé b

achieved by introducing different filling thresholds adsoc
ated to the ants that build the solution. This new mechanisn®.
aimed to provide a different search behaviour to the differe

ants in the colony (multi-colony ACO).

Ten well-known problem instances of the literature were
selected to test our proposal. From the obtained results we
have found out that the best yield to globally solve the prob- 6
lem belongs to the new MACS-TSALBP-1/3 algorithm us-

ing the multi-colony scheme wittyy = 0.2. In addition, the

algorithms were applied to a real instance of Nissan, con-
firming the good performance of the MACS with the multi-
colony mechanism. In this case, the best variant was the;

MACS multi-colony variant withy, = 0.5, followed by that
with thegy = 0.2.

As future work, we aim to apply a local search to in-

crease the performance of the algorithm. We also aim
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