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Abstract In this paper the performance of the most
recent multi-modal genetic algorithms (MMGAs) on the
Job Shop Scheduling Problem (JSSP) is compared in term
of efficacy, multi-solution based efficacy (the algorithm’s
capability to find multiple optima), and diversity in the
final set of solutions. The capability of Genetic Algo-
rithms (GAs) to work on a set of solutions allows us
to reach different optima in only one run. Nevertheless,
simple GAs are not able to maintain different solutions
in the last iteration, therefore reaching only one local or
global optimum. Research based on the preservation of
the diversity through MMGAs has provided very prom-
ising results. These techniques, known as niching meth-
ods or MMGAs, allow not only to obtain different mul-
tiple global optima, but also to preserve useful diversity
against convergence to only one solution (the usual behav-
iour of classical GAs). In previous works, a significant
difference in the performance among methods was found,
as well as the importance of a suitable parametrization.
In this work classic methods are compared to the most
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recent MMGAs, grouped in three classes (sharing, clear-
ing and species competition), for JSSP. Our experimen-
tal study found that those new MMGAs which have a
certain type of replacement process perform much better
(in terms of highest efficacy and multi-solution based effi-
cacy) than classical MMGAs which do not have this type of
process.

Keywords Genetic algorithms · Multimodal problems ·
Job shop scheduling problem · Niching methods

Introduction

There are three types of optimization problems. The first one
tries to solve problems with only one optimization function
and only one global optimum. The objective is to find this
optimum. The second type tries to optimize problems with
several optimization functions (called multi-objective prob-
lem). The solution of the problem is the Pareto-set. The third
type focuses on problems with only one optimization func-
tion but with several global and local optima, an example of
a function with five global optima is shown in Fig. 1a and
another function with one optimum and four local optima in
Fig. 1b (Beasley et al. 1993).

These problems are called multi-modal, and the objective
of optimization is to find the set of different global optima.
In the last few years, works not only have been focused on
solving the problem with the highest efficacy (getting the best
solution of the problem), but also on obtaining the highest
number of different optima of the problem (Harik 1995). For
example, in Fig. 1a, finding one of the five optima is efficacy
because the problem has been solved, but if the five optima
could be obtained, the search space would be completely
known. This is multi-solution based efficacy.
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Fig. 1 Examples of different types of multi-modal problems (Beasley et al. 1993)

There are several strategies to solve multi-modal prob-
lems. One of them is to restart the optimization process many
times as needed to obtain the number of desired optima. The
main drawback is that the process could obtain several copies
of the same optimum. This can be solved by implementing
mechanisms to avoid the exploration of optima obtained in
previous searches, a sort of memory from previous searches.
There are few studies on finding multiple different solutions
(Hoss and Stützle 2004). Another possibility is to use algo-
rithms that are able to obtain multiple different solutions
in each step of the search, like Genetic Algorithms (GAs)
(Goldberg 1989). But if the problem has high difficulty like
Job Shop Scheduling Problem (JSSP) simple GAs have pre-
mature convergence and obtain either poor solutions or only
one optimum. To overcome this limitation, different types of
Multi-Modal Genetic Algorithms (MMGAs) were developed
in the last years.

The first MMGA was developed in 1987 but with poor
results in high difficulty problems (Sareni and Krahenbuhl
1998). In the following 12 years, few attempts were done,
but in the last 10 years the number of different approaches
has dramatically increased. Pérez et al. (2003) compared the
main MMGAs approaches applied to JSSP, proposals until
1999. They showed the ability of niching GAs to find multiple
optima by analyzing the classical techniques: sharing, crowd-
ing and clearing. The analyzed methods were fitness sharing
(Goldberg and Richardson 1987) and continuously updated
sharing (Oei et al. 1991), deterministic crowding (Mahfoud
1992) and multi-niche crowding method (Cedeño and Vemuri
1999), and lastly clearing method (Pétrowski 1996, 1997).
The conclusions of this work were that MMGAs are able
to find multiple global optima in multi-modal problems, but
there are a lot of differences in the performance between
methods. Thus, the choice of the more appropriated MMGA
is crucial. The fitness sharing, continuously updated shar-
ing and multi-niche crowding have a very poor performance

and can not find multiple global optima. The deterministic
crowding only has good performance with easy problems (of
little size). The clearing presents the best result to solve the
JSSP for any problem size.

As the choice of the most appropriate MMGA is crucial,
in this paper we extend this analysis to the last promising
MMGAs published in the last years, comparing them with
the results obtained in the study from 2003 (Pérez et al. 2003).

The perfect testing-ground for the MMGAs is the JSSP
because of its high difficulty. First, it belongs to the NP-hard
problems. That is, there are not algorithms that find an opti-
mal solution in polynomial time (Garey and Johnson 1979).
Secondly, the search space of the JSSP can be typified by
hills, valleys, and mountainous areas, that is, the JSSP has
multiple different optima. We call the algorithm’s capability
to find these multiple optima a multi-solution based efficacy.
To compare the different MMGAs, we have selected eight
instances (four which are easy to solve, and the other four
which are difficult) based on our previous experience and
knowledge about the distributions of optima.

We compare the best classical method [Classic Clearing
Method (Pétrowski 1996, 1997)] according to Pérez et al.
(2003), with the more recent promising proposals. So we
extend previous works with the study of the following
MMGAs:

• Fitness sharing:

– Adaptive niche hierarchy genetic algorithm (Dunwey
et al. 2002).

– Niche identification technique (Lin and Wu 2002).

• Clearing:

– Restricted competition selection method (Lee et al.
1999).

– Restricted competition selection with pattern search
method (Kim et al. 2002).
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• Species competition:

– Species conserving genetic algorithm, (Li et al. 2002).
– Quick hierarchical fair competition, (Hu and Goodman

2004).

The analysis of the results is based on three different points
of view: efficacy, multi-solution based efficacy, and diversity
in the final set of solutions. The efficacy is to find the opti-
mum of the problem. We definemulti-solution based efficacy
as the algorithm’s capability to find multiple optima. Diver-
sity can be understood as exploration or exploitation. We
consider search space exploration when optima that belong
to different areas are reached, and exploitation is to find very
similar optimal solutions.

