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Abstract. The tuning of Fuzzy Rule-Based Systems is often applied to improve
their performance as a post-processing stage once an appropriate set of fuzzy rules
has been extracted. This optimization problem can become a hard one when the size
of the considered system in terms of the number of variables, rules and, particularly,
data samples is big. Distributed Genetic Algorithms are excellent optimization al-
gorithms which exploit the nowadays available parallel hardware (multicore micro-
processors and clusters) and could help to alleviate this growth in complexity.

In this work, we present a study on the use of the Distributed Genetic Algo-
rithms for the tuning of Fuzzy Rule-Based Systems. To this end, we analyze the
application of a specific Gradual Distributed Real-Coded Genetic Algorithm which
employs eight subpopulations in a hypercube topology.

The empirical performance in solution quality and computing time is assessed
by comparing its results with those from a highly effective sequential tuning algo-
rithm. We applied both, the highly effective sequential algorithm and the distributed
method, for the modeling of four well-known regression problems. The results show
that the distributed approach achieves better results in terms of quality and execu-
tion time as the complexity of the problem grows.

Keywords: Genetic Fuzzy Systems, Fuzzy Rule Based-Systems, Distributed Ge-
netic Algorithms, Genetic Tuning.

1 Introduction

Fuzzy rule based-systems (FRBS) have become a wide choice when addressing
modeling and system identification problems [1, 2, 3, 4]. One of the most popular
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approaches for the design of FRBSs is the hybridization between fuzzy logic [5, 6]
and Genetic Algorithms (GAs) [7, 8] leading to the well-known Genetic Fuzzy Sys-
tems (GFSs) [9, 10, 11]. A GFS is basically a fuzzy system augmented by a learning
process based on evolutionary computation, which includes GAs, genetic program-
ming, and evolutionary strategies, among other evolutionary algorithms [12].

The predominant type of GFS is that focused on FRBSs, since the automatic def-
inition of FRBSs can be seen as an optimization or search problem, and GAs are
a well known and widely used global search technique with the ability to explore
a large search space for suitable solutions only requiring a performance measure.
In addition to their ability to find near optimal solutions in complex search spaces,
the generic code structure and independent performance features of GAs make them
suitable candidates to incorporate a priori knowledge. In the case of FRBSs, this a
priori knowledge may be in the form of linguistic variables [13], fuzzy member-
ship function (MF) parameters, fuzzy rules, number of rules, etc. These capabilities
extended the use of GAs in the development of a wide range of approaches for
designing FRBSs over the last few years.

In this framework, a widely-used technique to enhance the performance of
FRBSs is the genetic tuning of MFs [14, 15, 16, 17, 18, 19]. It consists of improv-
ing a previous definition of the Data Base (DB) once the Rule Base (RB) has been
obtained. The classic approaches to perform genetic tuning [14, 15] consist of using
a GA in order to refine the definition parameters that identify the MFs associated to
the linguistic terms comprising the initial DB.

Since the real aim of the genetic tuning process is to find the best global con-
figuration of the MFs and not only to find independently specific ones, this opti-
mization problem can become a hard one when the size of the considered system
in terms of the number of variables, rules and, particularly, data samples (typically
used to guide the search) is big. Moreover, the computing time consumed by these
approaches grows with the complexity of the search space.

In order to deal with this complexity, Distributed Genetic Algorithms (DGAs)
[20, 21, 22] are found to be excellent optimization algorithms for high dimensional
problems. They are able to take advantage of the parallel hardware and software that
has become very affordable and broadly available nowadays. Clear examples in this
line are multicore processors and linux clusters [23, 24, 25]. This situation makes
them perfect to deal with complex search spaces.

In this work, we present a study on the use of the Distributed Genetic Algorithms
for the tuning of FRBS from two points of view: solution quality and computing
time improvements. To this end, we analyze the application of a specific Gradual
Distributed Real-Coded Genetic Algorithm (GDRCGA) to perform an effective ge-
netic tuning of FRBSs [26]. This algorithm employs eight subpopulations in a hy-
percube topology [27] and makes use of a particular linguistic rule representation
model that was proposed in [17] to perform a genetic lateral tuning of MFs. This
approach is based on the linguistic 2-tuples representation [28] which simplifies the
search space by considering only one parameter per MF and, therefore, eases the
derivation of optimal models, particularly in complex or high-dimensional prob-
lems.
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The empirical performance in solution quality and computing time has been as-
sessed by comparing the results of the distributed approach with those obtained from
the specialized sequential algorithm, proposed in [17], to perform a lateral tuning of
the MFs. Both methods are applied for the modeling of four well-known regression
problems. The results show that the distributed approach achieves better results in
terms of quality and execution time as the complexity of the problem grows.

The contribution is structured as follows: in the second section DGAs are pre-
sented and briefly discussed. In the third section, we present a brief introduction to
FRBSs. Next, lateral tuning of FRBSs problem is stated and an efficient sequen-
tial specialized algorithm is reviewed. The fifth section describes the DGA used for
FRBS tuning. An empirical evaluation of the distributed algorithm is presented in the
sixth section. Finally, we close this chapter with some conclusions and final remarks.

2 Distributed Genetic Algorithms

The availability of extremely fast and low cost parallel hardware in the last few
years benefits the investigation on new approaches to existing optimization algo-
rithms. The key of these new approaches is achieving gains not only in time, which
is somehow inherent to parallel computation, but also gains in quality of the solu-
tions found.

Generally, there are two ways to parallelize GAs. The first way is by means of
local parallelization: fitness evaluation of the individuals and, sometimes, the appli-
cation of the genetic operators are carried out in a parallel way [29, 30]. The second
way is by means of global parallelization: complete subpopulations evolve in paral-
lel [31, 32, 33, 34, 35, 36, 27, 37] (distributed approach or DGAs). While the first
one is only achieving gains in time, the second one is also able to improve the global
performance of the underlying algorithm, subsequently achieving additional gains
in the quality of the final solutions. In fact, DGAs [20, 22] are excellent optimization
algorithms and have proven to be an interesting approach when trying to cope with
large scale problems and when the classic approaches take too much time to give a
proper solution.

