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become a relevant topic in the area of Machine Learning.

The aim of this work is to improve the behaviour of fuzzy rule based classification sys-
tems (FRBCSs) in the framework of imbalanced data-sets by means of a tuning step. Spe-
cifically, we adapt the 2-tuples based genetic tuning approach to classification problems
showing the good synergy between this method and some FRBCSs.

Our empirical results show that the 2-tuples based genetic tuning increases the perfor-
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Tuning

Genetic algorithms mance of FRBCSs in all types of imbalanced data. Furthermore, when the initial Rule Base,
Genetic Fuzzy Systems built by a fuzzy rule learning methodology, obtains a good behaviour in terms of accuracy,
Imbalanced data-sets we achieve a higher improvement in performance for the whole model when applying the

genetic 2-tuples post-processing step. This enhancement is also obtained in the case of
cooperation with a preprocessing stage, proving the necessity of rebalancing the training
set before the learning phase when dealing with imbalanced data.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

There are many tools in the context of Machine Learning for solving a classification problem. One of them, known as fuzzy
rule based classification systems (FRBCSs) [43], has the advantage of being easily interpretable by the end user or the expert.
The disadvantage of these systems is their lack of accuracy when dealing with some complex systems, i.e. high dimensional
problems, when the classes are overlapped or in the presence of noise, due to the inflexibility of the concept of linguistic
variables, which imposes hard restrictions on the fuzzy rule structure [9].

In the specialized literature we can find different proposals to increase the accuracy of linguistic fuzzy systems, both ap-
plied to modeling and classification problems [1,12,21]. These approaches try to induce better cooperation among the rules
by acting on one or two different model components: the fuzzy partition parameters stored in the Data Base (DB) and the
Rule Base (RB).

To ease the genetic optimization of the DB membership functions (MFs), a new linguistic rule representation model was
proposed in [2]. It is based on the linguistic 2-tuples representation [40] that allows the lateral displacement of a label
considering a unique parameter. This way of working involves a reduction in the search space that eases the derivation of
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optimal models. In [2,3] the authors determined the high potential of this approach in regression problems, and our inten-
tion is to apply this genetic tuning to classification with imbalanced problems.

The problem of imbalanced data-sets [ 14], occurs when one class, usually the one that contains the concept to be learnt (the
positive class), is underrepresented in the data-set. Addressing the class imbalance problem is a current challenge of the Data
Mining community [72], and we must emphasize the significance of this situation since such types of data appears in most of
the real domains of classification, i.e. risk management [42], medical diagnosis [54] and face recognition [52] among others.

Most learning algorithms obtain a high predictive accuracy over the majority class, but predict poorly over the minority
class [67]. Furthermore, the examples of the minority class can be treated as noise and they might be completely ignored by
the classifier. There are studies that show that most classification methods lose their classification ability when dealing with
imbalanced data [47,57].

The aim of this study is to improve the results obtained by FRBCSs in imbalanced data-sets by means of the application of
the 2-tuples based genetic tuning. We want to enhance the performance of our fuzzy model to make it competitive with C4.5
[59], a decision tree algorithm that presents a good behaviour in imbalanced data-sets [55,61,62], and with Ripper [17], a
traditional and accurate rule based classifier algorithm. We will also show that we can obtain a fuzzy classification model
with a lower complexity than the standard interval rule learning algorithms, together with an intrinsic higher interpretabil-
ity because of the use of fuzzy labels, as we have stated at the beginning of this section.

In this paper we use two learning methods in order to generate the RB for the FRBCS. The first one is the method proposed
in [16], that we have named the Chi et al.’s rule generation. The second approach is defined by Ishibuchi and Yamamoto in
[45] and it consists of a Fuzzy Hybrid Genetic Based Machine Learning (FH-GBML) algorithm.

In our first study on the topic [33], we analysed the behaviour of FRBCSs looking for the best configuration of the fuzzy
components and the synergy with preprocessing techniques to deal with the problem of imbalanced data-sets. According to
the decisions taken in that work, in this paper we will use triangular membership functions for the fuzzy partitions and rule
weights in the consequent of the rules. We will study the use of the 2-tuples tuning directly over the original data-sets using
the appropriate measure of performance to guide the search, but we will also apply a re-sampling procedure as a solution at
the data level to deal with the imbalance problem, specifically using the “Synthetic Minority Over-sampling Technique”
(SMOTE) [13] to prepare the training data for the learning process.

The rest of this paper is organized as follows: In Section 2, we present the imbalanced data-set problem, describing the
preprocessing technique used in our work, the SMOTE algorithm, and discussing the evaluation metrics. In Section 3, we de-
scribe the fuzzy rule learning methodologies used in this study. Next, Section 4 shows the significance of the tuning of the
fuzzy systems and introduces the 2-tuples tuning approach and the evolutionary algorithm that tunes the FRBCS. In Section
5, we include our experimental analysis in imbalanced data-sets with different degrees of imbalance, where we compare the
FRBCSs with 2-tuples based genetic tuning with Ripper and C4.5, in order to validate our results. In Section 6, some conclud-
ing remarks and suggestions for further work are made. Finally, we include an appendix with the detailed results for the
experiments performed in the experimental study.

2. Imbalanced data-sets in classification

In this section, we will first introduce the problem of imbalanced data-sets. Then, we will describe the preprocessing tech-
nique we have applied in order to deal with the imbalanced data-sets: the SMOTE algorithm. Finally, we will present the
evaluation metrics for this type of classification problem.

2.1. The problem of imbalanced data-sets
In some classification problems, the number of instances of every class is different. Specifically when facing a data-set with

only two classes, the imbalance problem occurs when one class is represented by a large number of examples, while the other
is represented by only a few [14].
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Fig. 1. Example of the imbalance between classes: (a) small disjuncts and (b) overlapping between classes.
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The problem of imbalanced data-sets is extremely significant [72] because it is implicit in most real world applications,
such as satellite image classification [64], risk management [42], protein data [58] and particularly in medical applications
[49,54,56]. It is important to point out that the minority class usually represents the concept of interest, for example patients
with illnesses in a medical diagnosis problem; while the other class represents the counterpart of that concept (healthy
patients).

Standard classifier algorithms have a bias towards the majority class, since the rules that predict the higher number of
examples are positively weighted during the learning process in favour of the accuracy metric. Consequently, the instances
that belong to the minority class are misclassified more often than those belonging to the majority class. Another important
issue related to this type of problem is the presence of small disjuncts in the data-set [66] and the difficulty most learning
algorithms have in detecting those regions. Furthermore, the main handicap in imbalanced data-sets is the overlapping be-
tween the examples of the positive and the negative class [36]. These facts are depicted in Fig. 1a and b, respectively.

In the specialized literature, researchers usually manage all imbalanced data-sets as a whole [8,10,15]. Nevertheless, in
this paper we will organize the different data-sets according to their degree of imbalance using the imbalance ratio (IR)
[55], which is defined as the ratio of the number of instances of the majority class and the minority class.

A large number of approaches have been previously proposed to deal with the class-imbalance problem. These ap-
proaches can be categorized in two groups: the internal approaches that create new algorithms or modify existing ones
to take the class-imbalance problem into consideration [8,28,70,71] and external approaches that preprocess the data in or-
der to diminish the effect of their class imbalance [10,30]. Furthermore, cost-sensitive learning solutions incorporating both
the data and algorithmic level approaches assume higher misclassification costs with samples in the minority class and seek
to minimize the high cost errors [25,63,73].

The great advantage of the external approaches is that they are more versatile, since their use is independent of the clas-
sifier selected. Furthermore, we may preprocess all data-sets beforehand in order to use them to train different classifiers. In
this manner, the computation time needed to prepare the data is only required once.

In our previous work on this topic [33], we analysed the cooperation of some preprocessing methods with FRBCSs, show-
ing a good behaviour for the over-sampling methods, especially in the case of the SMOTE methodology [13]. In accordance
with these results, we will use the SMOTE algorithm in this paper in order to deal with the problem of imbalanced data-sets,
which is detailed in the next subsection.

2.2. Preprocessing imbalanced data-sets. The SMOTE algorithm

As mentioned before, applying a preprocessing step in order to balance the class distribution is a positive solution to the
imbalanced data-set problem [10]. Specifically, in this work we have chosen an over-sampling method which is a reference
in this area: the SMOTE algorithm [13].

In this approach, the positive class is over-sampled by taking each minority class sample and introducing synthetic exam-
ples along the line segments joining any/all of the k minority class nearest neighbours. Depending upon the amount of over-
sampling required, neighbours from the k nearest neighbours are randomly chosen. This process is illustrated in Fig. 2, where
x; is the selected point, x;; to x;4 are some selected nearest neighbours and r; to r, the synthetic data points created by the
randomized interpolation. The implementation applied in this work uses only one nearest neighbour using the euclidean
distance, and balances both classes to the 50% distribution.

Synthetic samples are generated in the following way: Take the difference between the feature vector (sample) under
consideration and its nearest neighbour. Multiply this difference by a random number between 0 and 1, and add it to the
feature vector under consideration. This causes the selection of a random point along the line segment between two specific
features. This approach effectively forces the decision region of the minority class to become more general. An example is
detailed in Fig. 3.

In short, its main feature is to form new minority class examples by interpolating between several minority class exam-
ples that lie together. Thus, the over-fitting problem is avoided and causes the decision boundaries for the minority class to
spread further into the majority class space.

X

X
Xi5 i4

Fig. 2. An illustration of how to create the synthetic data points in the SMOTE algorithm.
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Consider a sample (6,4) and let (4,3) be its nearest neighbour.
(6,4) is the sample for which k-nearest neighbours

are being identified and (4,3) is one of its k-nearest neighbours.
Let: f1_1 =6 f2_1 =4, £2_1 - f1_1 = -2

f1. 2 =4 £22=3, f2.2 - f1.2 = -1

The new samples will be generated as

(f1°,£2°) = (6,4) + rand(0-1) * (-2,-1)

rand(0-1) generates a random number between O and 1.