For each point of view, the sequence of the analysis is
developed according to the following steps:

Step 1. Find the best suitable parametrization of each
method (populations size, niche radius, etc).

Step 2. Determine the best technique for each point of view.

The rest of the paper is organized as follows. In the next sec-
tion we present the scheduling theory, including the problem
definition and the main techniques that have been used to
solve it. In section “Genetic algorithms”, we introduce GAs
and their use to solve the JSSP. In section “Niching GAs”,
we describe briefly different niching methods analyzed in
this paper. In section “Experimental study”, we establish an
experimental study to compare different niching GAs, con-
sidering efficacy, multi-solution based efficacy, and explo-
ration or exploitation of search space. Finally, in section
“Conclusions” we point out some concluding remarks. In the
appendix a short explanation of analyzed niching methods is
shown.

Scheduling theory

The job shop is a complex case where each one of the n job
has its own movement within m machines, and each of the
m machine has its own sequence of n jobs. For example, In
Table 1 the dates of a job shop problem with three machines

Table 1 Dates of a job shop problem

(a) (b)

M1 M2 M3 Machines

J1 3 4 5 2 1 3

J2 5 3 2 3 2 1

J3 1 2 3 1 3 2

and three jobs are shown, (a) provides details about the pro-
cessing time of operations, and (b) the sequence of jobs in
the shop. The job shop has (n!)m possible solutions (being
n jobs and m operations), i. e. the above example has 216
solutions with multiple global and local optima. One of them
is shown in Fig. 2 and Table 2. The cost function can define
termination times (makespan or Cmax ), delay times (Tmax )

or total flow times (Fmax ), among others (Brucker 1997).
At the beginning, attempts were targeted towards formu-

lation of the easiest problems (French 1982) and their resolu-
tions by mathematical methods (Greenberg 1968; Carlier and
Pinson 1989). However, other approaches have emerged due
to the limitation in the industry such as heuristic approaches
(Panwalkar and Iskander 1977; Adams et al. 1988; Wenqi
and Aihua 2004) or meta-heuristic methods like:

• Tabu search (Glover and Laguna 1997; Nowicki and
Smutnicki 1996; Watson et al. 2003; Geyik and Cedi-
moglu 2004; Nowicki and Smutnicki 2005; Watson et al.
2006).

• Simulated annealing (Kirkpatrick et al. 1983, Van
Laarhoven et al. 1992, Aydin and Fogarty 2002, 2004a;
El-Bouri et al. 2007).

• GAs (Mattfeld 1995; Vazquez and Whitley 2000,
Amirthagadeswaran and Arunachalam 2007).

• Neural networks (Yang and Wang 2000; Weckman et al.
2008).

• Fuzzy systems (Canbolat and Gundogar 2004).
• Iterated local search (Ramalhinho et al. 2003).
• Hybrid optimization strategies (Wang and Zheng 2001;

Hasan et al. 2007).
• Multi-agent approach (Usher 2003; Aydin and Fogarty

2004b) among others.

In all these studies, the number of optima found is never
detailed, because efficacy has been the only traditional objec-
tive pursued. There is a good review of the different algo-
rithms to solve the JSSP in Jain and Meeran (1999).

We have selected eight instances to compare analyzed
methods: four of which are easy to find multiple optima
(mt06, la01, la02 andla05), two of which are easy to find
the optimum but difficult to find multiple optima (la03 and
la04). Lastly, mt10 and mt20 are difficult to find the opti-
mum and very difficult to find multiple optima. From the
multi-solution based efficacy point of view, the difficulty of
the instance to find multiple optima is inversely proportional
to its number of different global optima known. In Table 3
the number of different global optima known to date for
each instances is shown. More information can be found at
www.insisoc.org/elena/JSSP/optima.htm.

The easiest instance is mt06 due to its small size, only 6
machines and 6 jobs (6 × 6). We have selected this example
based on our previous experience and knowledge about the
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Fig. 2 One possible solution to
the example of Table 1

Technological Constraints Operation Order
M1 M2 M3

J1

J2

J3

Beginning End

Technological Constraints Operation Order
M1 M2 M3

J1

J2

J3

Beginning End

Table 2 Details of the sequence

Jobs

M1 3 1 2

M2 1 2 3

M3 2 3 1

Table 3 Number of different global optima known to date

mt06 la01 la02 la03 la04 la05 mt10 mt20

42 26813 5321 706 143 48471 4 1

distributions of optima in the solutions space. For mt06, we
have found three different types of optima: two big moun-
tainous areas (A and B) and one isolated peak (C). The total
number of global optima for this example found to date is 42.
For a more detailed revision about this distribution see Pérez
et al. (2003). The la01, la02, la03, la04 and la05 instances
have the same size, 5 machines and 10 jobs. Both mt10 (10
machines and 10 jobs) and mt20 (5 machines and 20 jobs)
instances are very difficult. More information about these
instances and others is available at: http://people.brunel.ac.
uk/~mastjjb/jeb/orlib/jobshopinfo.html.

Genetic algorithms

Gas are global search algorithms with a general purpose that
use principles inspired by natural population genetics. The
first studies can be found in the 1960s, in Fogel (1998) there
is a good collection of the first proposals. But it was not until
the 1970s when researchers began to use them as a useful
optimization and search tool. In GAs, each individual in the
population represents a candidate solution to the problem
and has an associated fitness to determine which individu-
als are used to form new ones in the process of competi-
tion. New individuals are created using genetic operators by
crossover and mutation, (Goldberg 1989, 2002; Michalewicz
1995; Eiben and Smith 2007; Sivanandam and Deepa 2007).
The main parts of GAs are the following (see Fig. 3):

1. Coding. It allows us to handle the potential solutions in
a simple manner.

2. Evaluation. It is the value of objective function for each
solution. In this case Cmax .

3. Parent selection and genetic operators. They allow the
exploration and the exploitation in search areas. Parent
selection gives us the mechanism for distinguishing and
selecting the best individuals for its reproduction. Clas-
sical genetic operators are: crossover which exchanges
the genetic material of the selected parent, and mutation
which incorporates diversity into the search process.

