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Abstract—The nested generalized exemplar theory accom-
plishes learning by storing objects in Euclidean n-space, as
hyperrectangles. Classification of new data is performed by
computing their distance to the nearest “generalized exemplar”
or hyperrectangle. This learning method permits to combine
the distance-based classification with the axis-parallel rectangle
representation employed in most of the rule-learning systems.
This contribution proposes the use of evolutionary algorithms
to select the most influential hyperrectangles to obtain accurate
and simple models in classification tasks. The proposal is
compared with the most representative nearest hyperrectangle
learning approaches and the results obtained show that the
evolutionary proposal outperforms them in accuracy and
requires storing a lower number of hyperrectangles.

I. INTRODUCTION

One of the possible schemes for learning from examples is
based on Nested Generalized Exemplar (NGE) theory. It was
introduced in [1] and makes several significant modifications
to the exemplar-based learning model. The most important
one is that it retains the notion of storing verbatim examples
in memory but, it also allows examples to be generalized.
In NGE theory, generalizations take the form of hyperrect-
angles in a Euclidean n-space. The hyperrectangles may be
nested one inside another and inner hyperrectangles serve
as exceptions to surroundings hyperrectangles. A specific
instance can be viewed as a minimal hyperrectangle and
hyperrectangle is an axis-parallel rectangle representation
employed in most of the rule-learning systems.

Several works argue the benefits of using hyperrectangles
together with instances to form the classification rule [2],
[3], [4]. With respect to instance-based classification [5], the
employment of hyperrectangles increases the comprehension
of the data stored to perform classification of unseen data
and the achievement of a substantial compression of the
data, reducing the storage requirements. Considering rule
induction [6], the ability of modeling decision surfaces
by hybridizations between distance-based methods (Voronoi
diagrams) and parallel axis separators could improve the
performance of the models in domains with clusters of
exemplars or exemplars strung out along a curve. In ad-
dition, NGE learning allows capture generalizations with
exceptions.

The methods used for generating nearest hyperrectangles
classification work in an incremental fashion, such as EACH
[1], or in batch mode (BNGE [2] and RISE [3]). The
incremental way is dependant on the order of presentation of
examples and offers poor results in standard classification.
However, it could be used in on-line learning scenarios.
Batch mode methods employ heuristics to determine the
choice of the exemplars to be merged or generalized in each
stage. The results offered are very interesting and usually
outperform the results obtained by the 1-nearest neighbour
(1NN) classifier, usually used as baseline method.

The problem of creating an optimal number of hyperrect-
angles to classify a set of points is NP-hard but a finite subset
of relevant hyperrectangles can be easily obtained following
a heuristic algorithm. Most of the hyperrectangles obtained
could be irrelevant and this set of hyperrectangles is thus
suitable to be improved by a reduction technique [7] or pro-
totype selection method [8]. Evolutionary Algorithms (EAs)
[9] have been used for data reduction with promising results.
They have been successfully used for feature selection [10],
[11], [12] and instance selection [13], [14], [8].

In this contribution, we propose the use of EAs for
hyperrectangles selection in classification tasks. One similar
approach is SIA [15], which is a genetics-based machine
learning method to obtain set of rules allowing to compute
distances among rules. Our objective is to increase the
accuracy of this type of representation by means of selecting
the best suitable set of hyperrectangles which optimizes the
nearest hyperrectangle classification rule. We compare our
approach with BNGE and RISE. The empirical study has
been contrasted via non-parametrical statistical testing [16],
[17], the results show an improvement of accuracy whereas
the number of hyperrectangles stored in the final subset is
much lower.

To achieve this objective, the rest of the contribution is
organized as follows: Section II gives an explanation about
hyperrectangle learning. In Section III, the evolutionary
algorithm used to tackle this problem is explained. In Section
IV the experimentation framework and the results and their
analysis are presented. Finally, in Section V, we point out
our conclusion.
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II. LEARNING WITH HYPERRECTANGLES

This section provides an overview on learning with hyper-
rectangles. First, we explain the needed concepts to under-
stand the classification rule followed by this type of methods
(Subsection II-A). After this, the two main proposals of
hyperrectangle learning will be briefly described, BNGE in
Subsection II-B and RISE in Subsection II-C.