Fig. 3. Example of the SMOTE application.

Nevertheless, class clusters may be not well defined in cases where some majority class examples might be invading the
minority class space. The opposite can also be true, since interpolating minority class examples can expand the minority
class clusters, introducing artificial minority class examples too deeply into the majority class space. Inducing a classifier
in such a situation can lead to over-fitting. For this reason we will also consider in this work a hybrid approach,
“SMOTE + ENN”, where the Wilson’s Edited Nearest Neighbour Rule [69] is used after the SMOTE application to remove
any example from the training set misclassified by its three nearest neighbours.

2.3. Evaluation in imbalanced domains

The measures of the quality of classification are built from a confusion matrix (shown in Table 1) which records correctly
and incorrectly recognized examples for each class.

The most used empirical measure, accuracy (1), does not distinguish between the number of correct labels of different clas-
ses, which in the ambit of imbalanced problems may lead to erroneous conclusions. For example a classifier that obtains an
accuracy of 90% in a data-set with an IR value of 9, might not be accurate if it does not cover correctly any minority class instance.

Ace — TP+ 1N (1)

~ TP+FN+FP+1TN
Because of this, instead of using accuracy, more correct metrics are considered. Specifically, from Table 1 it is possible to
obtain four metrics of performance that measure the classification quality for the positive and negative classes

independently:

o True positive rate TP, = 5 iS the percentage of positive cases correctly classified as belonging to the positive class.

o True negative rate TN, = 5y is the percentage of negative cases correctly classified as belonging to the negative class.
« False positive rate FP,,. = 5 is the percentage of negative cases misclassified as belonging to the positive class.
« False negative rate FN,,. = 7 is the percentage of positive cases misclassified as belonging to the negative class.

One appropriate metric that could be used to measure the performance of classification over imbalanced data-sets is the
Receiver Operating Characteristic (ROC) graphics [11]. In these graphics, the trade-off between the benefits (TP ) and costs
(FP,q) can be visualized, and acknowledges the fact that the capacity of any classifier cannot increase the number of true
positives without also increasing the false positives. The Area Under the ROC Curve (AUC) [41] corresponds to the probability
of correctly identifying which of the two stimuli is noise and which is signal plus noise. AUC provides a single-number sum-
mary for the performance of learning algorithms.

The way to build the ROC space is to plot on a two-dimensional chart the true positive rate (Y-axis) against the false po-
sitive rate (X-axis) as shown in Fig. 4. The points (0,0) and (1,1) are trivial classifiers in which the output class is always pre-
dicted as negative and positive respectively, while the point (0, 1) represents perfect classification. To compute the AUC we
just need to obtain the area of the graphic as:

PRE: TPm; — FPre @

3. Fuzzy rule based classification system learning methods

Any classification problem consists of m training patterns x, = (Xp1,...,Xp), p = 1,2,...,m from M classes where x,; is the
ith attribute value (i = 1,2,...,n) of the pth training pattern.
In this work we use fuzzy rules of the following form for our FRBCSs:

Table 1
Confusion matrix for a two-class problem.
Positive prediction Negative prediction
Positive class True positive (TP) False negative (FN)

Negative class False positive (FP) True negative (TN)
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Fig. 4. Example of an ROC plot. Two classifiers are represented: the solid line is a good performing classifier whereas the dashed line represents a random
classifier.

Rule R; : If x; is Aj and... and x, is A, then Class = C; with RW; (3)

where R; is the label of the jth rule, x = (x;,...,x,) is an n-dimensional pattern vector, Aj is an antecedent fuzzy set, C; is a
class label, and RW; is the rule weight [44,74]. We use triangular MFs as antecedent fuzzy sets.

In order to build the RB, we have chosen two fuzzy learning methods: the Chi et al.’s rule generation method [16] and the
FH-GBML algorithm [45]. The former has been selected as a classical and simple FRBCS, following the same scheme as our
previous works [31-33]. The latter is a recent proposal that presents a good behaviour in standard classification, and our aim
is to analyse whether it is accurate for imbalanced data-sets. In the following subsections we will describe these procedures.

3.1. Chi et al. approach

This FRBCSs design method is an extension of the well-known Wang and Mendel method [65] to classification problems.
To generate the fuzzy RB, it determines the relationship between the variables of the problem and establishes an association
between the space of the features and the space of the classes by means of the following steps:

1. Establishment of the linguistic partitions. Once the domain of variation of each feature A; is determined, the fuzzy partitions
are computed.
2. Generation of a fuzzy rule for each example X, = (X1, ..., Xpn, Cp). To do this it is necessary:
2.1 To compute the matching degree p(x,) of the example to the different fuzzy regions using a conjunction operator
(usually modeled with a minimum or product T-norm).
2.2 To assign the example x, to the fuzzy region with the greatest membership degree.
2.3 To generate a rule for the example, whose antecedent is determined by the selected fuzzy region and whose con-
sequent is the label of class of the example.
2.4  To compute the rule weight.

We must remark that rules with the same antecedent can be generated during the learning process. If they have the same
class in the consequent we just remove one of the duplicated rules, but if they have a different class only the rule with the
highest weight is kept in the RB.

3.2. Fuzzy Hybrid Genetic Based Machine Learning rule generation algorithm

Different Genetic Fuzzy Systems have been proposed in the specialized literature for designing fuzzy rule based systems
in order to avoid the necessity of linguistic knowledge from domain experts [18,37,50,51].

The basis of the algorithm described here [45], consists of a Pittsburgh approach where each rule set is handled as an indi-
vidual. It also contains a Genetic Cooperative-Competitive Learning (GCCL) approach (an individual represents a unique
rule), which is used as a kind of heuristic mutation for partially modifying each rule set, because of its high search ability
to efficiently find good fuzzy rules.

The system defines 14 possible linguistic terms for each attribute, as shown in Fig. 5, which correspond to Ruspini’s strong
fuzzy partitions with two, three, four, and five uniformly distributed triangular-shaped membership functions. Furthermore,
the system also uses “don’t care” as an additional linguistic term, which indicates that the variable matches any input value
with maximum matching degree.

The main steps of this algorithm are described below:

Step 1: Generate Ny, rule sets with Ny fuzzy rules.
Step 2: Calculate the fitness value of each rule set in the current population.
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Fig. 5. Four fuzzy partitions for each attribute membership function.

Step 3: Generate (Np,, — 1) rule sets by selection, crossover and mutation in the same manner as the Pittsburgh-style algo-
rithm. Apply a single iteration of the GCCL-style algorithm (i.e., the rule generation and the replacement) to each of
the generated rule sets with a pre-specified probability.

Step 4: Add the best rule set in the current population to the newly generated (N, — 1) rule sets to form the next
population.

Step 5: Return to Step 2 if the pre-specified stopping condition is not satisfied.

Next, we will describe every step of the algorithm:

o Initialization: N, training patterns are randomly selected. Then, a fuzzy rule from each of the selected training pat-
terns is generated by choosing probabilistically (as shown in (4)) an antecedent fuzzy set from the 14 candidates
By (k=1,2,...,14) (see Fig. 5) for each attribute. Then each antecedent fuzzy set of the generated fuzzy rule is
replaced with don’t care using a pre-specified probability Puone care-

M, (Xpi)
Pdon/ care (Bk) = (4)
t Zj]:41 Mg, (Xpi)

o Fitness computation: The fitness value of each rule set S; in the current population is calculated as the number of cor-
rectly classified training patterns by S;. For the GCCL approach the computation follows the same scheme.

e Selection: It is based on binary tournament.

e Crossover: The substring-wise and bit-wise uniform crossover are applied in the Pittsburgh-part. In the case of the
GCCL-part only the bit-wise uniform crossover is considered.

e Mutation: Each fuzzy partition of the individuals is randomly replaced with a different fuzzy partition using a pre-
specified mutation probability for both approaches.

We must point out that we have used a modification of the fitness function in order to deal directly with imbalanced data.
In the case of the Pittsburgh approach, instead of simply using the number of correctly classified patterns, we have computed
the AUC measure in order to obtain a good performance for both classes.

4. Genetic tuning of the fuzzy rule based classification systems

The main objective of this work is to improve the performance of FRBCSs in the framework of imbalanced data-sets by
means of a tuning approach based on 2-tuples, stressing the positive synergy between this genetic tuning and the FRBCSs
in this specific scenario. This methodology consists of refining a previous definition of the DB once the RB has been obtained
[4,46,48]. The tuning introduces a variation in the shape of the MFs that improves their global interaction with the main aim
of inducing a better cooperation among the rules [20,39]. In this way, the real aim of the tuning is to find the best global
configuration of the MFs and not to only find specific MFs in an independent way.

Another possibility, which is out of the scope of this paper, is the tuning of the Inference System parameters [23,32,53].
The use of the appropriate conjunction connectors in the Inference System can improve the fuzzy system behaviour by using
parameterised expressions, while maintaining the original interpretability associated with fuzzy systems [5,22].

In the following subsections we will first analyse the significance of the tuning step in fuzzy systems. Then, we will pres-
ent the tuning approach used in this paper, the lateral tuning approach. Finally, we will describe the evolutionary algorithm
used to learn the displacements of the fuzzy partitions.
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4.1. Significance of the tuning step

Basic linguistic fuzzy modeling methods are exclusively focused on determining the set of fuzzy rules composing the RB
of the model. In these cases, the MFs are usually obtained from expert information (if available) or by a normalization pro-
cess, and it remains fixed during the RB derivation process.

In the latter case, the fuzzy partitions are not adapted to the context of each variable, because of the limitation of the stan-
dard homogenous distribution of the fuzzy labels. Furthermore, the rule extraction method can include some rules with bad
performance, and the cooperative behaviour of the rules may not be optimal.

To solve this problem, a post-processing tuning step is used. This step includes a variation in the shape of the MFs
that improves their global interaction with the main aim of inducing better cooperation among the rules. In this way,
the real aim of the tuning is to find the best global configuration of the MFs and not only to independently find specific
MFs.