In this section, our goal is to present an introductory vision of the distributed
models. Firstly, we present a taxonomy of the state of the art of DGAs. Finally, the
key elements to obtain a well-designed DGA are presented.

2.1 Taxonomy of Distributed Genetic Algorithms

Several categorizations of DGAs can be found in literature [20, 21, 22] according to a
wide range of criteria. Some of the most used categories when referring to DGAs are:

• According to the migration policy:

– Isolated: no migrations between subpopulations. These DGAs are also known
as Partitioned Genetic Algorithms [31].

– Synchronous: migrations between subpopulations are synchronized, for ex-
ample, they are carried out at the same time [31, 32].
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– Asynchronous: migrations are carried out when some events occur, generally
related to the activity of subpopulations [33].

• According to the connection schema:

– Static schema: connections between subpopulations are stablished at the start
of the execution and they are not modified.

– Dynamic schema: connection topology changes dynamically along the exe-
cution of the algorithm. Connection reconfigurations may occur depending on
the degree of evolution of the subpopulations.

• According to the homogeneity:

– Homogeneous: genetic operators are the same for all subpopulations as well
as parameters, fitness function, coding scheme, etc. The vast majority of
DGAs proposed in the literature are homogeneous.

– Heterogeneous: subpopulations are all alike [34, 35, 36]. They can differ
from the parameters used, genetic operators, coding scheme, etc. One example
of these heterogeneous GAs are the Gradually Distributed Genetic Algorithms
where genetic operators are applied with different intensities [27].

• According to the granularity:

– Coarse-grained parallelization: The population is split into small subpopu-
lations that are assigned to different processors. Each subpopulation evolves
independently and simultaneously according to a GA. Periodically, a migra-
tion operator exchanges individuals among subpopulations, which gives them
some additional diversity.

– Fine-grained parallelization: The population is split into a big number of
small subpopulations. Generally only one subpopulation is assigned to each
processor. The selection and crossover operators are applied considering ad-
jacent individuals. For example, each individual chooses its best neighbor for
crossover (see Figure 1) and the resulting individual replaces the original one.
When a single individual is assigned to each processor, this type of algorithms
are known as Cellular Genetic Algorithms [37].

Fig. 1. Cellular Genetic Algorithm: a extreme case of fine-grained parallelization



Distributed GAs for Tuning Fuzzy Rule Based-Systems 239

2.2 Design of Distributed Genetic Algorithms

There are two classic problems [27] in DGAs. A main drawback in DGAs is that
the insertion of a new individual coming from a different subpopulation may not
be effective. The new individual could be highly incompatible with the receiving
subpopulation and therefore it might be ignored or conquer the subpopulation. This
probably happens when subpopulations involved are at different stages of evolution.

The arrival of a highly evolved individual comming from a strong subpopula-
tion will result in a higher selection ratio than for local individuals which are less
evolved. In this way, the subpopulation that sends the highly evolved individual is
imposing it to the receiving subpopulation. This problem is known as the Conquest
Problem.

Symmetrically, when a less evolved individual migrates to a highly evolved sub-
population it will not be selected for reproduction and therefore it will be abandoned.
This means a waste of computational and communication efforts. This problem is
known as the Non-effect Problem.

Both problems could appear in DGAs since subpopulations tend to converge at
different speeds. For example, if parameters used for the genetic operators are differ-
ent, convergence speed will be very different in subpopulations. These problems can
directly affect the global convergence leading to non-optimal solutions and losing
the efectiveness of the distributed approach.

Subsequently, proposing a well-designed DGA is not a trivial task due to the exis-
tence of several factors that can have an influence over the exploration/exploitation
balance of the algorithm. There are several elements to consider when designing
DGAs:

1. Topology: structure of the distributed algorithm which defines relationships be-
tween subpopulations and individuals [31, 32, 38, 39]

2. Migration rate (MRATE): amount of individuals to be exchanged between sub-
populations.

3. Migration frequency (MFREQ): number of generations between two consecu-
tive migrations.

4. Selection strategy: generally there are two ways of selecting the genetic material
to be copied. The first way is randomly selecting an individual from the current
subpopulation. The second way consists on selecting the individual with the best
fitness in every subpopulation to be copied to another. This last would lead into a
more direct evolution because individuals would not have traces of less adapted
individuals. The main disadvantage of selecting the best individual is that it could
lead into premature convergency [40].

5. Replacement strategy: different replacement strategies can be considered, as
replacing the worst individuals with the ones received due to migrations, as re-
placing an individual randomly choosen, etc.

6. Replication of emigrants: should individuals be moved, or copied among sub-
populations? Exchanging copies of individuals could lead to a highly evolved
individuals dominating several less evolved subpopulations [40].
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All these parameters have a deep interaction among them and should be care-
fully determined since a poor choice in one of them can have a strong impact on
the global performance of the algorithm. For instance, choosing a extremely high
MFREQ can lead to an excessive communication load of the network and the effect
of the migrated individuals could be almost imperceptible. Besides, these parame-
ters should be fixed having in mind the hardware that will be used to execute the
algorithm: depending on the network it might be better migrating more individuals
less frequently than the other way around.

Finally, one procedure for designing DGAs comes from the consideration of spa-
tial separation of subpopulations. Schematically:

1. Generate a random population, P.
2. Divide P into m subpopulations: SPi, i = 1, . . . ,m.
3. Define a topology for SP1, . . . ,SPm.
4. For i = 1 to m do:

4.1. Apply in parallel during MFREQ generations the genetic operators.
4.2. Send in parallel MRATE chromosomes to neighbor subpopulations.
4.3. Receive in parallel chromosomes from neighbor subpopulations.