4. Replacement process. The offspring population is
included in the population for the next generation (itera-
tion). Different proposals can be found in the literature,
for example elitism (Goldberg 1989).

GAs have been widely used to solve scheduling problems. In
Hart et al. (2005) there is a recent overview of the subject. In
the following two subsections we briefly introduce the basic
components which allow us to use GAs for the JSSP, coding
approaches and genetic operators.

Coding for the JSSP

The most important decision we have to make when facing a
problem is how to code solutions. There are different possi-
bilities to code the solution of a JSSP: the direct (Bruns 1993;
Kobayashi et al. 1995), the binary (Nakano and Yamada
1991), the circular (Fang et al. 1993), and the permutational
with repetition (Mattfeld 1995). We have selected the lat-
ter because genetic operators always obtain valid children.

Initial Population(G=1)

Selection

ParentsPopulation Reproduction

ChildrenPopulation

EvaluationEvaluation

Replacement

 

Definitionof the GA 

G=G+1

Fig. 3 GA procedure (G is the number of generations)
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SecondOperation Job 1

First Operation Job 1
First Operation Job 2

First Operation Job 4
SecondOperation Job 4

First Operation Job 3

Third Operation

Third Operation Job 1
Third Operation Job 3

1 2 4 4 3 2 3 2 4 1 1 3

Job 4

Fig. 4 Permutational with repetition coding applied to the job shop
scheduling problem

In this coding process, if there are n jobs, there will be
n amount of numbers, and these will be repeated during
the coding process depending on how many operations are
required. For instance, if we have 4 jobs and 3 operations are
required for each of them, the string of coding has a size of
12 which is the result of 4 × 3 (see Fig. 4, it is coded from
left to right).

Genetic operators for the job shop problem

Genetic operators must be adapted to the coding used. There
are many crossover and mutation operators developed for the
JSSP. In Gento and Pérez (2002) there is an extensive study
on the most familiar operators. They concluded that adapted
Order Crossover (OX) operator, initially developed for the
travelling salesman problem (Davis 1989), and the Order
Based Mutation (OBM) operator (Mattfeld 1995), provided
a higher efficacy to the GAs for the JSSP. Readers who are
not familiar with the subject can find further information at
www.eis.uva.es/elena/JSSP. In Fig. 5 we show an example
of operator OX for the adaptation developed for the permuta-
tion with repetition coding, and in Fig. 6 we show an example
of OBM.

Definition of distance

Distance is the main concept GAs are based on. It is the mea-
surement of proximity between solutions, d(i,j). The concept

Father 1

Father 2

Child 1

Child 2

3    2    1

3 2 2 3 1 1 2 3 1

2 1 1 3 2 1 2 3 3

3 2 1

3 1 1

2 3 3 2 1 1 3 2 1

3 2 2 3 1 1 2 3 1

2 1 1 3 2 1 2 3 3

2 3 1 3 2 1 2 3 1

3 2 1 3 1 1 2 3 2

Fig. 5 OX crossover operator adapted to permutation coding with
repetition

3 2 2 3 1 1 2 3 1

3 2 3 3 1 1 2 2 1

Fig. 6 OBM mutation operator

of closeness or remoteness (similarity) requires the calcu-
lation of the distance between solutions, which is problem-
dependent. In our JSSP, we define the distance as the number
of operations situated in different places for each machine.
For example, the distance of theses two solutions (1 3 2)
(2 3 1)(3 2 1) and (3 2 1)(1 3 2)(3 2 1) is five.

Niching GAs

In nature, the environment is divided into different zones
due to some common characteristics, such as humid regions,
high temperatures, great depths, etc. Each of these clearly-
defined zones is known as a niche. Therefore, those indi-
viduals that are specially adapted to the conditions of the
environment will survive. On the contrary, survival for other
types of organisms will be clearly impossible because they
are unable to adapt to the environment. Hence, the fight to
survive among different species is implicitly limited.

Following these principles of nature, niching genetic algo-
rithms try to split up populations into different niches. So
solutions that occupy different areas in the search space,
regardless of their quality, will be able to survive from gener-
ation to generation. The goal is to keep the necessary diver-
sity to achieve a large search in different promising areas and
reach different optima of the multi-modal problems.

In Table 4 we summarize niching methods analyzed in this
paper. We have grouped them in fitness sharing, clearing and
species competition. Although in the following subsection,
www.eis.uva.es/elena/MMGAs, and appendices, we provide
the main ideas of these methods, we recommend reading the
original papers.

Fitness sharing methods

Methods included in this subsection are based on the distri-
bution of solutions into niches by penalizing the quality of
individuals according to their proximity to other solutions.
Thus the quality of solutions that belong to densely populated
areas is more penalized than those solutions that belong to
less populated zones. The methods we have included in this
study, as following:

• Adaptive niche hierarchical genetic algorithm (ANHGA)
(Dunwey et al. 2002). The classical fitness sharing
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Table 4 Summary of niching methods

Fitness sharing Clearing Species competition

Adaptive niche hierarchical genetic
algorithm (ANHGA)

Clearing (CM) Species conserving genetic
algorithm (SCGA)

Niche identification techniques (NIT) Restricted competition selection (RCS) Quick hierarchical fair competition
(QHFC)

Restricted competition selection with
pattern search (RCS_PSM)

method is applied but with a modified sharing function.
In addition, it uses an adaptive mutation and a substitu-
tion system based on quality as well as proximity to other
solutions, by gathering parent and children populations
(see Appendix A.1).

• Niche identification techniques with fitness sharing (NIT)
(Lin and Wu 2002). First, the solutions of the popula-
tion have to be divided into niches, using an identifica-
tion technique of cluster kind (the process is focused on
establishing the radius of each identified niche), and once
niches are created the fitness sharing method is applied
(see Appendix A.2).