Classically, the tuning methods refine the three definition parameters that identify triangular MFs associated with the
labels comprising the DB [20,26] in order to find its best global configuration (to induce to the best cooperation among
the rules). However, in the case of problems with many variables, the dependency among MFs and the dependency among
the three definition points leads to tuning models handling very complex search spaces which affect the good performance of
the optimization methods [2].

In this work we will apply the 2-tuples based genetic tuning for classification problems, adapting the previous work on
the topic [3] in order to obtain good models of FRBCSs to enhance the performance of the initial Knowledge Base (KB).

4.2. Lateral tuning of fuzzy rule based systems

In this approach, a rule representation model based on the linguistic 2-tuples representation [40] is used. This represen-
tation allows the lateral displacement of the labels considering only one parameter (slight displacements to the left/right of
the original MFs). This involves a simplification of the search space that eases the derivation of optimal models. Furthermore,
this process of contextualizing the MFs enables them to achieve a better covering degree while maintaining the original
shapes, which results in accuracy improvements without a loss in the interpretability of the fuzzy labels.

The symbolic translation of a linguistic term is a number within the interval [-0.5,0.5) that expresses the domain of a
label when it is moving between its two lateral labels (see Fig. 6). Let us consider a set of labels S representing a fuzzy par-
tition. Formally, we have the pair, (s;, o), si €S, a; € [-0.5,0.5).

As we have said previously, this proposal decreases the tuning problem complexity, since the 3 parameters considered
per label are reduced to only 1 symbolic translation parameter. An example is illustrated in Fig. 7 where we show the sym-
bolic translation of a label represented by the pair (S,, —0.3) together with the lateral displacement of the corresponding MF.

There are two different possible methods to perform the lateral tuning, the most interpretable one, the Global Tuning of
the Semantics, and the most accurate one, the Local Tuning of the Rules:

e Global Tuning of the Semantics (GTS): the tuning is applied to the level of linguistic partition. The pair (X;, label) takes the
same tuning value in all the rules where it is considered. For example, X; is (High, 0.3) will present the same value for those
rules in which the couple “ X; is High” is initially considered. In brief, only one displacement parameter is considered for
each label in the DB. Considering this approach, the global interpretability of the final FRBS is maintained. It could be com-
pared to the classical tuning of the DB considering descriptive fuzzy rules [19], i.e., a global collection of fuzzy sets is con-
sidered by all the fuzzy rules.

e Local Tuning of the Rules (LTR): the tuning is applied at the rule level. The pair (X;, label) is tuned in a different way for each
rule, based on the quality measures associated with the tuning method. Different displacement parameters are considered
for each label in the DB depending on the rule in which this label is considered (one parameter per rule and variable). For
example, we could have the pair (X;, High) in different rules with different displacement parameters:

Rule k: X; is (High, 0.3) (more than high)
Rule j: X; is (High, —0.2) (a little lower than high)

-1 -0.5 0.5 1
l—'<—>|—|
S, S, S, S, S,
| | ;EI | |
I T T T T 1
0 1 172 3 4
A
(S,,-0.3)

Fig. 6. Symbolic translation of a label.
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-

Fig. 7. Lateral displacement of a MF.

In this case, the global interpretability is lost to some degree and, the obtained model should be interpreted from a local
point of view. In our experimental study we will apply both approaches in order to determine the behaviour of each one
of them for imbalanced data-sets.

4.3. Genetic algorithm for tuning: the CHC algorithm

Genetic Algorithms (GAs) have been widely used to derive fuzzy systems [37]. In this work, we will consider the use of a
specific GA to design the proposed learning method, the CHC algorithm [29]. The CHC algorithm is a GA that presents a good
trade-off between exploration and exploitation, making it a good choice in problems with complex search spaces. This ge-
netic model makes use of a mechanism of “Selection of Populations”. M parents and their corresponding offspring are put
together to select the best M individuals to take part in the next population (with M being the population size).

To provoke diversity in the population, the CHC approach makes use of an incest prevention mechanism and a restarting
approach, instead of the well-known mutation operator. This incest prevention mechanism is considered in order to apply
the crossover operator, i.e., two parents are recombined if their distance (considering an adequate metric) divided by two is
above a predetermined threshold, L. This threshold value is initialized as the maximum possible distance between two indi-
viduals divided by four. Following the original CHC scheme, L is decremented by one when there are no new individuals in
the population in one generation. When L is below zero the algorithm restarts the population.

The components needed to design this process are explained below. They are: coding scheme, initial gene pool, chromo-
some evaluation, crossover operator (together with the considered incest prevention) and restarting approach.

1. Coding Scheme: As two different types of tuning have been proposed (GTS and LTR), there are two different kinds of coding
schemes. In both cases, a real coding is considered, i.e., the real parameters are the GA representation units (genes). Both
schemes are presented below:

e GTS: Joint of the parameters of the fuzzy partitions. Let us consider the following number of labels per variable:
(m',m2,...,m"), with n being the number of variables. Then, a chromosome has the form (where each gene is asso-
ciated with the lateral displacement of the corresponding label in the DB),

1 2
Cr=(C11,--,C1ms €215+, Coms -+ 5l -+ -, Cppy ) -

An example of a coding scheme considering this approach is shown in Fig. 8a.
e LTR: Joint of the rule parameters. Let us consider that the FRBCS has M rules, (Ry,R»,...,Ry), with n input variables.
Then, the chromosome structure has the following form (where each gene is associated with the lateral displacement
of the corresponding label for each rule),

Cr=(C11,---sCinsC21, -+, Cans - - -, CM15 - - - » Ctn) -

An example of a coding scheme considering this approach in shown in Fig. 8b.

2. Chromosome Evaluation: The fitness function must be in accordance with the framework of imbalanced data-sets. Thus,
we will use, as presented in Section 2.3, the AUC measure, defined in (2) as:

1 + TPyare — FPrage
2

3. Initial Gene Pool: To make use of the available information, the initial FRBCS is included in the population as an initial solu-
tion. This FRBCS can be obtained from an automatic fuzzy rule learning method or from expert knowledge. In this paper,
we will use the two fuzzy rule learning algorithms described in Section 3, the Chi et al.’s approach and the FH-GBML algo-
rithm. The initial pool is obtained with the first individual having all genes with the value ‘0.0’, and the remaining indi-
viduals generated at random in [-0.5,0.5).

AUC =
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(a) Global Approach (b) Local Approach

Ry: IF X, IS L, AND X, IS M, THEN Class = C, with RW, ’ R,: IF X, IS L, AND X, IS M, THEN Class = C, with RW,

Ry: IF X, IS M, AND X, IS L, THEN Class = C, with RW, R, IF X, IS M, AND X, IS L, THEN Class = C, with RW,
Ry: IF X, IS S; AND X, IS L, THEN Class = C, with RW, Ry: IF X, IS S; AND X, IS L, THEN Class = C, with RW,

S1 M1 L1 S2 M2 L2 R, R Ry
X1 X2 X X; X X X X; L.
\_ o 1) Lo 1) ‘ /y\ ‘/\‘ ‘/\‘ ‘ H A\ ‘ ‘ 4
St M L1 S, M, L,
(o] o] of o[ ofo] oo o eo
Tuning )
Process Tuning
Process
LiS; My L,
R:!
XI S1 X? L2

Ry: IF X, IS L, AND X, IS M, THEN Class = C, with RW,.
Ry IF X, IS M, AND X, IS L, THEN Class = C, with RW,.
Ry: IF X, IS S, AND X, IS L, THEN Class = C, with RW,,.

Ry IF X, IS M, AND X, IS L, THEN Class = C, with RW,,
Ry IF X, IS S; AND X, IS L, THEN Class = C, with RW,

Ry: IF X, IS L, AND X, IS M, THEN Class = C, with RW,. ’

Fig. 8. Example of a coding scheme considering the lateral tuning and rule selection: (a) GTS (global approach) and (b) LTR (local approach).

4. Crossover Operator: We consider the Parent Centric BLX (PCBLX) operator [38], which is based on the BLX-«. Fig. 9 depicts
the behaviour of these kinds of operators.PCBLX is described as follows. Let us assume that X = (x;---x,) and
Y=Y, (*,y; €[ai,b] R, i=1,...,n), are two real-coded chromosomes that are going to be crossed. The PCBLX
operator generates the two following offspring:

e 07 =(011---01n), where o5 is a randomly (uniformly) chosen number from the interval [l} ,ul], with

I} = max{a;,x; — I;},u} = min{b;,x; + I;}, and I; = |x; — ;.
e 0, = (031 - - - 03,), where 0y is a randomly (uniformly) chosen number from the interval [, u?], with > = max{a;,y; — I;}
and u? = min{b;,y; + I;}.

On the other hand, the incest prevention mechanism will only be considered in order to apply the PCBLX operator. In our
case, two parents are crossed if their hamming distance divided by 2 is above a predetermined threshold, L. Since we con-
sider a real coding scheme, we have to transform each gene considering a Gray Code (binary code) with a fixed number of
bits per gene (BITSGENE), which is determined by the system expert. In this way, the threshold value is initialized as:

L = (#Genes - BITSGENE) /4.0

where #Genes stands for the total length of the chromosome. Following the original CHC scheme, L is decremented by one

(BITSGENE in this case) when there are no new individuals in the next generation.

5. Restarting approach: Since no mutation is performed, to get away from local optima a restarting mechanism is considered
[29] when the threshold value L is lower than zero. In this case, all the chromosomes are generated at random within the
interval [-0.5,0.5). Furthermore, the best global solution found is included in the population to increase the convergence
of the algorithm.

Fig. 9. Scheme of the behaviour of the BLX and PCBLX operators.
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We must point out that the RW associated with each fuzzy rule must be recalculated every time the chromosome is de-
codified (when performing the MF displacement), since the covering degree of the rule may vary.

5. Experimental study

In this paper, we use the IR to distinguish between two classes of imbalanced data-sets: data-sets with a low imbalance,
when the instances of the positive class are between 10% and 40% of the total instances (IR between 1.5 and 9), and data-sets
with a high imbalance, where there are no more than 10% of positive instances in the whole data-set compared to the neg-
ative ones (IR higher than 9).