5. If stopping criteria is not meet then go back to step 4.

3 Fuzzy Rule-Based Systems

FRBSs constitute one of the main contributions of fuzzy logic. The basic concepts
which underlie these fuzzy systems are those of linguistic variable and fuzzy IF-
THEN rule. A linguistic variable, as its name suggests, is a variable whose values
are words rather than numbers, e.g., “small”, “young”, “very hot” and “quite slow”.
Fuzzy IF-THEN rules are of the general form: if antecedent(s) then consequent(s),
where antecedent and consequent are fuzzy propositions that contain linguistic vari-
ables. A fuzzy IF-THEN rule is exemplified by “if the temperature is high then the
fan-speed should be high”. With the objective of modeling complex and dynamic
systems, FRBSs handle fuzzy rules by mimicking human reasoning (much of which
is approximate rather than exact), reaching a high level of robustness with respect
to variations in the system’s parameters, disturbances, etc. The set of fuzzy rules of
an FRBS can be derived from subject matter experts or extracted from data through
a rule induction process.

In this section, we present a brief overview of the foundations of FRBSs, with the
aim of illustrating the way they behave. In particular, in Section 3.1, we introduce
the important concepts of fuzzy set and linguistic variable. Finally, in section 3.2,
we deal with the basic elements of FRBSs.
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3.1 Fuzzy Set and Linguistic Variable

A fuzzy set is distinct from a crisp set in that its elements belong to it to a certain
degree. The core of a fuzzy set is its MF: a surface or line that defines the relationship
between a value in the set’s domain and its degree of membership. In particular,
according to the original ideal of Zadeh [5], membership of an element x to a fuzzy
set A, denoted as μA(x) or simply A(x), can vary from 0 (full non-membership) to 1
(full membership), i.e., it can assume all values in the interval [0,1]. Clearly, a fuzzy
set is a generalization of the concept of a crisp set whose MF takes values in {0,1}.

The value of A(x) is the degree of membership of x in A. For example, consider
the concept of high temperature in an environmental context with temperatures dis-
tributed in the interval [0, 50] defined in centigrade degrees. Clearly 0oC is not un-
derstood as a “high temperature” value, and we may assign a null value to express
its degree of compatibility with the high temperature concept. In other words, the
membership degree of 0oC in the class of high temperatures is zero. Likewise, 30oC
and over are certainly high temperatures, and we may assign a value of 1 to express
a full degree of compatibility with the concept. Therefore, temperature values in the
range [30, 50] have a membership value of 1 in the class of high temperatures. From
0oC to 30oC, the degree of membership in the fuzzy set high temperature gradually
increases, as exemplified in Figure 2, which actually is a MF A : T → [0,1] charac-
terizing the fuzzy set of high temperatures in the universe T = [0,50]. In this case, as
temperature values increase they become more and more compatible with the idea
of high temperature.

      A( t )
( g r a d e  o f
m e m b e r s h i p )

T e m p e r a t u r e  ( d e g r e e  c e n t r i g r a d e )

H i g h

0 3 0 5 0

Fig. 2. Membership function

Linguistic variables are variables whose values are not numbers but words or
sentences in a natural or artificial language. This concept has clearly been devel-
oped as a counterpart to the concept of a numerical variable. In concrete, a linguis-
tic variable L is defined as a quintuple [41]: L = (x,A,X ,g,m), where x is the base
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variable, A = {A1,A2, . . . ,AN} is the set of linguistic terms of L (called term-set), X
is the domain (universe of discourse) of the base variable, g is a syntactic rule for
generating linguistic terms and m is a semantic rule that assigns to each linguistic
term its meaning (a fuzzy set in X). Figure 3 shows an example of a linguistic
variable Temperature with three linguistic terms “Low, Medium, and High”. The
base variable is the temperature given in appropriate physical units.

t  ( t e m p e r a t u r e )

H i g hL o w M e d i um

T E M P E R A T U R E

A( t )

1 0 2 0 3 0 4 0

L i n g u i s t i c  V a r i a b l e

T e r m  S e t

S e m a n t i c
R u l e

M e m b e r s h i p
f u n c t i o n s

1

0

Fig. 3. Example of linguistic variable Temperature with three linguistic terms

Each underlying fuzzy set defines a portion of the variable’s domain. But this
portion is not uniquely defined. Fuzzy sets overlap as a natural consequence of their
elastic boundaries. Such an overlap not only implements a realistic and functional
semantic mechanism for defining the nature of a variable when it assumes various
data values but provides a smooth and coherent transition from one state to another.

3.2 Basic Elements of FRBSs

The essential part of FRBSs is a set of IF-THEN linguistic rules, whose antecedents
and consequents are composed of fuzzy statements, related by the dual concepts of
fuzzy implication and the compositional rule of inference.

An FRBS is composed of a knowledge base (KB), that includes the knowledge
in the form of IF-THEN fuzzy rules;

IF a set of conditions are satisfied
THEN a set of consequents can be inferred
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and an inference engine module that includes:

• A fuzzification interface, which has the effect of transforming crisp data into
fuzzy sets.

• An inference system, that uses them together with the KB to make inference by
means of a reasoning method.

• A defuzzification interface, that translates the fuzzy rule action thus obtained to
a real action using a defuzzification method.

FRBSs can be categorized into different families:

• The first includes linguistic models based on collections of IF-THEN rules,
whose antecedents are linguistic values, and the system behaviour can be de-
scribed in natural terms. The consequent is an output action or class to be applied.
For example, we can denote them as:
Ri : If Xi1 is Ai1 and · · · and Xin is Ain then Y is Bi

or
Ri : If Xi1 is Ai1 and · · · and Xin is Ain then Ck with wik

with i = 1 to M, and with Xi1 to Xin and Y being the input and output variables
for regression respectively, and Ck the output class associated to the rule for clas-
sification, with Ai1 to Ain and Bi being the involved antecedents and consequent
labels, respectively, and wik the certain factor associated to the class. They are
usually called linguistic FRBSs or Mamdani FRBSs [42].