Clearing based genetic algorithms

Methods included in this subsection also modify the qual-
ity of the solutions by the distance. The methods we have
included in this study, as following:

• Classical Clearing Method (CM) (Pétrowski 1996, 1997).
A certain number of solutions survive by niche, and the
rest which do not survive, result in a quality of zero. They
have a sense of elitism where not only one good solution
is saved, but also the best k solutions of each niche (see
Appendix A.3). It has been considered because it was the
best performance in Pérez et al. (2003).

• Restricted Competition Selection Method (RCS) (Lee
et al. 1999). The clearing philosophy (described in the
CM) is applied in the stage of substitution instead of in
the selection. Moreover, all the individuals of the ini-
tial population are obligated to enter in the matting pool,
randomly grouping them in pairs for the reproduction
process. This removes the pressure on the selection (see
Appendix A.4)

• Restricted Competition Selection with Pattern Search
Method (RCS_PSM) (Kim et al. 2002). It is a modifica-
tion of theRCS. The best individuals of each niche of the
initial population are improved by local search. In JSSP
we have used Giffer and Thompson (1960)’s local search
method. This method has been applied as an algorithm
of improvement of performance of the GAs (Fang 1994;

Kobayashi et al. 1995; Mattfeld 1995; Lin et al. 1997)
(see Appendix A.5)

Species competition based genetic algorithms

Methods included in this subsection create different species
inside each population, and make individuals of each species
evolve and fight to survive in an independent way different
from individuals in the rest of the existing species. The meth-
ods we have included in this study, as following:

• Species Conserving Genetic Algorithm (SCGA) (Li et al.
2002). This is based on dividing population into species
and locating the best solution from each of them based of
its quality (seed), and distributing the rest based on their
proximity. Later, substitution depends on this distribution
(a see Appendix A.6).

• Quick Hierarchical Fair Competition (QHFC) (Hu and
Goodman 2004). The population is divided into as many
subpopulations as the algorithm designer wishes and
the solutions are distributed in them according to qual-
ity thresholds. Pseudo parallel genetic algorithms are
performed by permitting the import–export of solutions
between the different subpopulations (see Appendix A.7).

Experimental study

In this section we establish the bases of the experimental
study for comparison among niching GAs, in terms of effi-
cacy, the multi-solution based efficacy and diversity. First,
we introduce algorithm parameters used to analyze the algo-
rithms together with the measures. Finally, we present the
results and their analysis.

Parameters and measures

General parameters of the GA are:

• Population size: N = 100 (except in QHFC where
different N are checked)
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• The genetic operators’ probabilities are 0.8 for the cross-
over and 0.1 for the mutation per chromosome. (Gento
and Pérez 2002).

• Stop conditions: Number of evaluations 100,000 for
instances mt06, la01 andla05), 300,000 for la02, la03
and la04 and 500,000 for mt10 and mt20.

• Runs: 30 repetitions per combination of parameters to do
the statistical study.

Parameters are different of those used in Pérez et al. (2003).
The modifications on population size and the crossover and
mutation probabilities are caused by posterior studies in
which the exploration of the GAs was improved with these
new values. On the other hand, most of the recent works in
metaheuristics use the number of evaluations as stopping cri-
terion instead of the number of generations. The evaluation
process uses the most computational time in the optimization
process, and the comparison between different optimization
techniques is the easiest when the process is not based on gen-
eration as GAs. The computational time is not a good measure
because different computers were used to run experiments.

Each niching GA needs to adapt to the JSSP by param-
eters such as niche radius or selection method. In Table 5
we summarize the nomenclature used in the experiment to
simplify the linguistic treatment and the parameter values
of each of the methods. Thus, values of the niche radius
(σshare) are adapted to the JSSP, and the rest of the parame-
ters, both original (proposed by authors in their studies) and

new values, have been selected and analyzed. For selection
we have used the following: RWS (roulette-wheel selection),
TS (tournament selection), SRS (stochastic remainder selec-
tion) and SUS (stochastic universal selection).

Results and analysis

Each MMGA has been run 30 times for each possible com-
bination of parameter values. For instance, the ANHGA has
225 possible combinations (5 for niche radius, 3 for selection
methods and 5 for replacement methods).

We separately analyze the efficacy, the multi-solution
based efficacy and the connection between parameters values
and diversity (exploitation vs. exploration). The following
measures are used in the analysis:

1. Vm . We calculated the average of the best obtained solu-
tions taken from each repetition (30). So we analyze the
efficacy of the methods.

2. Nmo. Average of the number of global optima which is
reached in each successful repetition (only with global
optima). So we analyze the multi-solution based efficacy
(the algorithm’s capability to find multiple optima). The
repetitions without optima (no global optima) do not
count when calculating the average of the number of
optima. For example, if 24 repetitions have global optima
and the rest (6) have poor solutions (no global optima),
the average of the number of optima is calculated with

Table 5 Parameters of the different analyzed methods

Method Parameters Values

Adaptive Niche Hierarchy Genetic Algorithm (AN H G A) Niche radius (σshare) σshare = {0, 10, 20, 30, 40}
Selection method (SM) SM : RW S and T S

Replacement (B) B = {0, 0.25, 0.5, 0.75, 1}
Niche Identification Technique (NIT) Selection method (SM) SM : RWS and TS

Quality jump (B*) B∗ = {0, 0.1, 0.2}
Niche size (N*) N∗ = {0, 0.1, 0.2}
Study of Interference Niches (I ) I = {0(no), 1(yes)}

Clearing Method (C M) Niche radius (σshare) σshare = {0, 10, 20, 30, 40}
Selection method (SM) SM : SRS and SUS

Number of winners (k) k = {1, 5, 10}
Restricted Competition Selection (RCS) Niche radius (σshare) σshare = {0, 10, 20, 30, 40}

Size of Elite Set (M) M = {10, 50, 100}
RCS with Pattern Search (RCS_PSM) Niche radius (σshare) σshare = {0, 10, 20, 30, 40}

Size of Elite Set (M) M = {10, 50, 100}
Species Conserving Genetic Algorithm (SCG A) Niche radius (σshare) σshare = {0, 20, 40, 60, 80}

Selection method (SM) SM : RW S; SRS; and T S

Quick Hierarchical Fair Competition (QHFC) Size population (N ) N = {500, 1000, 1500, 2000}
Number of species (L) L = {3, 5, 8}
Factor size subpopulations (γ ) γ = {0.6, 0.8, 1.0}
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the number of optima reached in these 24 runs, and this
is repeated for each combination of parameters.