We have considered 44 data-sets from the UCI repository [7] with different IR. Table 2 summarizes the data selected in
this study and shows, for each data set, the number of examples (#ExX.), number of attributes (#Atts.), class name of each
class (minority and majority), class attribute distribution and IR. This table is ordered by the IR, from low to highly imbal-
anced data-sets.

This study is divided into three parts:

e First, we will use all data-sets in order to analyse the use of a preprocessing step and its synergy with the 2-tuples
genetic tuning, contrasting the results of the two FRBCSs learning methods, that is, the Chi et al.’s algorithm and
the Ishibuchi and Yamamoto’s FH-GBML rule generation with and without tuning when learning directly from the ori-
ginal training set and when the data distribution is balanced artificially.

e Next, we will perform a global comparison among the fuzzy classification methods, and two classical learning algo-
rithms: Ripper, a well-known and accurate rule based method, and C4.5, which has shown a good behaviour in the
framework of imbalanced data-sets [55,61,62]. Both methods were run using KEEL software [6], following the recom-
mended parameter values given in the KEEL platform to configure the methods, which also correspond to the settings
used in the bibliography of these methods. The FRBCSs will be applied in their basic scheme and using the 2-tuples
based genetic tuning. Our aim is to show that the 2-tuples genetic tuning is necessary to improve the behaviour of
the simple FRBCS methods, in order to outperform Ripper and the C4.5 decision tree in imbalanced data-sets.

o Finally, we will repeat this analysis in the two groups of imbalanced data-sets previously defined. In this case, we want
to study the possible differences between both scenarios in the performance of the FRBCSs against Ripper and C4.5.

In the remainder of this section, we will first present the experimental framework and the parameter configuration for the
algorithms selected in this study. Then, we will show our empirical analysis following the outline we described above.

5.1. Experimental set-up

To develop the different experiments we consider a 5-folder cross-validation model, i.e., five random partitions of data with
a 20%, and the combination of 4 of them (80%) as training and the remaining one as test. For each data-set we consider the
average results of the five partitions.

Statistical analysis needs to be carried out in order to find significant differences among the results obtained by the stud-
ied methods [34]. We consider the use of non-parametric tests, according to the recommendations made in [24,35], where a
set of simple, safe and robust non-parametric tests for statistical comparisons of classifiers is presented. For pair-wise com-
parisons we will use Wilcoxon’s signed-ranks test [60,68].

In order to reduce the effect of imbalance, we will use the SMOTE preprocessing method [13] for all our experiments
(including the FRBCSs and Ripper). For C4.5 we will use a hybrid approach for SMOTE, SMOTE + ENN [10] that shows a po-
sitive synergy when pruning the tree [27]. In both cases, we will consider only the 1-nearest neighbour to generate the syn-
thetic samples, and balancing both classes to the 50% distribution.

We will apply the same configuration for both FRBCS approaches (Chi and FH-GBML), consisting of the product T-norm as
conjunction operator, together with the Penalized Certainty Factor approach [44] for the rule weight and FRM of the winning
rule. We have selected this FRBCS model as it achieved a good performance in our former studies on imbalanced data-sets
[33]. Because it is not clear what level of granularity must be selected for the Chi FRBCS, we will use both three and five labels
per variable.

In the case of the Ishibuchi and Yamamoto’s FH-GBML method, we consider the following values for the parameters:

Number of fuzzy rules: 5 - d rules.

Number of rule sets: 200 rule sets.

Crossover probability: 0.9.

Mutation probability: 1/d.

Number of replaced rules: All rules except the best-one (Pittsburgh-part, elitist approach), number of rules/5 (GCCL-
part).

Total number of generations: 1000 generations.

e Don’t care probability: 0.5.
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Table 2

Summary description for imbalanced data-sets.
Data-set # Ex. # Atts. Class(min., maj.) % Class(min.; maj.) IR
Data-sets with Low Imbalance (IR 1.5-9)
Glass1 214 9 (build-win-non_float-proc; remainder) (35.51,64.49) 1.82
EcoliOvs1 220 7 (im; cp) (35.00,65.00) 1.86
Wisconsin 683 9 (malignant; benign) (35.00,65.00) 1.86
Pima 768 8 (tested-positive; tested-negative) (34.84,66.16) 1.90
IrisO 150 4 (Iris-Setosa; remainder) (33.33,66.67) 2.00
Glass0 214 9 (build-win-float-proc; remainder) (32.71,67.29) 2.06
Yeast1 1484 8 (nuc; remainder) (28.91,71.09) 2.46
Vehiclel 846 18 (Saab; remainder) (28.37,71.63) 2.52
Vehicle2 846 18 (Bus; remainder) (28.37,71.63) 2.52
Vehicle3 846 18 (Opel; remainder) (28.37,71.63) 2.52
Haberman 306 3 (Die; Survive) (27.42,73.58) 2.68
Glass0123vs456 214 9 (non-window glass; remainder) (23.83,76.17) 3.19
Vehicle0 846 18 (Van; remainder) (23.64,76.36) 3.23
Ecolil 336 7 (im; remainder) (22.92,77.08) 3.36
New-thyroid2 215 5 (hypo; remainder) (16.89,83.11) 492
New-thyroid1 215 5 (hyper; remainder) (16.28,83.72) 5.14
Ecoli2 336 7 (pp; remainder) (15.48,84.52) 5.46
Segment0 2308 19 (brickface; remainder) (14.26,85.74) 6.01
Glass6 214 9 (headlamps; remainder) (13.55,86.45) 6.38
Yeast3 1484 8 (me3; remainder) (10.98,89.02) 8.11
Ecoli3 336 7 (imU; remainder) (10.88,89.12) 8.19
Page-blocks0 5472 10 (remainder; text) (10.23,89.77) 8.77
Data-sets with High Imbalance (IR higher than 9)
Yeast2vs4 514 8 (cyt; me2) (9.92,90.08) 9.08
Yeast05679vs4 528 8 (me2; mit,me3,exc,vac,erl) (9.66,90.34) 9.35
VowelO 988 13 (hid; remainder) (9.01,90.99) 10.10
Glass016vs2 192 9 (ve-win-float-proc; build-win-float-proc, (8.89,91.11) 10.29

build-win-non_float-proc,headlamps)
Glass2 214 9 (Ve-win-float-proc; remainder) (8.78,91.22) 10.39
Ecoli4 336 7 (om; remainder) (6.74,93.26) 13.84
Yeast1vs7 459 8 (nuc; vac) (6.72,93.28) 13.87
ShuttleOvs4 1829 9 (Rad Flow; Bypass) (6.72,93.28) 13.87
Glass4 214 9 (containers; remainder) (6.07,93.93) 15.47
Page-blocks13vs2 472 10 (graphic; horiz.line,picture) (5.93,94.07) 15.85
Abalone9vs18 731 8 (18;9) (5.65,94.25) 16.68
Glass016vs5 184 9 (tableware; build-win-float-proc, (4.89,95.11) 19.44
build-win-non_float-proc,headlamps)

Shuttle2vs4 129 9 (Fpv Open; Bypass) (4.65,95.35) 20.5
Yeast1458vs7 693 8 (vac; nuc,me2,me3,pox) (4.33,95.67) 22.10
Glass5 214 9 (tableware; remainder) (4.20,95.80) 22.81
Yeast2vs8 482 8 (pox; cyt) (4.15,95.85) 23.10
Yeast4 1484 8 (me2; remainder) (3.43,96.57) 28.41
Yeast1289vs7 947 8 (vac; nuc,cyt,pox,erl) (3.17,96.83) 30.56
Yeast5 1484 8 (me1; remainder) (2.96,97.04) 32.78
Ecoli0137vs26 281 7 (pp,imL; cp,im,imU,imS) (2.49,97.51) 39.15
Yeast6 1484 8 (exc; remainder) (2.49,97.51) 39.15
Abalone19 4174 8 (19; remainder) (0.77,99.23) 128.87

e Probability of the application of the GCCL iteration: 0.5. where d stands for the dimensionality of the problem (number
of variables).

Finally, we indicate the values that have been considered for the parameters of the genetic tuning:
e Population size: 50 individuals.

e Number of evaluations: 5000 - d.
¢ Bits per gene for the Gray codification (for incest prevention): 30 bits.

5.2. Study of the use of preprocessing on fuzzy rule based classification systems with 2-tuples genetic tuning

In this first part of our study, we will perform our analysis without taking into account the IR of the data-sets. Our aim
here is to analyse two different aspects:

1. The improvement obtained for FRBCSs by means of the 2-tuples genetic tuning when it is directly applied to the original
imbalanced data-sets.
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2. Whether the use of preprocessing supposes a positive synergy with the genetic tuning and enables the achievement of
more accurate results.

Table 3 shows the global average results for the FRBCS algorithms. By rows, we can observe three blocks of results, the
first two ones are related to the Chi et al.’s method (with three and five labels per variable) and the last one is related to the
FH-GBML algorithm. This table is also divided by columns into two blocks, on the left-hand side we show the results for the
original data-sets whereas on the right-hand side we show the results when we apply a preprocessing step using the SMOTE
algorithm. We stress in boldface the best results for each block, that is, for each algorithm and for the original data-sets and
preprocessing respectively. The complete table of results for all data-sets is shown in the appendix of this work.

From this table of results we can observe that the highest average value always corresponds to the tuning approach for all
FRBCSs in both cases, which suggests the goodness of this technique. We will focus in this part of the study on the results
without preprocessing, and thus in Table 4 a Wilcoxon test is shown in which we detect significant differences in favour of
the 2-tuples tuning approach for the three methods compared, which supports our previous conclusion.

We can also observe in Table 3 that, for the Chi et al.’s method without preprocessing (both with three and five labels), the
higher training results are associated to GTS rather than LTR, which includes more parameters for the tuning of the fuzzy
system. This can be due to the fact that the genetic search procedure of the LTR approach falls more easily onto a local optima
because we have a limited quality for the RB generated by the Chi et al.’s method.