• The second category based on a rule structure that has fuzzy antecedent and
functional consequent parts. This can be viewed as the expansion of piece-wise
linear partition represented as
Ri : If Xi1 is Ai1 and · · · and Xin is Ain then Y = p(Xi1, · · · ,Xin),
with p(·) being a polynomial function, usually a linear expression, Y = p0 +
p1 · Xi1 + · · ·+ pn ·Xin. The approach approximates a nonlinear system with a
combination of several linear systems. They are called Takagi and Sugeno’s type
fuzzy systems [43] (TS-type fuzzy systems).

• Other kind of fuzzy models are the approximate or scatter partition FRBSs, which
differ from the linguistic ones in the direct use of fuzzy variables [44]. Each fuzzy
rule thus presents its own semantic, i.e., the variables take different fuzzy sets as
values (and not linguistic terms from a global term set). The fuzzy rule structure
is then as follow:
Ri : If Xi1 is Âi1 and · · · and Xin is Âin then Y is Ĝi

with Âi j to Âin and Ĝi being fuzzy sets. The major difference with respect to the
rule structure considered in linguistic FRBSs is that rules of approximate nature
are semantics free whereas descriptive rules operate in the context formulated by
means of the linguistic semantics.

In linguistic FRBSs, the KB is comprised by two components, a data base (DB)
and a rule base (RB).

• A DB, containing the linguistic term sets used in the linguistic rules and the MFs
defining the semantics of the linguistic labels.
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Each linguistic variable involved in the problem will have associated a fuzzy
partition of its domain represented by the fuzzy sets associated to its linguis-
tic terms. Figure 4 shows an example of fuzzy partition with five labels. In this
case, the linguistic term set for each variable (denoted in a common way by y) is
{Negative Medium (NM), Negative Small (NS), Zero (ZR), Positive Small (PS),
Positive Medium (PM)}, which has associated the fuzzy partition of their corre-
sponding domains shown in the Figure. This can be considered as a discretization
approach for continuous domains where we establish a membership degree to the
items (labels), we have an overlapping between them, and the inference engine
manages the matching between the patterns and the rules providing an output
according to the rule consequents with a positive matching. The determination of
the fuzzy partitions is crucial in fuzzy modelling [45], and the granularity of the
fuzzy partition plays an important role in the FRBS behaviour [46].

N M N S Z R P S P M

A ( y )

y

Fig. 4. Membership functions of the linguistic variables (where y stands for each variable
involved in the system)

If we manage approximate FRBSs, then we do not have a DB due to the fact
that rules use fuzzy values rather than linguistic terms.

• A RB comprises of a collection of linguistic rules that are joined by a rule con-
nective (“also” operator). In other words, multiple rules can fire simultaneously
for a given input.

The inference engine of an FRBS acts in a different way depending on the kind
of problem (classification or regression) and the kind of fuzzy rules (linguistic ones,
TS-ones, etc). It usually includes a fuzzification interface that serves as the input
to the fuzzy reasoning process; an inference system that infers from the input to
several resulting output (fuzzy set, class, etc); and the defuzzification interface or
output interface that converts the fuzzy sets obtained from the inference process into
a crisp action that constitutes the global output of the FRBS. This last component
appears in the case of regression problems, or provide the final class associated to
the input pattern according to the inference model.
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The generic structure of an FRBS is shown in Figure 5.

R 1 :  I F  X 1  I S  A 1  A N D  X 2  I S  B 1  T H E N  Y  I S  C 1  

R 3 :  I F  X 1  I S  A 3  A N D  X 2  I S  B 3  T H E N  Y  I S  C 3  

R 2 :  I F  X 1  I S  A 2  A N D  X 2  I S  B 2  T H E N  Y  I S  C 2  

D A T A  B A S E
R U L E  B A S E

K N O W L E D G E  B A S E :  D a t a  B a s e  +  R u l e  B a s e

I N F E R E N C E  S Y S T E M
D E F U Z Z I F I C A T I O N

( O U T P U T  I N T E R F A C E )

F U Z Z I F I C A T I O N
( I N P U T  I N T E R F A C E )

N u m e r i c a l
 D a t a

F u z z y
S e t

N u m e r i c a l
 D a t a

F u z z y
S e t

Fig. 5. Structure of an FRBS

For more information about fuzzy systems the following books may be consulted
[1, 2, 3, 4, 9, 47, 48]. For different issues associated to the trade-off between inter-
pretability and accuracy of FRBSs, the two following edited books present a collec-
tion of contributions in the topic [18, 49].

Finally, we must point out that we can find a lot of applications of FRBSs in
all areas of engineering, sciences, medicine, etc. At the present it is very easy to
find these applications by using the publisher web search tools and by focusing the
search on journals of different application areas.

4 Genetic Tuning of FRBSs

With the aim of making a FRBS performs better, some approaches try to improve
the preliminary DB definition or the inference engine parameters once the RB has
been derived [9, 10, 11]. In order to do so, a tuning process considering the whole
KB obtained (the preliminary DB and the derived RB) is used a posteriori to adjust
the MFs or the inference engine parameters. A graphical representation of the tuning
process is shown in Figure 6.

Among the different possibilities to perform tuning, one of the most widely-used
approaches to enhance the performance of FRBSs is the one focused on the DB
definition, usually named tuning of MFs, or DB tuning [17, 14, 15, 19, 50]. In [14],
we can find a first and classic proposal on the tuning of MFs. In this case, the tun-
ing methods refine the parameters that identify the MFs associated to the labels
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Fig. 6. Genetic tuning process

T T'

a a' b'b c' c

Fig. 7. Tuning by changing the basic MF parameters

comprising the DB. Classically, due the wide use of the triangular-shaped MFs, the
tuning methods [19, 9, 15, 14] refine the three definition parameters that identify
these kinds of MFs (see Figure 7).