A. Matching and Classification

The matching process in one of the central features in
hyperrectangle learning and it allows some customization, if
desired. This process computes the distance between a new
example and an exemplar memory object (a hyperrectangle).
For remainder of this contribution, we will refer to the
example to be classified as E and the hyperrectangle as H ,
independently of H is formed by an unique instance or it
has some volume.

The model computes a match score between E and H
by measuring the Euclidean distance between two objects.
The Euclidean distance is well-known when H is a single
point. In case contrary, the distance is computed as follows
(numeric attributes):

DEH =

√√√√ M∑
i=1

(
difi

maxi −mini

)2

where

difi =


Efi −Hupper when Efi > Hupper

Hlower − Efi when Efi < Hlower

0 otherwise

M is the number of attributes of the data, Efi is the value
of the ith feature of the example, Hupper and Hlower are
the upper and lower values of H for a specific attribute and
maxi and mini are the maximum and minimum values for
ith feature in training data, respectively.

The distance measured by this formula is equivalent to the
length of a line dropped perpendicularly from the point Efi

to the nearest surface, edge or corner of H . Note that points
internal to a hyperrectangle have distance 0 to that rectangle.
In the case of overlapping rectangles, a point falling in the
area of overlap belongs to the smaller rectangle. The size of
a hyperrectangle is defined in terms of volume. In nominal
attributes, if the features are equal, the distance is zero, else
it is one.

NGE theory also refers to weights associated to features
in examples but they are not considered in this contribution,
because they can be used independently to enhance the
performance of this type of learners, as [2] showed.

B. BNGE: Batch Nested Generalized Exemplar

BNGE is a batch version of NGE (also known as EACH
[1]) and it is proposed to alleviate some drawbacks presented
in initial NGE [2]. It changes its incremental fashion to a
batch mode and adds some modifications in the matching
rule, such as including all possible nominal values in hyper-
rectangle definition and adding a mechanism to deal with
missing values. The generalization of a hyperrectangle is
done by expanding its frontiers just to cover the desired
example.

BNGE only merges hyperrectangles if the new gener-
alized hyperrectangle dos not cover (or overlap with) any
hyperrectangles from any other classes. It does not permit
overlapping or nesting, which are two of the identified
disadvantages of the basic NGE.

C. RISE: Unifying Instance-Based and Rule-Based Induc-
tion

RISE [3] is an approach proposed to overcome some of
the limitations of instance-based learning and rule induction
by unifying the two. It follows similar guidelines explained
above, but it furthermore introduces some improvements
regarding distance computations, since the SVDM distance
[18] is used in nominal attributes. RISE selects the rule
with the highest accuracy (using the Laplace correction used
by many existing rule-induction techniques [6]) instead of
choosing the smallest rule that covers the example.

BNGE and RISE follow a similar mechanism to produce
hyperrectangles. They start from the complete training set
and try to merge the nearest examples/hyperrectangles if the
global accuracy is not decreased. RISE uses a leave-one-out
methodology to compute training accuracy and no avoidance
of nesting or overlapping between hyperrectangles is used
as well.

III. EVOLUTIONARY SELECTION OF HYPERRECTANGLES

The approach proposed in this contribution, named Evo-
lutionary Hyperrectangle Selection by CHC (EHS-CHC), is
fully explained in this section. First, we introduce the CHC
model used as EA to perform hyperrectangle selection in
Subsection III-A. After this, the specific issues regarding
representation and fitness function complete the description
of the proposal in Subsection III-B.

A. CHC Model

As evolutionary computation method, we have used the
CHC model [19], [14]. CHC is a classical evolutionary
model that introduces different features to obtain a trade-
off between exploration and exploitation; such as incest
prevention, reinitialization of the search process when it
becomes blocked and the competition among parents and
offspring into the replacement process.

During each generation the CHC develops the following
steps.
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• It uses a parent population of size N to generate an
intermediate population of N individuals, which are
randomly paired and used to generate N potential
offspring.

• Then, a survival competition is held where the best N
chromosomes from the parent and offspring populations
are selected to form the next generation.