Regarding the use of preprocessing, the improvement in the performance of the results in the case of the application of
SMOTE is clearly shown, with an increase from 5 to 10 points for the different approaches. The comparative graph in Fig. 10
illustrates the differences in proportion between the results for AUC in the test partitions with the original data-sets and with
preprocessing. Consequently, we will focus only on the results with SMOTE preprocessing for the remainder of this section.

Finally, we observe that there is a higher difference between the performance in training and test for the Chi et al.’s meth-
od in the case of the application of SMOTE both for GTS and LTR. This behaviour is caused by a better set of rules obtained
from the preprocessed training set, which enable a better tuning that results on a higher precision the training partitions, but
which may also cause a slight overtraining. Specifically, there is a clear over-fitting for the Chi et al.’s method with five labels
per variable, but this is due to the increasing of the granularity of the fuzzy partitions and the generation of more specific
rules for the training data. Nevertheless, we observe that for the FH-GBML algorithm there are neither a change in the dif-
ference of performance between train and test without and with preprocessing nor an accentuated overtraining such in the
case of the Chi et al.’s method. This different behaviour can be explained regarding the compactness and quality of the RB
extracted by this method, which results on a good generalisation capability both when using the original data-sets and when
applying SMOTE preprocessing.

Table 3

Table of results for FRBCSs (simple approach and with 2-tuples genetic tuning) for all data-sets. Original data-sets (none) and preprocessing (SMOTE).
Algorithm None SMOTE

AUCr, AUCry AUCr, AUCrg

Chi-3 68.18 £1.71 65.43 £ 4.50 85.56 + 1.67 81.33 £6.57
Chi-3-GTS 80.42 +2.46 74.38 £ 5.38 92.89 +1.02 83.97 +6.63
Chi-3-LTR 76.91 +2.23 70.30 +4.85 94.63 £1.03 84.39 + 6.69
Chi-5 80.75+1.63 70.61 +6.04 90.58 +0.96 80.10+6.64
Chi-5-GTS 88.65+1.28 74.06 + 6.29 94.79 £ 1.00 79.98 £6.94
Chi-5-LTR 87.05 £ 1.40 72.78 £6.31 96.59 £ 0.76 81.34+6.73
FH-GBML 78.25+2.78 73.12 £6.00 89.64 +1.42 83.80+6.46
FH-GBML-GTS 84.78 £3.42 77.40 +6.14 92.56 £ 1.16 84.56 + 6.40
FH-GBML-LTR 85.44 +£3.70 77.55 £ 5.69 92.81 +£1.41 84.65 + 6.02

Table 4

Wilcoxon test to compare the simple FRBCS approaches (R*) with the use of 2-tuples tuning (R ) with the original data-sets.
Comparison R* R p-Value
Chi-3 vs. Chi-3-GTS 52.0 938.0 0.000
Chi-3 vs. Chi-3-LTR 96.0 894.0 0.000
Chi-5 vs. Chi-5-GTS 282.5 707.5 0.008
Chi-5 vs. Chi-5-LTR 207.0 783.0 0.002
FH-GBML vs. FH-GBML-GTS 94.5 895.5 0.000

FH-GBML vs. FH-GBML-LTR 112.5 877.5 0.000
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Fig. 10. Comparative graph between the use of the original data-sets and preprocessing for the FRBCSs, with and without 2-tuples genetic tuning. The
height of the bars represents the average performance with AUC in the test partitions.

5.3. Global analysis of the 2-tuples based genetic tuning on fuzzy rule based classification systems with preprocessing

This study is divided into two parts: first, we will present a global comparison between the Chi et al.’s rule generation
method [16] and the Ishibuchi and Yamamoto’s FH-GBML [45] by contrasting them in their basic approach and using the
2-tuples based genetic tuning in both the global and local approaches. Then, we will include Ripper and C4.5 in our statistical
study to analyse the differences when comparing the FRBCS approaches with and without tuning against Ripper and C4.5. As
we have stated in the previous section, we have included the complete tables of results for all the implemented algorithms in
the appendix of this work. These results will be analysed next.

For the FRBCSs analysis we must select which granularity is preferred for the Chi method, whether three or five labels. For
this purpose, Table 5 shows the experimental results, where we show in columns the Chi et al.’s algorithm with three and
five labels, noted as Chi-3 and Chi-5, respectively. In addition, there are three different results for each method: the first row
contains the results when applying the basic scheme (Base) and the second and third rows contain the results for the global
and local 2-tuples based genetic tuning, named GTS and LTR.

Table 6 presents a Wilcoxon test where we compare the results for each approach (with the two types of genetic tuning)
using the two different numbers of fuzzy partitions. In this test, R* corresponds to the sum of ranks for the data-sets in which
the first algorithm outperformed the second, and R the sum of ranks for the opposite.

The main conclusion extracted from this table is that when we choose five labels per variable, we get a high over-fitting
for the 2-tuples based genetic tuning and, in this case, the choice of a lower level of granularity allows better results to be
achieved.

Next, we analyse the behaviour of the 2-tuples genetic tuning over all imbalanced data-sets. For this purpose, we present
in Table 7 the results of the Chi et al.’s approach (with three labels per variable) and the FH-GBML algorithm, to study the
improvement achieved in the case of the post-processing step. Now, we will include in this table the results obtained with
Ripper and the C4.5 decision tree, since we will also compare the performance of the 2-tuples genetic tuning with these well-
known algorithms. The complete results table, with the performance obtained in each data-set in the test partitions, is
shown in the next subsection.

Table 5
Results table for Chi in all imbalanced data-sets.
Approach Chi-3 Chi-5
AUCyy AUCrg AUCy, AUCry
Base 85.56 +1.67 81.33 £6.57 90.58 +0.96 80.10 + 6.64
GTS 92.89 +1.02 83.97 £6.63 94.79 £ 1.00 79.98 £6.94
LTR 94.63 +1.03 84.39 + 6.69 96.59 +0.76 81.34+£6.73
Table 6
Wilcoxon test to compare Chi using different granularity levels. R corresponds to three labels and R~ to five labels.
Comparison R* R~ p-Value
Chi-3-GTS vs. Chi-5-GTS 878.5 1115 0.000

Chi-3-LTR vs. Chi-5-LTR 840.0 150.0 0.000
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Table 7
Table of results for FRBCSs (simple approach and with 2-tuples genetic tuning) Ripper and C4.5 for all data-sets. SMOTE preprocessing is applied to FRBCSs and
Ripper. SMOTE + ENN is applied for C4.5.

Algorithm AUCr AUCrs

Chi-3 85.56 + 1.67 81.33+6.57
Chi-3-GTS 92.89 +1.02 83.97 +6.63
Chi-3-LTR 94.63 +1.03 84.39 + 6.69
FH-GBML 89.64 +1.42 83.80 + 6.46
FH-GBML-GTS 92.56 +1.16 84.56 + 6.40
FH-GBML-LTR 92.81 +1.41 84.65 + 6.02
Ripper 95.98 +0.91 83.54+6.15
C4.5 95.35+1.20 83.75+5.52

The first analysis is shown in Table 8, in which a Wilcoxon test help us to determine that in both cases (Chi and FH-GBML)
the 2-tuples tuning improves the behaviour of the simple KB, both in the global and local approaches. Therefore, we empha-
size the goodness of the 2-tuples methodology for the tuning of the MF in imbalanced data-sets, both for the whole rule set
and for each fuzzy rule.

Our intention is to show that the use of the 2-tuples genetic tuning enables the FRBCSs to become competitive and even
outperform the Ripper algorithm and the C4.5 decision tree. Thus, we show in Table 9 a comparison among Ripper, C4.5 and
the different FRBCSs approaches. We can observe in this table that, in the case of the simple FRBCSs, the Chi et al.’s algorithm
is significantly worse than Ripper and C4.5, whereas for the FH-GBML the null hypothesis of equality cannot be rejected.
Nevertheless, when the 2-tuples genetic tuning is applied for the FRBCSs, we always obtained the best ranking (except in
the case of Chi-3-GTS), and our approach is statistically better than Ripper for FH-GBML-GTS and outperforms Ripper and
C4.5 for FH-GBML-LTR with a low p-value.

Finally, we show in Table 10 the average number of rules obtained by each one of the algorithms used in this paper, which
is updated with the total number of rules extracted for every single data-set in the appendix of this work.

We can observe that, whereas the highest complexity corresponds to the Chi et al.’s method, the FH-GBML presents a sim-
ilar number of rules to the algorithms of comparison Ripper and C4.5. In fact, its number of rules is lower than that of C4.5

Table 8

Wilcoxon test to compare the simple FRBCS approaches (R") with the use of 2-tuples tuning (R ) with preprocessing.
Comparison R* R™ p-Value
Chi-3 vs. Chi-3-GTS 176.5 813.5 0.000
Chi-3 vs. Chi-3-LTR 164.5 825.5 0.000
FH-GBML vs. FH-GBML-GTS 288.5 701.5 0.018
FH-GBML vs. FH-GBML-LTR 241.0 749.0 0.003

Table 9

Wilcoxon test to compare the performance of Ripper and C4.5 (R") with the FRBCSs with and without tuning (R™) in all imbalanced data-sets.
Comparison R R p-Value
Ripper vs. Chi-3 695 295 0.020
Ripper vs. Chi-3-GTS 444.5 545.5 0.570
Ripper vs. Chi-3-LTR 390 600 0.220
Ripper vs. FH-GBML 474 516 0.804
Ripper vs. FH-GBML-GTS 352 638 0.095
Ripper vs. FH-GBML-LTR 347 643 0.084
C4.5 vs. Chi-3 701 289 0.016
C4.5 vs. Chi-3-GTS 528 462 0.700
C4.5 vs. Chi-3-LTR 415 575 0.351
C4.5 vs. FH-GBML 494 496 0.933
C4.5 vs. FH-GBML-GTS 417 573 0.363
C4.5 vs. FH-GBML-LTR 346 644 0.082

Table 10

Average number of rules table for FRBCSs, Ripper and C4.5.
Algorithm Number of rules
Chi-3 96.69 +3.47
FH-GBML 19.65 £5.71
Ripper 14.40 £1.91

C4.5 26.05 +3.66
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and it is not comparable with Ripper since this algorithm manages a decision list, which has a completely different philos-
ophy to the set of rules of the remaining approaches of this work. We conclude that the FH-GBML is a good mechanism for
imbalanced data-sets since it has a low complexity (number of rules) and achieves a good performance, which is significantly
improved by the application of the 2-tuples genetic tuning approach, as was shown during this empirical study. Further-
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more, rules with fuzzy labels are usually easier to manage by an expert rather than interval rules, which implies an addi-
tional advantage for the FRBCSs.