Since the parameters of the MF are interdependent among themselves, in the case
of large scale problems, the tuning process becomes an optimization problem on a
very complex search space. This, of course, affects the good performance of the
optimization methods. A good alternative to solve this problem is the lateral tuning
of MFs [17]. This approach makes use of the linguistic 2-tuples representation [28]
which simplifies the search space and, therefore, eases the derivation of optimal
models, particularly in complex or high-dimensional problems. In order to better
handle the complex search space that the tuning of MFs represents, in this work, we
analyze the use of the DGAs when performing a lateral tuning of the MFs.

In the next subsection, we describe the efficient lateral tuning of FRBSs. Then,
the sequential evolutionary algorithm proposed in [17] to perform the lateral tuning
of FRBS is briefly described.
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4.1 Lateral Tuning of FRBSs: The Linguistic 2-Tuples
Representation

In [17], a new procedure for FRBSs tuning was proposed. It is based on the lin-
guistic 2-tuples representation scheme introduced in [28], which allows the lat-
eral displacement of the support of a label and maintains the interpretability at a
good level. This proposal introduces a new model for rule representation based
on the concept of symbolic translation [28]. The symbolic translation of a label
is a number in [−0.5,0.5) which expresses its displacement between two adjacent
lateral labels (see Figure 8.a). Let us consider a generic linguistic fuzzy partition
S = {s0, . . . ,sL−1} (with L representing the number of labels). Formally, we repre-
sent the symbolic translation of a label si in S by means of the 2-tuple notation,

(si,αi), si ∈ S, αi ∈ [−0.5,0.5). (1)

The symbolic translation of a label involves the lateral variation of its associated
MF. Figure 8 shows the symbolic translation of a label represented by the 2-tuple
(s2,−0.3) together with the associated lateral variation.

Fig. 8. Symbolic Translation of a Label and Lateral Displacement of the associated MF

In the context of FRBSs, the linguistic 2-tuples could be used to represent the
MFs used in the linguistic rules. This way to work, introduces a new model for rule
representation that allows the tuning of the MFs by learning their respective lat-
eral displacements. Next, we present this approach by considering a simple control
problem.

Let us consider a control problem with two input variables (X1,X2), one output
variable (Y ) and an initial DB defined by experts to determine the MFs for the fol-
lowing labels:

• X1: Error→{Negative,Zero,Positive}
• X2: ∇Error→{Negative,Zero,Positive}
• Y : Power→ {Low,Medium,High}
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Based on this DB definition, examples of classic and linguistic 2-tuples repre-
sented rules are:

• Classic Rule:
Ri: If the Error is Zero and the ∇Error is Positive Then the Power is High.

• Rule with 2-Tuples Representation:
Ri: If the Error is (Zero,0.3) and the ∇Error is (Positive, -0.2) Then the Power
is (High, -0.1).

With respect to the classic tuning, usually considering three parameters in the
case of triangular MFs, this way to work involves a reduction of the search space
that eases a fast derivation of optimal models, improving the convergence speed and
avoiding the necessity of a large number of evaluations.

In [17], two different rule representation approaches have been proposed, a global
approach and a local approach. The global approach tries to obtain more inter-
pretable models, while the local approach tries to obtain more accurate ones. In
our case, tuning is applied at the level of linguistic partitions (global approach). By
considering this approach, the label sv

i of a variable v is translated with the same αv
i

value in all the rules where it is used, i.e., a global collection of 2-tuples is used in
all the fuzzy rules.

Notice that from the parameters αv
i applied to each label we could obtain the

equivalent triangular MFs. Thus, an FRBS based on linguistic 2-tuples can be rep-
resented as a classic Mamdani FRBS [51]. Refer to [17] for further details on this
approach.

4.2 Sequential Algorithm for the Lateral Tuning of FRBSs

In [17], an effective sequential GA was proposed to perform a lateral tuning of
previously obtained FRBSs. A short description of this algorithm is given below
(see [17] for a detailed description).

As the basis optimization procedure the genetic model of CHC [52] was used.
Evolutionary model of CHC makes use of a “Population-based Selection” approach.
N parents and their corresponding offsprings are combined to select the best N indi-
viduals to compose the next population. The CHC approach makes use of an incest
prevention mechanism and a restarting process to provoke diversity in the popula-
tion, instead of the well known mutation operator.

This incest prevention mechanism is considered in order to apply the crossover
operator, i.e., two parents are crossed if their hamming distance divided by 2 is
higher than a predetermined threshold, T . Since a real coding scheme is considered,
each gene is transformed by considering a Gray Code with a fixed number of bits
per gene (BITSGENE) determined by the system expert. In our case, the threshold
value is initialized as:

T = (#GenesCT ∗BITSGENE)/4.0. (2)
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Following the original CHC scheme, T is decreased by one when the population
does not change in one generation. In order to avoid very slow convergence, T is
also decreased by one when no improvement is achieved with respect to the best
chromosome of the previous generation. The algorithm restarts when T is below
zero. A scheme of the evolutionary model of CHC is shown in Figure 9.

Initialize population

and THRESHOLD

Crossover of

N parents

Evaluation of the

New individuals

THRESHOLD < 0.0
Restart the population

and THRESHOLD

yes

no

Selection of the

best N individuals

If NO new  individuals,

decrement THRESHOLD

Fig. 9. Scheme of CHC

In the following, the components used to design the evolutionary tuning pro-
cess are explained. They are: DB codification and initial gene pool, fitness function,
crossover operator and restarting process.

4.2.1 Data Base Codification and Initial Population

A real coding scheme is considered, i.e., the real parameters are the GA representa-
tion units (genes). Let us consider n system variables and a fixed number of labels
per variable L. Then, a chromosome has the following form (where each gene is
associated to the tuning value of the corresponding label),

(α1
1 , . . . ,αL

1 ,α1
2 , . . . ,αL

2 , . . . ,α1
n , . . . ,αL

n ) (3)

To make use of the available information, the initial FRBS obtained from an auto-
matic fuzzy rule learning method is included in the population as an initial solution.
To do so, the initial pool is obtained with the first individual having all genes with
value ‘0.0’, and the remaining individuals generated at random in [-0.5, 0.5).