3. Dm . Average distance between optima. With this mea-
sure we analyze diversity of the found optima.

Efficacy

In this section we analyze which methods allow us to find
the best solution and the suitable parameters to reach this
objective. The average of the best obtained solution of 30
repetitions (Vm) for each combination of parameters values
has been calculated, and the best Vm and their SD (standard
deviation) for each method and instances are summarized in
Table 6. All analyzed methods found the optima of la05 and
mt06 problems (593 and 55, respectively) so they have not
been included in Table 6. The last row shows the optimum
for each instance (Opt). In bold type we report the minimum
obtained value for each instance (la01, la02, la03, and la04).
The best method for all instances is ANHGA.

In Table 7 we show, for each instance, the methods whose
efficacy is not statistically different (by t-test). ANHGA is the
best method in mt10 and mt20. But in smaller size instances
(la01, la02, la03 and la04), ANGHA’s efficacy is not statis-
tically different from SCGA or CM.

Although ANHGA is the best method, a statistical point
of view shows that the efficacy of the ANHGA is not statis-
tically different from SCGA or CM for all instances.

In Table 8 we show the most appropriate set of values of
parameters to obtain the best performance of each method.
For this, we carry out a statistical study (applying the ANOVA
and t-test). As we can see, there is not only one combination
of values for the different parameters, but rather a set of com-
binations, all of them equally suitable. Therefore, stressing
that this set is the same for all instances, i. e. it is a reliable
and robust set to different size problems. The main conclu-

sion that we would like to point out from the results shown
in Table 8 are:

• For ANHGA, surprisingly the replacement parameter was
1(B = 1). The quality of the parents and children depends
on its fitness (with a weight of B) and on its proximity
between the rest of solutions (with a weight of B − 1).
As B = 1, the replacement use only the fitness.

• For NIT the type of interference niches is I = {0}. There-
fore the study of interference is not necessary because
the solution space of the JSSP is not continuous and this
process does not offer a good performance.

• For CM the niche radius is σ share = {0}. This indicates
that the clearing process is only done on identical solu-
tions.

• For RCS and RCS_PSM the best value of size of the elite
set is 100 (M = 100). In this study, the population size is
set as 100 solutions (equal to M). Therefore, in the elite
set there is room for all initial solutions of each generation
to compete with children population for survival.

In ANHGA, SCGA and CM, in the generation t + 1, there
are niches of the generation t (from the surviving parents)
and new niches (from new created solutions by crossover
and mutation). Hence, this type of replacement process adds
memory to the search which allows them to maintain good
potential niches from generation to generation. We think that
this type of replacement process is very good for multi-modal
problems, and is the distinctive characteristic to improve the
performance.

Multi-solution based efficacy

In this section we analyze which method allows us to find
more number of optima per execution of GA. The average

Table 6 Best Vm obtained

ANHGA NIT CM RCS RCS_PSM SCGA QHFD Opt

la01 Vm 666.00 666.73 666.00 666.00 666.00 666.00 666.40 666

SD 0.00 1.60 0.00 0.00 0.00 0.00 2.19

la02 Vm 660.63 682.83 663.90 663.03 667.50 660.70 678.13 655

SD 6.83 9.37 6.90 7.25 4.81 6.30 13.71

la03 Vm 595.97 614.07 600.73 606.73 602.80 600.63 612.20 590

SD 6.17 5.84 7.50 7.66 6.04 7.02 6.17

la04 Vm 608.97 632.30 611.90 609.23 609.90 609.60 625.53 597

SD 9.12 8.60 6.72 6.91 6.26 6.72 9.63

mt10 Vm 979.00 1044.47 993.17 988.17 1006.07 989.70 1033.63 930

SD 18.29 21.41 16.08 23.74 22.99 18.49 23.04

mt20 Vm 1213.03 1320.63 1236.27 1235.47 1284.80 1237.97 1309.93 1165

SD 24.72 21.17 30.23 22.24 24.45 27.46 30.89
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Table 7 Best methods
according to t-test la01 la02 la03 la04 mt10 mt20

ANHGA ANHGA ANHGA ANHGA ANHGA ANHGA

CM SCGA RCS SCGA

RCS RCS SCGA CM

RCS_PSM CM RCS_PSM

SCGA CM

QHFC

NIT

Table 8 Set of parameters for optimize the Vm

Method Values of parameters for:

ANHGA RWS σshare = {20, 30} B = {1}
TS σshare = {20, 30, 40} B = {1}

NIT RWS B∗ = {0} N∗ = {0.2} I = {0}
RWS B∗ = {0.1} N∗ = {0.2} I = {0}
RWS B∗ = {0.2} N∗ = {0} I = {0}
TS B∗ = {0.1} N∗ = {0.2} I = {0}
TS B∗ = {0.2} N∗ = {0.2} I = {0}

CM RWS σshare = {10} k = {1}
RCS σshare = {10} M = {100}
RCS_PSM σshare = {10} M = {100}
SCGA SRS with σshare = {20} for: la01, la02, la03, la04 and la05

TS with σshare = {40} for: mt10 and mt20

QHFC N = 2000 L = 3 γ = {0.6, 0.8}
N = 2000 L = 5 γ = {1}
N = 1500 L = 5 γ = {1}
N = 1500 L = 3 γ = {0.6, 1.0}
N = 1000 L = 3 γ = {0.8, 1.0}
N = 500 L = 3 γ = {1.0}

number of optima of 30 repetitions for each combination of
parameters values (Nmo) has been calculated, and the best
Nmo for each method in different instances are summarized
in Table 9. For mt10 and mt20, we have to run 3 million iter-
ations to obtain the optimum in some methods. In the rest
of the instances, the experiments have been carried out with
the same conditions as described in Sect. “Parameters and
measures”. In some experiments we have not obtained any
run with optima and, therefore, there is not data to calculate
the average (pointed out with a *). In other experiments we
have obtained too few runs with optima and Nmo is calcu-
lated with few data for a suitable statistical study (pointed
out with a **).