5.4. Analysis of the 2-tuples based genetic tuning on fuzzy rule based classification systems with preprocessing according to the

imbalance ratio

In the last part of our study, we want to analyse the behaviour of the 2-tuples genetic tuning in the two scenarios of

imbalanced data-sets proposed in this paper, i.e. data-sets with a low and a high imbalance.

Table 11
Detailed table of results for Chi et al. and FH-GBML with 2-tuples based genetic tuning. Including the results for Ripper and C4.5.
Data-set Chi-3 Chi-3-GTS Chi-3-LTR FH-GBML FH-GBML- FH-GBML- Ripper C4.5
GTS LTR
Data-sets with low imbalance (1.5 <IR<9)
Glass1 65.53+6.93  66.20+6.63 7447 +4.62  72.68+279  76.34+6.22 77.84+4.26 73.26+9.27  75.77 £3.79
EcoliOvs1 92.71+£552 9524+360 9393+434 97.02+1.80 97.02+1.80 95.98 +2.54 98.32+238  97.96+2.19
Wisconsin 89.19+1.98 93.13+0.97 9496+1.04 96.59+0.72  96.82 +0.96 96.84 +1.51 96.36 +1.55  95.45+1.99
Pima 67.66+520  72.82+532 7235+335 7340+354 7432+391 74.57 £3.75 70.10+546  71.45+3.88
IrisO 100.0 £ 0.00 100.0 £ 0.00 100.0 £ 0.00 100.0 £ 0.00 100.0 £ 0.00 100.0 £ 0.00 98.00+4.47  99.00 +2.24
GlassO 69.74+2.96  81.48 +4.05 81.35+529 81.38+3.66 80.64+3.01 83.84 +2.89 79.05+7.38  78.56+2.34
Yeast2 69.44+1.74 7124+269 7133+182 69.86+4.04 70.83+3.63 70.69 + 3.64 69.67 +2.69  71.09 +2.86
Vehicle2 85.55+3.35  92.13+2.07 92.10+1.48 89.85+2.74 92.35+4.44 93.68 +2.76 94.69+2.88  94.92 +1.61
Vehicle1l 71.40+4.67 7455+290 71.64+338  70.01+4.31 72.05 +4.27 73.14 £6.54 75.09+3.06  70.30%2.90
Vehicle3 69.51+5.07 7233+3.74 70.05+399 70.62+330 73.41+4.10 73.09 +£3.72 7198 +3.47 7444 +1.08
Haberman 60.60+4.38  59.42 +4.38 61.71+4.14 62.06+4.65 63.23+5.28 61.93 +3.36 56.41+6.19  63.09+4.07
Glass0123vs456 86.42+259  90.02+529  90.41+2.81 93.14+£392  92.84+280 92.84 +2.80 89.69+524  90.32+3.12
Vehicle0O 86.96+2.99  87.45+1.82 89.77 +1.11 88.87+3.29  92.08+2.13 92.88 +1.19 93.51+395 91.18+2.63
Ecolil 85.88+9.28 85.29+10.89 84.02+885 87.05+6.39  88.82+3.64 90.24 +3.33 86.07 +4.27  77.55+7.87
New-Thyroid2 90.60 +9.71 97.18 +4.02 96.03+5.52 98.89+1.16 96.59+6.88 99.44 +0.76 97.18+4.13  96.59+4.78
New-Thyroid1 88.33+7.05 99.17+0.76  96.31+398 9433+564 94.60+5.85 94.01 +7.59 95.20+4.88  98.02 +3.71
Ecoli2 88.26+545 87.53+530 88.53+698 86.48+629  88.59+5.88 88.26 +5.10 86.03+4.69 91.62+4.85
Segment0 95.07+0.43 98.83+0.69 99.12+0.83 97.98+1.06 98.71+0.83 99.04 +0.25 98.66+0.83  99.27 +0.60
Glass6 84.69+9.16 85.77+6.64 83.84t639 84.42+10.51 82.22+11.50 85.09+10.11 88.69+10.97 84.50%7.50
Yeast3 90.22+4.18  91.63+2.91 91.77£2.74  92.44+3.05 91.45+2.72 92.06 +3.06 89.11+0.83  88.76 +3.46
Ecoli3 87.84+4.12 91.50%5.15 90.47+538 90.27+2.63  92.25+4.05 90.90 +4.26 85.02+9.77 89.21%7.15
Page-BlocksO 81.40+3.54  89.17+1.51 86.04+855 90.67+0.96  92.76 +0.90 93.24+1.83 94.57+0.86  94.85+1.51
Mean 82.14+4.56 85.55+3.70 8546+394 85.82+348 86.72+3.85 87.25+3.42 85.76 +4.51 86.09 + 3.46
Data-Sets with High Imbalance (IR < 9)
Yeast2vs4 87.36+5.16  87.88+2.35 89.42+294  9250+2.26  93.35+2.90 93.25+3.24 87.03 +8.81 85.88 +8.78
Yeast05679vs4 79.17+566  78.65+1024 78.15+6.53  79.38+558  79.79+3.70 7747 £6.10 74.08 +5.21 76.02 +9.36
VowelO 9839+0.60 98.05+2.88 99.39+1.22 9294+3.85 96.55+2.37 96.05 +1.58 95.78+4.04 94.94+4.95
Glass016vs2 54.17+6.82 56.24+17.35 6836+11.94 59.60+844 63.60+6.73 59.67 +6.59 63.71+8.51 60.62 + 12.66
Glass2 55.30+14.48 71.31+1450 76.12+13.56 67.29+16.24 67.98+17.79 59.65+10.58 62.17+14.32 54.24+14.01
Ecoli4 91.51+7.21 92.62 +7.01 91.71+6.23 88.10+580 88.11+6.12 87.94 +6.07 88.42+10.46 83.10+9.90
shuttleOvs4 99.12+1.14 99.12+1.14 99.15%1.16 100.0 £ 0.00 100.0 £ 0.00 100.0 £ 0.00 99.97+0.07  99.97 +0.07
yeastB1vs7 80.63 +6.61 77.61+10.17 76.37+11.90 74.06+10.42 70.67+12.35 7424+12.12 65.83+9.03 70.03 + 1.46
Glass4 85.70+12.92 89.92+1091 92.51+10.52 87.67+9.62 8533+10.29 86.33+10.51 89.67+11.46 85.08+9.35
Page- 92.05+4.73 94.76+5.00 97.44+4.18 98.88+0.79 99.32+0.62 99.10+0.50 98.88+0.89  99.55+0.47
Blocks13vs4
Abalone19 63.94+932 66.32+1390 61.58+11.89 64.89+18.63 63.17+14.55 67.64+11.77 53.03+4.54 52.02+4.41
Glass016vs5 79.71+2329 85.71+21.62 86.29+21.89 86.86+24.65 87.71+21.91 87.43+21.75 94.86+2.17 81.29+24.44
shuttle2vs4 90.78+7.80 98.38+1.68  98.38 +2.61 97.95+2.92  97.95+2.92 97.95 +2.92 99.58+0.93  99.17 +1.86
Yeast1458vs7 64.65+592  69.31+6.11 65.20+9.03 58.94+11.30 63.71+7.86 64.53 +9.19 63.15+9.62  53.67 +2.09
Glass5 83.17+11.12 82.56+20.73 88.29+21.46 88.78+21.69 88.78+21.72 89.27+22.64 9329+11.19 88.29+13.31
Yeast2vs8 77.28+1036 76.09+10.10 79.35+11.40 76.11+11.36 77.30+13.45 7555+1031 8457+1234 80.66+11.22
Yeast4 83.15+2.96  82.42+4.58 78.62+7.87 79.95+599  78.70+5.43 79.86 +7.01 76.42 +9.05 70.04 + 5.65
Yeast1289vs7 77.12+6.50  70.07+8.70 71.22+630 67.13+6.86 71.44+437 70.49 +4.84 73.65+450 68.32+6.16
Yeast5 93.58 +5.11 95.90 +2.61 95.10+2.74 96.74+2.47  95.87 +3.20 95.87 +3.28 93.23+539  92.33+4.72
Yeast6 88.09+9.82 84.80+7.38 85.11+7.84 86.76+8.91 85.88+7.81 86.26 + 7.66 79.22+8.87  82.80+12.77
Ecoli0137vs26 81.90+20.49 81.90+20.79 83.18+21.18 81.36+20.13 81.00+19.33 82.27+20.40 82.08+20.99 81.36+21.68
Abalone9-18 64.70+10.73 73.10+10.78 71.98+13.39 73.14+9.88 76.65+11.31 74.28+10.65 70.63 +8.81 62.15 +4.96
Mean 80.52+858 8240+9.57 83.31+945 81.77+9.45 82.40+8.94 82.05 + 8.62 81.33+7.78  78.25+8.38
All data-sets
Mean 81.33+6.57 83.97+6.63 84.39+6.69 83.80+6.46  84.56+6.40 84.65 + 6.02 83.54+6.15 82.17+5.92
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Following this idea, Table 11 shows the results in test for the FRBCS algorithms with the GTS and LTR tuning approaches,
and for the Ripper algorithm and the C4.5 decision tree. This table is divided by the IR, the first part corresponds to data-sets
with a low imbalance and the second part to data-sets with a high imbalance. The best global result for test is stressed in
boldface in each case. Furthermore, in Table 12 we show the average results for the two groups of imbalanced data-sets con-
sidered. Please refer to the appendix of this work where we show both training and test results for every data-set.