4.2.2 Fitness Function

To evaluate a given chromosome the well-known Mean Square Error (MSE) is used:

MSE =
1

2 ·N
N

∑
l=1

(F(xl)− yl)2, (4)

with N being the data set size, F(xl) being the output obtained from the FRBS
decoded from the said chromosome when the l-th example is considered and yl

being the known desired output.



250 I. Robles et al.

4.2.3 Crossover Operator

The crossover operator is based on the the concept of environments. These kinds
of operators show a good behavior in real coding. Particularly, the BLX-α operator
[53] is considered.

This operator allows tuning the degree of exploration and exploitation of the
crossover in an easy way. BLX-α crossover works as follows: let us assume that
X = (x1, . . . ,xg) and Y = (y1, . . . ,yg) with xi,yi ∈ [ai,bi) = [−0.5,0.5) ⊂ R(i =
1, . . . ,g) are the two real-coded chromosomes that are going to be crossed. Using the
BLX-α crossover, one descendant Z = (z1, . . . ,zg) is obtained, where zi is randomly
(uniformly) generated within the interval [li,ui], with li = max{ai,cmin−A}, ui =
min{bi,cmax + A}, cmin = min{xi,yi}, cmax = max{xi,yi} and A = (cmax− cmin) ·α .

Figure 10 shows how the BLX-α operator works at different stages of the evolu-
tion process.

Fig. 10. Different cases/stages of the application of the BLX-α crossover operator, where α
= 0.5

4.2.4 Restarting Process

To get away from local optima, this algorithm uses a restart approach [52]. In this
case, the best chromosome is maintained and the remaining are generated at random
within the corresponding variation intervals [-0.5, 0.5). It follows the principles of
CHC [52], performing the restart procedure when the threshold T is below zero.

5 A Distributed Genetic Algorithm for the Lateral Tuning of
FRBSs

One of the problems when performing tuning with complex data sets is the com-
plexity of the search space. Sometimes even an advanced GA can not deal with the
complex search space in terms of time and quality of the results.
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Gradual Distributed Real-Coded Genetic Algorithms (GDRCGAs) are a kind of
heterogeneous DGAs based on real coding where subpopulations apply genetic op-
erators in different levels of exploitation/exploration. This heterogeneous applica-
tion of genetic operators produce a parallel multiresolution which allows a wide
exploration of the search space and effective local precision. Due to appropiate con-
nections between subpopulations in order to gradually exploit multiresolution, these
algorithms achieve refinement or expansion of the best emerging zones of the search
space.

In order to analyze how DGAs can help the tuning problem, we have selected
an efficient GDRCGA [27], that keeps a good balance between exploration and ex-
ploitation of the search space. As we said before, we apply this algorithm to perform
a lateral tuning of previously obtained FRBSs. In this section, we describe the dif-
ferent characteristics of the DGA used: topology, migrations scheme and the main
components of the different subpopulations.

5.1 Main Components of the DGA

The GDRCGA [27] used for FRBS tuning employs 8 subpopulations in a hypercube
topology as seen in Figure 11.

E1

E2E3

E4

e4 e1

e3 e2

Back side (Exploitation)

Front side (Exploration)

+

+ -

-

Fig. 11. Hypercube topology for GDRCGA

In this topology two important groups of subpopulations can be clearly identified:

1. Front side: this side of the hypercube is oriented to explore the search space.
In this side, four subpopulations, E1, ...,E4, apply genetic operators adapted for
exploration in a clockwise increasing degree.

2. Back side: subpopulations in the back side of the hypercube, e1, ...,e4, apply
exploitation oriented genetic operators in a clockwise increasing degree.
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One of the key elements of DGAs is the migration policy of individuals between
subpopulations. In this particular model, an immigration process [54] is achieved
since the best chromosome in every subpopulation abandons it and moves to an
immediate neighbor. Due to this immigration policy, three different immigration
movements can be identified depending on the subpopulations involved:

1. Refinement migrations: individuals in the back side move clockwise to the im-
mediate neighbor, i.e. from e2 to e3. Chromosomes in the front side move coun-
terclock from a more exploratory subpopulation to a less exploratory oriented
one.

2. Expansion migrations: individuals in the back side move counterclock to the
immediate neighbor and chromosomes in the front side move clockwise from a
less exploratory subpopulation to a more exploratory oriented one, i.e. from E4

to E1.
3. Mixed migrations: subpopulations from one side of the hypercube exchange

their best individual with the counterpart subpopulation in the other side: inter-
change between Ei and ei, i = 1 . . .4.

Figure 12 shows the three different migration movements described above.

E1

E2E3

E4

e4 e1

e3 e2

E1

E2E3

E4

e4 e1

e3 e2

E1

E2E3

E4

e4 e1

e3 e2

Refinement migrations Expansion migrations

Mixed migrations

Fig. 12. Three different migration movements for the GDRCGA

As stated in [27], the frequency in which migration movements occur is crucial to
avoid the classic withdraws of DGAs: the conquest and noneffect problems. In order
to reduce the negative effect of these problems, immigrants stay in the receiving
subpopulations for a brief number of generations. Besides, a restart operator is used
to avoid stagnation of the search process. This restart operator randomly reinitializes
all subpopulations if non-significant improvement of the best element is achieved for
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a number of generations. Also an elitism strategy is used in order to keep the best
adapted individual of every subpopulation.

5.2 Common Components of Individual Subpopulations

The main component used in the different subpopulations of the distributed model
are:

• DB codification and initial subpopulations: the coding scheme used to repre-
sent the displacement parameters is the same one described in section 4.2.1 for
the specialized sequential algorithm. Each subpopulation is also initialized in the
same way explained in section 4.2.1, i.e., by including the initial FRBS as the
first individual in each subpopulation and the remaining individuals generated at
random.