The maximum number of global optima obtained in each
run is the highest value between the number of different
global optima of the problem and the population size. As
we can see, the population size limits the number of differ-

ent optima to be obtained in every run (in this case this limit
is 100 optima per run) for la01, la02, la03, la04 and la05
instances. For mt06 instance, the number of optima to reach
is limited to 52 because this is the number of different global
optima known (42 obtained in Pérez et al. (2003) and 10 new
optima found in this work). Thus, considering the multi-solu-
tion based efficacy the best methods are RCS, RCS-PSM and
SCGA.

The parameter sets which reach the best performance for
all instances (from the statistical point of view) are shown in
Table 10.

The conclusions on this study are the following:

• In NIT the study of interferences (I = 0) and the elimi-
nation of niches (N∗ = 0) should not be carried out.

• In CM, RCS, RCS_PSM and SCGA the best value of the
niche radius is 0(σ share = 0). Therefore, every solution is
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Table 9 Multi-solution based efficacy Nmo (*) without data and (**) few values

la01 la02 la03 la04 la05 mt06 mt10 mt20

ANHGA 30.54 16.86 12.40 19.50 39.73 11.70 2.22* 1**

NIT 8.76 7.00 * * 13.03 8.22 * *

CM 79.93 79.75 76** 32** 82.22 49.30 1** 1**

RCS 100.00 100.00 * 50** 100.00 49.67 1** 1**

RCS_PSM 99.90 99.95 * 50** 100.00 48.63 * *

SCGA 93.37 99.00 95** 94** 98.93 48.07 * *

QHFD 11.12 12** 4** 9** 75.10 13.10 * *

Table 10 Set of parameters for Nmo

Method Values of parameters

ANHGA σshare = {10}; B = {1}; RW S, T S

NIT RW S; B∗ = {0.1}; N∗ = {0}; I = {0}
CM σshare = {0}; k = {1}; SRS and RW S

RCS σshare = {0}; M = {100}
RCS_PSM σshare = {0}; M = {100}
SCGA σshare = {0}; SRS and T S

QHFC N = {1000, 1500, 2000}; L = 3; γ = {1}

a niche. For RCS and RCS_PSM the elite set is formed by
all different solutions of the initial population. For SCGA
all different solutions of the initial population of each
generation are seeds of their own niche. In the replace-
ment process, the common solutions of initial and chil-
dren populations survive, and the worst solutions created
in this iteration are substituted by seeds without copies in
children population. In these methods, this radius causes
slower convergence and higher diversification, i. e. poor
performance but the highest multi-solution based efficacy.

• QHFC needs few populations with large sizes (L = 3 and
γ = 1) to find the highest number of different optima but
with slow convergence.

We point out that the best value of radius is 0, which is
a surprising result. This radius causes slower convergence
and higher diversification, i. e. poor performance but highest

multi-solution based efficacy. On the other hand, again, the
best methods have the same type of niches “memory”. To
obtain good final solutions and a high number of different
optima the replacement process maintains in generation t+1
the best niches of previous generations together with the new
created niches in generation t.

A statistical study of the number of global optima is not
possible in the instances la02, la03 and la04 because the ana-
lyzed methods obtain very few runs with optima (see * and
** in Table 9). For this reason, for the better methods: RCS,
RCS_PSM, SCGA, CM and ANHGA, we have carried out
all the necessary runs to achieve 30 runs with optima for each
combination of parameters. The results of the best average
values of Nmo are summarized in Table 11 but now, we have
included a new column (PE ) to report the success percentage,
i. e. the number of runs with optima divided by the number
of total runs. The new results confirm the aforementioned
conclusion, and the sets of values for the parameters are the
same.

Diversity: exploration and exploitation

In this section we analyze the connection between the dif-
ferent parameter values and the distribution of solutions on
the solution space. To do this, we have worked out the aver-
age distance between the found optima (Dm). Diversity can
be understood as exploration or exploitation. On one hand,
exploration of the search space is achieved with optima which
belong to different areas (Dm is large). On the other hand,

Table 11 Nmo for large number of trials

la02 la03 la04

Nmo PE Nmo PE Nmo PE

RCS 98.70 0.16 94.02 0.04 99.58 0.03

RCS_PSM 92.80 0.05 87.60 0.01 87.38 0.05

SCGA 86.09 0.09 91.5 0.01 95.00 0.01

CM 75.44 0.19 71.23 0.04 72.33 0.03

ANHGA 16.72 0.26 11.63 0.08 11.65 0.12
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Table 12 Relationship between
Dm and values of parameters Variable parameter Connection

ANHGA σshare ↑ σshare ↑ Dm

CM k, σshare ↑ σshare with ↓ k ↑ Dm

RCS σshare ↑ σshare ↑ Dm

RCS_PSM σshare ↑ σshare ↑ Dm

SCGA σshare ↑ σshare ↑ Dm

QHFC N , L , γ ↑ N and ↓ L with γ = {1} ↑ Dm

↓N and ↑ L with γ = {0.6} ↓ Dm

Table 13 Values for Dm (for la05)

Parameters

ANHGA σ share= {0} σ share= {10} σ share= {20} σ share= {30} σ share= {40}
17.60 29.13 30.51 32.32 34.46

CM σ share= {0}k = {10} σ share= {30}k = {1} σ share= {40}
24.08 36.24 erratic

RCS σ share= {0} σ share= {10} σ share= {20} σ share= {30} σ share= {40}
28.11 31.59 34.55 37.38 erratic

RCS_PSM σ share= {0} σ share= {10} σ share= {20} σ share= {30} σ share= {40}
24.23 30.88 34.19 37.09 41.33

SCGA σ share= {0} σ share= {20} σ share= {40} σ share= {60} σ share= {80}
28.57 32.08 34.42 36.55 erratic

QHFC N= 500 L= 8 γ= 0.6 N= 2000 L= 3 γ= 1

16.52 32.15

in a search of exploitation the found optima belong to the
same area (Dm is very short). The relationship between the
distance and the parameter values are shown in Table 12.