We apply a Wilcoxon test in order to compare Ripper (Table 13) and C4.5 (Table 14) with the FRBCSs (with and without 2-
tuples based genetic tuning) and thus, to analyse whether the difference in the average results for the AUC measure is enough
to determine statistically that our approach performs better than the selected algorithms of contrast in each one of the

imbalanced scenarios.

For data-sets with a low imbalance, the Chi et al.’s approach obtains a low ranking in comparison with Ripper and C4.5,
whereas the FH-GBML has a similar behaviour to those methods. When applying the 2-tuples genetic tuning, we can observe

Table 12

Average table of results for FRBCSs, Ripper and C4.5 for the different degrees of imbalance.

Algorithm Low imbalance High imbalance
AUCr, AUCry AUCr, AUCrg
Chi-3 86.03+1.22 82.14+4.56 85.09+2.12 80.52 +8.58
Chi-3-GTS 92.64 +0.75 85.55 +3.70 93.15+1.29 82.40 £9.57
Chi-3-LTR 94.07 +0.89 85.46 +3.94 95.20 +1.17 83.31+945
FH-GBML 89.40+0.98 85.82 £3.48 89.89+1.85 81.77 +9.45
FH-GBML-GTS 91.90 £ 1.04 86.72+3.85 93.21+£1.29 82.40+8.94
FH-GBML-LTR 92.38+1.18 87.25 +3.42 93.25+1.63 82.05 +8.62
Ripper 94.15 + 1.06 85.76 +4.51 97.81+0.77 81.33+£7.78
Cc4.5 94.01 £1.00 86.18 £3.39 96.69 + 1.40 81.31+7.65
Table 13
Wilcoxon test to compare the performance of Ripper (R*) with the FRBCS approaches with and without tuning (R™) in data-sets with a low and a high
imbalance.
Comparison R+ R™ p-Value
Data-sets with low imbalance
Ripper vs. Chi-3 220 33 0.002
Ripper vs. Chi-3-GTS 131.5 121.5 0.821
Ripper vs. Chi-3-LTR 134 119 0.808
Ripper vs. FH-GBML 122 131 0.884
Ripper vs. FH-GBML-GTS 79 174 0.123
Ripper vs. FH-GBML-LTR 60 193 0.031
Data-sets with high imbalance
Ripper vs. Chi-3 142 111 0.615
Ripper vs. Chi-3-GTS 100 153 0.390
Ripper vs. Chi-3-LTR 72 181 0.077
Ripper vs. FH-GBML 119.5 133.5 0.794
Ripper vs. FH-GBML-GTS 95 158 0.306
Ripper vs. FH-GBML-LTR 112 141 0.638

Table 14

Wilcoxon test to compare the performance of C4.5 (R") with the FRBCS approaches with and without tuning (R™) in data-sets with a low and a high imbalance.
Comparison R* R p-Value
Data-sets with low imbalance
C4.5 vs. Chi-3 224 29 0.002
C4.5 vs. Chi-3-GTS 165 88 0.211
C4.5 vs. Chi-3-LTR 154 99 0.372
C4.5 vs. FH-GBML 151.5 101.5 0.394
C4.5 vs. FH-GBML-GTS 103 150 0.445
C4.5 vs. FH-GBML-LTR 82 171 0.149
Data-sets with high imbalance
C4.5 vs. Chi-3 134 119 0.808
C4.5 vs. Chi-3-GTS 108 145 0.548
C4.5 vs. Chi-3-LTR 61 192 0.033
C4.5 vs. FH-GBML 100.5 152.5 0.455
C4.5 vs. FH-GBML-GTS 109 144 0.570
C4.5 vs. FH-GBML-LTR 95 158 0.306
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V5 New-Thyroid1
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Initial
------- Tuned

Fig. 11. Initial and tuned DB of a model obtained with GTS in the new-thyroid1 data-set.

an improvement in the performance, since the ranking in this case is higher than the simple FRBCSs. Furthermore, when
using a good fuzzy rule learning methodology, i.e. the FH-GBML algorithm, the FRBCS approach obtains a better ranking than
Ripper and C4.5, even obtaining significant differences in the case of the LTR tuning approach versus the Ripper algorithm.

In the case of data-sets with a high imbalance, regarding FH-GBML we stress that the behaviour of this method is superior
to Ripper and C4.5, which is reflected in the ranking value. A more interesting analysis can be carried out in the case of the
Chi et al.’s method, where we can clearly observe that, although the ranking is higher in the case of Ripper and C4.5 versus
the basic Chi et al.’s method, the use of the 2-tuples genetic tuning enhances significantly the behaviour of the FRBCS; fur-
thermore, in the case of the LTR tuning approach, the fuzzy approach outperforms both algorithms of comparison.

This experimental study supports the conclusion that the 2-tuples based genetic tuning is a solid approach to improve the
FRBCS behaviour when dealing with imbalanced data-sets, as it has helped the FRBCS methods to be the best performing
algorithms when compared with two classical and well-known algorithms: Ripper and C4.5.

In Fig. 11 we show an example of the use of the 2-tuples genetic tuning with GTS, where the initial and tuned DBs are
depicted for the new-thyroid1 data-set. We observe here how the MFs are contextualized for each one of the variables of
the problem, adapting the fuzzy system to the problem itself and, in this manner, obtaining better results.

6. Concluding remarks and further work

In this work, we have adapted the 2-tuples based genetic tuning to classification problems with imbalanced data-sets in
order to increase the performance of simple FRBCSs.

We have concluded that the tuning step is a necessity, since it always helps FRBCSs to obtain better results. Our empirical
and statistical results have shown that the genetic tuning improves the behaviour of the FRBCS in imbalanced data-sets, both
globally and for the different types considered, that is, data-sets with a low and high imbalance.

We have also demonstrated that the synergy between the FRBCS and the 2-tuples based genetic tuning is more positive
when a good mechanism is chosen to obtain the initial RB.

We must conclude that this approach makes the FRBCSs very competitive in the framework of imbalanced data-sets, out-
performing an algorithm of reference in this ambit such as the C4.5 decision tree and Ripper, a classical and accurate rule
based algorithm.

Finally, our future work will be oriented to analyse in depth the performance of FRBCSs in the scenario of highly imbal-
anced data-sets, developing specific learning approaches for dealing with this type of data. Specifically, we are currently
studying the generation of the KB by the Genetic Learning of the DB and its potential positive synergy with the genetic 2-tu-
ples tuning.
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Appendix A. Detailed results for the experimental study

In this appendix we present the complete results tables for all the algorithms used in this work. Thus, the reader
can observe the full training and test results, with their associated standard deviation, in order to compare the performance
of each approach. In Tables 15 and 16 we show the results for the Chi et al.'s method and for the FH-GBML algorithm
with and without 2-tuples based genetic tuning for the original data-sets (without preprocessing). Next, the results
with SMOTE preprocessing are shown in Tables 17 and 18, the former for the Chi et al.’s method and the latter for the
results of the FH-GBML algorithm, Ripper and C4.5. Finally, Table 19 shows the average number of rules for every single
data-set.

Table 16

Complete table of results for FH-GBML with 2-tuples based genetic tuning. Original data-sets.
Data-set FH-GBML FH-GBML-GTS FH-GBML-LTR