• Selection mechanism: linear ranking selection (LRS) [55] with stochastic uni-
versal sampling [56]. Using LRS the selective pressure can be easily adjusted. In
LRS, the individuals are sorted in order of decreasing raw fitness, and then the
selection probability, ps, of each individual Ii is computed according to its rank
rank(Ii), with rank(Ibest) = 1, by using the following non-increasing assignment
function:

ps(Ii) =
1
N
· (ηmax− (ηmax−ηmin) · rank(Ii)−1

N−1
) (5)

where N is the population size, and ηmin ∈ [0,1] specifies the expected number
of copies for the worst individual. The selection pressure is determined by ηmin.
If ηmin is low, high pressure is achieved. The values of ηmin used for each sub-
population are shown in Table 1.

Table 1. Values of ηmin for each subpopulation

Exploitation Exploration
+ ← − − → +
e4 e3 e2 e1 E1 E2 E3 E4

0,9 0,7 0,5 0,1 0,9 0,7 0,5 0,1

• Crossover operator: the crossover operator used, BLX-α , is the same that was
used in the specialized sequential algorithm and it is described in section 4.2.3.
As stated before, distinct parameter values are used between subpopulations in
order to achieve different degrees of exploitation/exploration. The values used
for each subpopulation are shown in Table 2.

In the absence of selection pressure, values of α , which are α < 0.5 make the
subpopulations converge towards values in the center of their ranges, producing
low diversity levels in the population and inducing a possible premature conver-
gence towards non-optimal solutions. Only when α = 0.5, there is a balanced
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relationship reached between convergence (exploitation) and divergence (explo-
ration). In this case, the probability that a gene will lie in the exploration interval
is equal to the probability that it will lie in an exploration interval [53].

Table 2. Values of α for each subpopulation

Exploitation Exploration
+ ← − − → +
e4 e3 e2 e1 E1 E2 E3 E4

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8

• Mutation operator: non-uniform mutation operator [57] applied with probabil-
ity Pmut = 0.125. This operator is one of the most used mutation operators in
real-coded GAs. The mutation operator works as follows. Let Xt = (xt

1, . . . ,x
t
n)

the chromosome selected for mutation. This operator generates a mutated chro-
mosome Xt+1 = (xt+1

1 , . . . ,xt+1
n ) where:

xt+1
i =

{
xt

i + Δ(t,xu
i − xt

i) if r ≤ 0.5

xt
i−Δ(t,xt

i− xl
i) otherwise

(6)

where t is the current generation number and r is an uniformly distributed random
number between 0 and 1. xl

i and xu
i are lower and upper bounds of the i-th gene

of the chromosome. The function Δ(t,y) is defined as follows:

Δ(t,y) = y(1−u(1− t
T )b

) (7)

where u is an uniformly distributed random number between 0 and 1, T is the
maximum number of generations and b is a parameter determining the strength
of the mutation.

6 Empirical Evaluation

In this section, we analize the empirical results we obtained in order to assess the
merits of the distributed approach when applied to lateral tuning of MFs. To evaluate
the usefulness of the studied approach, we have used four real-world problems.
Table 3 summarizes the main characteristics of the four datasets and shows the link
to the KEEL software tool webpage [58] (http://www.keel.es/) from which they can
be downloaded.

The studied distributed algorithm described in Section 5 (GDRCGA) is com-
pared with the specialized sequential GA (CHC) [17] in terms of quality of the
solutions achieved (MSE) as well as in running time. In both cases, the well-known
ad-hoc data-driven learning algorithm of Wang and Mendel [59] is applied to ob-
tain an initial set of candidate linguistic rules. The initial linguistic partitions are
comprised of five linguistic terms in the case of datasets with less than 9 variables
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Table 3. Data sets used to evaluate the algorithm

Data set Variables Instances
Electrical Maintenance 5 1056

Abalone 9 4177
Weather-Izmir 10 1461

Treasury 16 1049

and three linguistic terms in the remaining ones. We consider strong fuzzy parti-
tions of triangular-shaped MFs. Once the initial RB is generated, the different post-
processing algorithms can be applied.

A five-fold cross-validation approach has been used, i.e., we randomly split the
data set into 5 folds, each containing the 20% of the patterns of the data set, and
used four folds for training and the other for testing. So, a total of five runs have
been carried out with different independent test sets. For each dataset, we therefore
consider the average results of the five runs. The average results of the initial FRBSs
obtained by the Wang and Mendel algorithm are shown in Table 4 (initial reference
results).

Table 4. Initial mean squared errors and deviations in both, training and test sets, obtained by
Wang & Mendel

Dataset Training σtra Test σtest

Electrical M. 57606 2841 57934 4733
Treasury 1.636 0.121 1.632 0.182

Weather-Izmir 6.944 0.720 7.368 0.909
Abalone 3.341 0.130 3.474 0.247

An interesting point to be taken into account is the evolution of the MSE as the
number of evaluations increases. So, three different numbers of evaluations have
been choosen: 10000, 25000 and 50000 evaluations per run. The results in terms of
quality of the solutions attained are shown in Table 5. An important fact to notice is
that the MSE achieved with the distributed method is lower than the error obtained
with the specialized GA in all data sets at 50000 evaluations. The distribuited ap-
proach also obtains good results with fewer iterations in some cases (e.g. Electrical
Maintenance with 25000 iterations), but clearly its real effectiveness will be reached
when the computation load is higher.