Only the reported parameters have influence on the value
of the distance, the rest do not have influence. In Table 13
we quantify these results (Dm) for different values of param-
eters (σshare, N , L , and γ ) for the la05 instance. Note that
NIT is not reported in both Tables 12 and 13 because the
same distance is obtained (about 37) for all combination of
the different parameter values (N*, B*).

As we expected, the radius niche (σshare) has a great influ-
enceondiversity. If the radius is larger (↑ σshare), thedistance
between solutions is greater (↑ Dm). Therefore, if we want to
explore and obtain solutions distributed in the landscape, we
have to use a larger radius. On the contrary, it is better to use
a smaller radius for a more focused search. If the radius is too
large, only one niche will exist and all solutions belong to this
one. So, we can expect erratic behaviour (see CM, RCS, RCS-
PSM and SCGA). In CM, the number of winners in each niche
(k) and the niche radius are both important. If the number of
winners is high and the radius is low there will be few near
niches of big size in the population, and therefore, the search
is focused on an area (↓ Dm). On the contrary, with the num-
ber of winner is 1(k = 1) and high radius, there will be more

distant niches of small size in the population, and the explora-
tionwillbe large. InQHFCwhenthepopulation isdivided into
few large subpopulations (N = 2000; L = 3; γ = 1), there
will be exploration of the search space (↑ Dm). If there are
many small size subpopulations (N = 500; L = 8; γ = 0.6)

the optima will be closer (exploitation).

Conclusions

In this paper, we have compared the most recent MMGAs
for the difficult real problem JSSP. Each MMGA has been
adapted to the JSSP finding the best suitable parametriza-
tion of each method. The JSSP is a perfect testing-ground
for MMGAs because it is NP-hard and its landscape has dif-
ferent global optima. This lets us appreciate the impact of
the different parameter values on the results in terms of effi-
cacy, multi-solution based efficacy and diversity. Very few
works are focused on obtaining multiple different optima of
the JSSP, but this can provide competitive advantages in this
changing world.

From the point of view of efficacy, we have found that
the most appropriate MMGAs is ANHGA in mt10 and mt20
(in general for instances of large size and high difficulty),
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but ANHGA, CM, and SCGA in smaller size instances such
as mt06, la01, la02, la03, la04 and la05. We have statisti-
cally checked the importance of a suitable set of values for
the different parameters. We have proved by t-test that these
sets are robust and reliable, remaining the same for all ana-
lyzed instances. Particularly, we can see that the ANHGA
with replacement value (B) equal to 1 has the best efficacy.
With this value, the parent and children solutions are ordered
by quality and N individuals with the highest quality survive
to form the new population of next generation. In the case
of RCS the best value of elite set (M) is 100 (the same as
the population size) and the competition set for replacement
is formed for parents and children. In the SCGA all niches
(of parent and children population) are represented by a seed
from each of them in the next population. The elitism pro-
cess of the CM, the best parent niches survive along with new
children niches.

On the other hand, in all these algorithms, in the gener-
ation t+1 there are niches of the generation t (from the sur-
viving parents) and new niches (from new created solutions
by crossover and mutation). Hence, this type of replacement
process adds memory to the search which allows us to main-
tain good potential niches from generation to generation. We
think that this type of replacement process is very good for
multi-modal problems, and is the distinctive characteristic to
improve the performance. We think this is the key to improve
the performance of MMGAs in JSSP in the future.

From the point of view of multi-solution based efficacy,
we point out that the best value of radius is 0, which is
a surprising result. This radius causes slower convergence
and higher diversification, poor performance and the highest
multi-solution based efficacy.

And from the point of view of diversity, radius (which
defines the size of the niches) has a great influence. If the
value of the radius is small, there are many niches of small
sizes. Then, the number of optima is high (high multi-solution
based efficacy) and they are near each other. On the contrary,
if the value of the radius is large, there are less but broad
niches, and few different optima (low multi-solution based
efficacy) which are far from each other.
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Appendix

A.1. Flowchart of adaptive niche hierarchy genetic
algorithm

See Fig. 7

A.2. Process for the niche identification technique (NIT)

1. The best solution is the centre of the first niche
(k = 1).

2. Calculating the distance of the rest of the solutions of the
population regarding this centre and sorting from lowest
to highest with respect to this distance.

3. Calculating value β j+1 = Fj+1−Fj
Fmax−Fmin

, being Fj the qual-
ity of the individual j, Fj+1 the quality of the individual
whose distance is the next highest to individual j in the
sorted list, Fmax and Fmin the maximum and minimum
quality of the population respectively.

4. Comparing β j+1 with a maximum permitted value called
β∗.

a. If β j+1 < β∗ individual j+1 will be marked as
belonging to niche k. Go to step 3 with the following
individual in the list.

b. If β j+1 > β∗ individual j will be the border of the
niche establishing the radius of this niche (the dis-
tance between individual j and the centre k). Indi-
vidual j+1 will belong to different niche. Go to step
5.

5. Sorting out according to the quality of the population
of unmarked individuals. The best unmarked individual
will be the centre of the following niche (k+1). Go to
step 2.

6. Once niches are identified, those than have a size less
than parameter N* are deleted.

7. And finally, a study on niche interferences is performed.
Graphically, both possible interferences are represented
in Fig. 8.