AUCy, AUCry AUCy, AUCry AUCry AUCrg

Data-sets with low imbalance
Glass1 74.22 +£2.27 70.62 + 5.64 82.86 +3.07 71.29 +4.41 85.05+2.89 71.95+9.19
EcoliOvs1 98.70 £ 0.45 98.00 +2.98 98.78 £+ 0.41 97.29 +2.81 98.94 + 0.54 96.98 +3.40
Wisconsin 97.59 +0.34 96.32 +1.03 98.59 +0.35 96.39 £1.55 98.57 +0.34 96.01 +0.97
Pima 71.38 £1.45 69.81 +2.01 80.21£2.13 73.48 +1.58 81.32+1.32 73.36 £ 2.41
IrisO 100.0 £ 0.00 100.0 £ 0.00 100.0 + 0.00 100.0 + 0.00 100.0 + 0.00 100.0 + 0.00
GlassO 82.30 +2.07 80.33 +2.61 87.26 +1.33 81.02+4.24 87.78+1.74 81.02 +4.39
Yeast2 62.75+1.03 61.08 + 2.65 72.92+1.18 68.54 +3.25 74.11+1.89 69.45 £2.95
Vehicle2 77.70 £2.72 75.99 +3.70 95.43 +3.31 89.52 +3.37 96.59 + 2.64 90.47 +2.80
Vehiclel 64.82 +2.26 62.58 +2.42 74.80+5.17 65.75+2.53 76.38 + 6.00 69.11 £4.03
Vehicle3 61.20 +2.01 58.40 + 2.68 73.21+£4.25 64.64 +4.40 76.77 +5.88 65.55 +6.53
Haberman 60.31 £2.38 50.46 +2.69 66.30 £ 3.52 49.85 +3.98 70.67 £ 6.22 53.28 £4.93
Glass0123vs456 94.30+1.89 83.97 +6.38 97.85 £ 0.63 90.00 +4.88 98.33+0.42 86.62 +8.19
Vehicle0O 81.94+4.99 75.53 +8.03 97.23+1.24 89.70 + 4.68 97.81+1.08 92.05 +2.84
Ecolil 87.65 +3.54 85.22 +4.06 93.22 £0.70 87.83+4.77 93.76 +0.78 91.39+3.35
New-Thyroid2 98.23+1.29 95.75+4.03 99.93+0.16 98.29 £3.10 100.0 + 0.00 96.03 +4.20
New-Thyroid1 98.22+1.14 93.73 £3.57 100.0 £ 0.00 98.29 £3.82 100.0 £ 0.00 97.74 £ 3.57
Ecoli2 90.21 +3.71 85.73 +5.86 95.28 +1.34 87.64+2.77 95.59 + 1.55 86.74 +3.07
Segment0 95.27 +1.50 95.65 +2.10 99.76 £ 0.32 99.14 + 041 99.63 +0.48 99.32+0.42
Glass6 95.19 +1.81 87.13+9.51 98.70 £1.19 87.46 +6.99 99.57 +0.97 92.57 +4.01
Yeast3 85.27 +1.88 84.57 +4.19 94.65 +0.99 92.49 £2.04 94.50 + 0.89 92.18 +1.14
Ecoli3 80.25+8.13 75.48 +3.68 92.99 +3.35 84.92 +10.35 93.47 +4.02 86.51+7.38
Page-BlocksO 82.64+2.54 81.64 +2.36 91.57 +0.80 90.07 +0.88 92.13 +£1.02 90.66 + 1.67
Mean 83.64 £2.25 80.36+3.74 90.52 +1.61 84.71 +3.49 91.41+1.85 85.41 +3.70
Data-sets with high imbalance
Yeast2vs4 84.90 +2.92 81.91+8.78 96.02 +2.36 90.15+2.31 95.91 £2.21 87.01+3.18
Yeast05679vs4 70.75 + 5.05 67.35+7.98 81.23£3.96 75.90+11.33 82.06 +5.39 70.45 +7.33
VowelO 84.83 592 82.05+10.95 94.17 £2.27 89.17 +6.38 94.11+2.98 89.05+5.94
Glass016vs2 54.40+1.54 48.57 £ 1.75 57.25+4.26 52.19+6.53 57.52+4.11 48.00 + 1.63
Glass2 54.33 +3.06 49.49 +0.70 54.40 +3.13 50.00 + 0.00 54.40+3.13 50.00 + 0.00
Ecoli4 92.97 +3.30 89.53 +10.61 99.22 +1.43 88.42+9.77 98.09 +1.75 86.55 +8.29
shuttleOvs4 100.0 £ 0.00 100.0 £ 0.00 100.0 £ 0.00 100.0 £ 0.00 100.0 £ 0.00 100.0 + 0.00
yeastB1vs7 64.11+1.73 54.65+6.93 71.52 +5.88 55.73 +6.54 74.08 +5.91 57.63 +5.69
Glass4 83.26 +4.12 65.67 +16.70 96.12 £3.79 77.09 +21.52 98.09 +2.62 87.59+11.86
Page-Blocks13vs4 96.41 + 3.06 95.43 +4.99 99.97 +0.06 95.77 £5.30 100.0 + 0.00 97.88 +4.12
Abalone9-18 59.15 + 2.50 53.47 +5.06 70.21+3.61 65.61+5.90 70.37+5.78 64.32 +3.83
Glass016vs5 83.50 +4.95 59.43+13.58 87.86 +7.82 59.14 +13.84 90.36 +6.13 59.14 + 14.51
shuttle2vs4 100.0 + 0.00 74.18 £23.98 100.0 + 0.00 74.18 +23.98 100.0 £ 0.00 74.18 £23.98
Yeast1458vs7 51.65 +2.26 49.70 + 0.67 52.46 +3.37 49.77 £ 034 52.50+3.42 49.55 +0.62
Glass5 71.01+7.54 54.27 +11.60 66.79 +13.10 49.51 £ 0.67 71.07 +17.70 49.02 +1.59
Yeast2vs8 77.50+2.61 72.39+13.55 77.50+2.61 72.39+13.55 77.50 +2.61 72.39+13.55
Yeast4 54.43 +2.62 51.82 +4.07 70.63 + 10.46 65.18+11.10 70.14+11.46 61.62 £+ 10.45
Yeast1289vs7 57.08 +5.02 51.50+3.82 61.78 £6.20 54.45 +4.97 62.23 +6.56 52.68 + 4.80
Yeast5 74.63 +6.82 72.15+8.28 91.99 +13.90 87.88 +9.55 92.16 + 14.00 87.95 +10.25
Yeast6 52.49 +2.97 51.26 +3.10 73.94 £21.92 64.71 +14.94 70.33 +£21.00 63.56 + 12.66
Ecoli0137vs26 85.67 +4.94 74.63 +24.78 85.67 +4.94 74.63 +24.78 87.33+5.35 74.63 +24.78
Abalone19 50.00 = 0.00 50.00 = 0.00 50.00 + 0.00 50.00 + 0.00 50.00 + 0.00 50.00 + 0.00
Mean 72.87 +3.32 65.88 +8.27 79.03 +5.23 70.09 £ 8.79 79.47 £5.55 69.69 + 7.68

All data-sets
Global 7847 +2.78 73.35+5.96 84.95 +3.39 77.70 £6.12 85.58 +3.68 77.86 £5.57
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Table 19

Number of Rules for Chi-3, FH-GBML, Ripper and C4.5 for all data-sets of the study. All models were trained with a balanced training set (preprocessing).
Data-set Chi-3 FH-GBML Ripper Cc4.5
Data-sets with low imbalance
Glass1 37.80+0.45 18.80+2.17 12.20+1.10 13.60 £2.51
EcoliOvs1 30.60 +1.95 25.80+11.90 3.20+1.30 2.00 +0.00
Wisconsin 267.60 £ 3.44 28.60 £3.91 9.20+1.30 8.20+0.45
Pima 96.00 + 3.39 21.20+6.30 25.80 £3.03 28.60 £4.72
IrisO 1440+ 1.14 19.20£0.84 220045 2.00 £ 0.00
Glass0 35.60 +1.82 16.40 +4.28 9.40 +2.07 10.20+2.17
Yeast2 93.20 +4.02 24.00+11.94 26.80 £2.17 44.40 £ 6.80
Vehicle2 382.80 £3.56 29.20+4.82 9.40+1.34 23.20£2.59
Vehiclel 349.60 £ 3.36 52.60 + 34.30 29.60 £2.70 59.40 +6.91
Vehicle3 340.00 £ 3.00 22.60 £5.68 31.40 £5.55 63.60 +7.99
Haberman 15.20 £ 0.45 17.80+£1.30 16.40+1.14 13.80£6.38
Glass0123vs456 44.60 £3.51 16.60 £ 2.07 520+1.10 7.20+£1.30
VehicleO 351.60 + 10.36 24.80£1.79 14.20 +2.59 28.20£3.19
Ecolil 47.80 £3.35 9.20+2.49 10.80 £2.77 6.40 +3.58
New-Thyroid2 20.00+1.22 20.40 +1.67 3.80+0.84 6.80£0.84
New-Thyroid1 20.00 +1.00 19.40 +2.61 4.60 £ 0.55 6.00 + 1.87
Ecoli2 48.60 £ 1.34 13.00 £2.55 10.20 £ 2.86 17.40 £2.70
Segment0 294.60 £4.10 16.20 £ 1.48 7.00£0.71 12.80 £2.68
Glass6 46.80 +1.92 19.00 +3.74 5.20+0.84 9.00 + 1.87
Yeast3 99.20 +4.38 10.80 +3.56 26.20 £3.96 36.60 +4.22
Ecoli3 48.40 £1.34 12.20£2.05 8.40+2.79 14.20 £3.35
Page-Blocks0 59.00 + 3.00 18.80£2.77 59.40 + 2.30 110.60 +4.22
Mean 124.70 +2.82 20.75 £5.19 15.03 £ 1.98 23.83£3.20
Data-sets with high imbalance
Yeast2vs4 43.00 £ 2.55 16.80 + 10.99 16.00 + 4.00 20.40 +3.13
Yeast05679vs4 63.40 £5.18 13.80+3.42 22.00 +4.00 30.20 £2.95
VowelO 323.20+8.56 30.40 +22.30 7.20+1.10 15.80 £3.49
Glass016vs2 32.60 £1.52 17.20+1.79 11.00 +1.58 15.80 +3.96
Glass2 33.20+3.27 16.60 + 1.67 10.00 +1.22 15.20 + 4.66
Ecoli4 46.80 £2.59 10.80 £1.79 5.40+1.52 8.00 £2.92
ShuttleOvs4 25.80 +4.66 49.80 + 0.45 2.80+0.45 2.00 +0.00
yeast1vs7 70.80 +5.40 19.80+6.98 23.20+£3.83 32.20+£8.35
Glass4 42.20£6.30 23.60£9.76 4.20+1.30 10.40 + 2.07
Page-Blocks13vs4 64.80 £5.54 16.80 + 3.56 6.00 +1.73 6.20+1.79
Abalone9-18 43.40 +2.41 17.20+11.10 25.20+1.64 63.00 + 11.45
Glass016vs5 48.00 +4.74 17.60 +3.51 6.00 +1.00 8.60+1.52
shuttle2vs4 11.00 £ 2.00 17.40 £18.32 4.40 £0.89 4.40+0.89
Yeast1458vs7 80.20 £5.72 14.20+3.11 27.60 £2.51 48.80+7.16
Glass5 41.60 +3.29 15.00 +3.39 5.00+0.71 9.40 +1.14
Yeast2vs8 40.80 £2.59 14.20 £5.97 11.40 £ 1.67 28.00+5.15
Yeast4 86.20+3.35 21.60+11.33 25.80 £3.27 58.60 +5.27
Yeast1289vs7 78.00 + 4.64 16.40+2.51 29.80+£1.92 57.60 + 6.66
Yeast5 101.40 + 4.04 12.40+3.29 9.40 +1.52 18.20+0.84
Yeast6 87.40 +3.65 12.20+£1.92 13.20+1.30 40.20 £ 6.46
Ecoli0137vs26 77.80 £5.07 15.80+6.30 7.40+1.95 7.60+1.52
Abalone19 69.20 + 3.49 18.60 +3.71 30.20 £ 1.30 121.20+9.12
Mean 68.67 £4.12 18.55+6.24 13.78 + 1.84 28.26 +4.11
All data-sets
Global 96.69 +3.47 19.65+5.71 14.40 + 1.91 26.05 +3.66
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