Generally, when comparing a distributed or parallel approach with any other se-
quential algorithm, an interesting measure is the execution time gain ratio. This ratio
could be defined as follows:

R =
Tseq

Tdist
(8)
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Table 5. Mean squared errors in training and test sets obtained by CHC and GDRCGA. The
winner for each pair of training is in italics. The winner for each pair of test is boldfaced

CHC GDRCGA
Data set Evaluations Training Test Training Test

Electrical 10000 2.59363671E+04 2.92591821E+04 2.65539710E+04 2.89024830E+04

Maintenance
25000 2.48690100E+04 2.80510895E+04 2.39248797E+04 2.67720415E+04
50000 2.46214328E+04 2.78282761E+04 2.26682075E+04 2.54097540E+04

Abalone
10000 2.61355003E+00 2.79981355E+00 2.65916770E+00 2.79026550E+00
25000 2.60333453E+00 2.79298130E+00 2.59992700E+00 2.76143590E+00
50000 2.60303744E+00 2.79117626E+00 2.57035010E+00 2.75904570E+00

Weather-Izmir
10000 1.68875432E+00 1.89318352E+00 1.89195950E+00 1.95458830E+00
25000 1.64117336E+00 1.86996710E+00 1.66238700E+00 1.87669540E+00
50000 1.64010963E+00 1.86891124E+00 1.57019250E+00 1.86195430E+00

Treasury
10000 1.71238672E-01 1.86722425E-01 2.12486800E-01 2.16882700E-01
25000 1.33618274E-01 1.50895419E-01 1.42194200E-01 1.67407400E-01
50000 1.20604483E-01 1.37784224E-01 1.15845500E-01 1.31803000E-01

where Tseq is the time spent by the sequential algorithm and Tdist is the execution
time of the distributed approach. The higher the value of R, the better. Time gain
ratio values obtained in the empirical experimentation are shown in Table 6.

Table 6. Time gain ratio with 50000 evaluations

Data set Tseq Tdist R
Electrical Maintenance 187,3 391,6 0,479

Trasury 525,3 739,7 0,710
Weather-Izmir 849,8 867,1 0,980

Abalone 1980,9 942,5 2,101

In Table 6, the time gain ratio, R, increases with the problem complexity. In the
less complex data sets the ratio obtained is substantially lower because the sequen-
tial specialized GA is very fast and the time spent in communications of the dis-
tributed approach slows it down in comparison. As the complexity of the data set
increases the time gain ratio also increases, showing that the distributed approach in
the most complex data set is more than two times faster than the sequential special-
ized GA. The distributed algorithm takes longer than the sequential algorithm when
dealing with small size data sets mainly due to two reasons: interprocess communi-
cation in the distributed approach implies additional execution time which can not
be parallelized and the specialized algorithm is optimized for small size data sets
where the search space is not too complex.

On the other hand, observation of the evolution of the MSE is also an interesting
factor to take into account. Two different data sets have been choosen in order to
study the evolution of the MSE: Electrical Maintenance and Treasury. These two
data sets were choosen because of their different complexity: Treasury data set is
far more complex than Electrical Maintenance.
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Fig. 13. Evolution of the MSE in training (convergence): Electrical Maintenance and Treasury
datasets

Figure 13 shows the convergence of both algorithms in both problems. Due to
the distributed nature of the algorithm and consequently the spatial separation im-
plied, it needs more evaluations to converge than the sequential algorithm. It always
presents the same behaviour in comparision to the sequential approach: with a small
number of evaluations it yields a higher error than the sequential one, but when the
number of evaluations is high it gives solutions with a better quality.

As it has been stated, the distributed approach needs more iterations to achieve
convergency for complex data sets. This situation can be observed in Figure 13 (right
side): GDRCGA achieves better MSE values when the search process has consumed
two thirds of the number of evaluations. On the other hand, when dealing with less
complex data sets like Electrical Maintenance (Figure 13 left side), the distributed
approach quickly achieves better MSE values from almost the begining of the search
process and keeps gaining distance from the sequential CHC algorithm. In fact,
GDRCGA begins achieving better MSE values shortly after the search process has
consumed one third of the number of evaluations available. These two situations can
be also verified in Table 5.

Besides studying the evolution of the MSE in training (convergence), it is also in-
teresting to analyze the effects that it produces on the MSE in test regarding the same
data sets. Figure 14 shows the MSE in test of Treasury and Electrical Maintenance
datasets. Again, we can observe that the distributed approach needs more evalu-
ations to outperform the sequential algorithm in the more complex problem (see
Figure 14 right side) while better results are obtained practically from the beginning
in the simpler one (see Figure 14 left side). However, two interesting characteristics
can be highlighted. Firstly, the evolution in the test error shown by GDRCGA seems
quite more stable in both problems. Secondly, GDRCGA shows practically the same
trend in training and test in both datasets, while the sequential approach worsen the
test error once the half of the evaluations are consumed in the more complex dataset
(overfitting). These characteristic are quite recommendable in the fuzzy modeling
framework.



258 I. Robles et al.

Fig. 14. Effects on the MSE in test: Electrical Maintenance and Treasury data sets

7 Conclusions and Final Remarks

In this chapter, we have presented an study on the use of the DGAs for the lateral
tuning of FRBSs. To this end, we have analyzed the performance of a specific GDR-
CGA employing 8 subpopulations in a hypercube topology [26]. This algorithm has
been compared with the specialized GA presented in [17] to perform the lateral
tuning of FRBSs.

From the empirical results obtained, we can conclude that as the complexity of
the problem grows, the distributed approach outperforms the specialized sequential
algorithm. Moreover, the distributed procedure makes effective use of the wall time
in relation to the computing times required by the sequential algorithm. Also, when
dealing with complex search spaces, the distributed approach is able to converge
to better quality solutions than the sequential algorithm. This behaviour makes the
distributed tuning algorithm very useful when dealing with large scale problems
where the complexity of the search space is high.

Since execution time and quality of the results are two properties always in con-
flict somehow, the distributed approach could be graduated in order to achieve faster
execution times with a small cost in quality and viceversa.
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16. Alcalá, R., Alcalá-Fdez, J., Casillas, J., Cordón, O., Herrera, F.: Hybrid learning models

to get the interpretability-accuracy trade-off in fuzzy modeling. Soft Computing 10(9),
717–734 (2006)
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