Rnew = R1 × 3

√
R2

R1
, L∗ = R2

R1 + R2
× L and

Ri−new = Ri

R1 + R2
× L with i = 1, 2

8. The following sharing fitness is applied in selection:

fik = fi

Nk
with Nk the size of niche k,

or if the individual i does not belong to any niche:

f j = f j
1
m × ∑m

k=1 Nk
with m the number of niches

9. In the reproduction process a mating restriction strategy
is implemented so that only individuals of the same niche
can reproduce.
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Random generation

Evaluation

fi

Sharing fitness process

fi ⇒ fi
*

for (i=1 to N)
for (j=1 to N )

if (d(i,j)< share)
sh(i)=sh(i)+sh(i,d(i,j)) 

endif
endfor
Ci(t)=sh(i)/N
fi*=fi/Ci(t)

endfor

Selection Process

with fi
*     P(t)

Adaptive 
Recombination  P*(t)

Evaluation   fi ⇒ fi
*

P(t)+P*(t)

Evaluation   fi

Population P(t)

t = 0

t =t+1
for (i=1 to 2N)

for (j=1 to 2N)
if (d(i,j)< share)

sh(i)=sh(i)+sh(i,d(i,j)) 
endif

endfor
Ci(t)=sh(i)/2N
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endfor
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Fig. 7 Adaptive niche hierarchy genetic algorithm. (B = beta in the text)

First Interference

R1R2

L

L*
Rnew

R1R2

L

Second Interference

R2-new

R1-new

Fig. 8 Analysis of interferences. Source (Lin and Wu 2002)

10. Lastly, a modified elitism is applied in the substitution.
All the centres of the identified niches are reserved for
the next generation.

A.3. Flowchart of clearing method (CM)

See Fig. 9

A.4. Flowchart of restricted competition selection (RCS)

See Fig. 10

A.5. Process of local search in restricted competition
selection with pattern search method (RCS-PSM)

For each solution of the Elite Set, the next local search method
is applied (Giffer and Thompson 1960):

1. Build the set of sequential operations R that is initially
going to contain the first operation of each job.

2. Estimate the shorter due date for operations that make
up R, calculating C∗ = min(Cr )∀r ∈ R. The operation

with the C* determines the machine M*, in case of draw
between machines it is randomly selected among them.

3. Make a set of conflict S with the necessary pieces of
machine M*.

4. Select one of the operations of S to arrange in sequences.
In case of draw the sequence obtained by the GAs is
selected.

5. Return to step 1.

A.6. Process of species conserving genetic algorithm
(SCGA)

The general structure of the SCGA is very similar to a simple
GA, and can be summarized in the following steps:

1. P(t)
2. Evaluate P(t)
3. Identify species seeds Xs

4. Select P(t + 1)

5. Crossover and Mutate P(t + 1)

6. Evaluate P(t + 1)

7. Conserve species form Xs in P(t + 1)

8. t = t + 1, go back to step 3.

Next we will explain steps 3 and 7 more thoroughly.

Steps 3:

1. P(t) is arranged from highest to lowest.
2. The best individual is the seed of the first species, and

therefore the first component of set Xs .
3. If the distance of the rest of individuals in the arrange-

ment is longer than σshare/2 from all seeds contained to
the moment in Xs , this individual will be a new seed and
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Fig. 9 Clearing method

Elitism

Sort P(t)
numberWini=1 ∀ i=1 to N
for (i=1 to N)

if (fi>0)
numberWini=1
for (j=i+1 to N)

if ((fj>0)&(d(i,j)< share)
if (numberWinj< )

numberWinj++
else

fj=0
endif

endif
endfor

endif
endfor

Random generation

Evaluation  fi

Clearing process

P’(t)
Replacement

Selection Process

with P’(t)
Recombination

Evaluation   fi

Population P(t)

t = 0

t =t+1

Initial Population P(t)
N individuals
Generation t

Select 2 parents 

Randomly without Replacement
Cross and Mutate

Repeat N/2 times

New Population 

N Individuals

Elite Set

M Individuals

Competition Set C(t)

N+M Individuals

Elite_Function (M, P(t), N)

Elite_Function (N, C(t), N+M)

t+1

Fig. 10 Restricted competition selection

therefore will be joined to Xs . If not, the solution is not
included.

4. With Xs population is classified into different identified
species. An individual j will belong to a species which
seed is xi if its distance d( j, xi ) is smaller than σshare/2,
if not this individual does not belong to any specie.

Step 7:

1. The individuals of P(t + 1), with a distance to any seed
of Xs longer or equal to σshare/2, will be marked. In the
end, the marked individuals will belong to some species
and the unmarked individuals will not belong to any of
the species detected. Also, in Xs there will be seeds with
species in P(t +1) and others where this correspondence
has not been produced.

2. In each species the seed will replace the solution with
the worst quality.

3. Seeds without species will replace the individuals with
the worst quality among the unmarked ones.

A.7. Process of quick hierarchical fair competition (QHFC)

The structure of quick hierarchical fair competition is:

1. Random generation.
2. The population P(t) is divided into N subpopulation by

the size factor γ .
3. The threshold of minimal quality for each subpopulation

is established.

The next steps are to be repeated:

4. BreedTopFreq. BTF generations are produced using
deterministic crowding in the top level group. If dur-
ing these generations there are noprogressGen (NPG)
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generations without improvement the process is called
import_from_below with parameters (percentRefill, 0)
(step 8). Whereas, step 5 will be performed if improve-
ment is produced.

5. Potency testing. Two individuals are randomly selected,
then crossed, mutated and evaluated, repeating catchup-
Gen (CG) evaluations. This is done in all the subsets,
except in the top level. If there are detectExportNo (DEN)
candidate individuals in all levels to be exported, then it
will be considered that this process has been carried out
with success. The exportation of individuals is performed
by checking their quality and the ranges of minimum
quality thresholds, each individual will be moved to its
own specie.

6. In the case of success, if there is a gap in any level that is
not filled after performing the potency test, let’s assume
in level l with g gaps, we will have to turn to the pro-
cess import_from_below with parameters (g, l), step 8.
If there are no gaps and the test has been performed with
success then go back to step 4.

7. If in some level (l) the test has not been successfully per-
formed go to step 8 with parameters (percentRefill, l).
After a complete generation of deterministic crowding
is carried out with all of the population in this level and
go back to step 4.

8. Import_from_below with parameters (m, n). m will indi-
cate the number of individuals that need to be randomly
selected from level n+1 and be exported to level n. If dur-
ing the procedure a gap is required to be filled, no individ-
ual has to be replaced. On the contrary, individuals that
need to be replaced will be randomly selected (except the
best one and those that have just been imported). Repeat
step 8 with parameter (m, n + 1) until the lowest level
is reached, where the gaps will be filled with individuals
randomly generated.
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