CHC also implements a form of heterogeneous recombi-
nation using HUX, a special recombination operator. HUX
exchanges half of the bits that differ between parents, where
the bit position to be exchanged is randomly determined.
CHC also employs a method of incest prevention. Before
applying HUX to the two parents, the Hamming distance
between them is measured. Only those parents who differ
from each other by some number of bits (mating threshold)
are mated. The initial threshold is set at L/4, where L is the
length of the chromosomes. If no offspring are inserted into
the new population then the threshold is reduced by one.

No mutation is applied during the recombination phase.
Instead, when the population converges or the search stops
making progress (i.e., the difference threshold has dropped
to zero and no new offspring are being generated which
are better than any member of the parent population) the
population is reinitialized to introduce new diversity to
the search. The chromosome representing the best solution
found over the course of the search is used as a template
to reseed the population. Reseeding of the population is
accomplished by randomly changing 35% of the bits in the
template chromosome to form each of the other N − 1 new
chromosomes in the population. The search is then resumed.

B. Representation and Fitness Function

Let us assume that there is a training set TR with P
instances which consists of pairs (xi, yi), i = 1, ..., P , where
xi defines an input vector of attributes and yi defines the
corresponding class label. Each one of the P instances
has M input attributes. Let us also assume that there is
a hyperrectangle set HS with N hyperrectangles which
consists of pairs (Hi, yi), i = 1, ..., N , where Hi defines
set of conditions (A1, A2, ..., AM ) and yi defines the corre-
sponding class label. Each one of the N hyperrectangles has
M conditions which can be numeric conditions, expressed
in terms of minimum and maximum values in interval
[0, 1]; or they can be categorical conditions, by using set of
possible values Ai = {v1i, v2i, ..., vvi}, where vji denotes
all possible nominal values for attribute i, assuming that ir
has v different values. Note that we make no distinction
between a hyperrectangle with volume and minimal hyper-
rectangles formed by isolated points. Let S ⊆ HS be the
subset of selected hyperrectangles resulted in the run of a
hyperrectangle selection algorithm.

Hyperrectangle selection can be considered as a search
problem in which EAs can be applied. We take into account

two important issues: the specification of the representation
of the solutions and the definition of the fitness function.

• Representation: The search space associated is consti-
tuted by all the subsets of HS. This is accomplished by
using a binary representation. A chromosome consists
of N genes (one for each hyperrectangle in HS) with
two possible states: 0 and 1. If the gene is 1, its
associated hyperrectangle is included in the subset of
HS represented by the chromosome. If it is 0, this does
not occur.

• Fitness Function: Let S be a subset of hyperrectangles
of HS and be coded by a chromosome. We define a
fitness function based on the accuracy (classification
rate) evaluated over TR through the rule described in
Section II-A.

Fitness(S) = α · clas rat+ (1− α) · perc red.

clas rat denotes the percentage of correctly classified
objects from TR using S. per red is defined as

perc red = 100 · |HS| − |S|
|HS|

The objective of the EAs is to maximize the fitness
function defined, i.e., maximize the classification rate
and minimize the number of hyperrectangles selected.
We preserve the value of α = 0.5 used in previous
works related to instance selection [13], [14], [8].
The same mechanisms to perform a classification of
a unseen example exposed in [1] are used in our
approach. In short, they are:

– If no hyperrectangle covers the example, the class
of the nearest hyperrectangle defines the predic-
tion.

– If various hyperrectangles cover the example, the
one with lowest volume is the chosen to predict the
class, allowing exceptions within generalizations.

Our approach computes the volume of a hyperrectangle
by the following way:

VH =
M∏
i

Li

where Li is computed for each condition as

Li =


Hupper −Hlower

if numeric and Hupper 6= Hlower

1 if numeric and Hupper = Hlower

num. values selected
v if nominal

• There is a detail not specified yet. It refers to the
building of the initial set of hyperrectangles. In this
first approach, we have used a heuristic which is fast
and obtain acceptable results. The heuristic yields a
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Table I
SUMMARY DESCRIPTION FOR CLASSIFICATION DATA SETS

Data Set #Ex. #Atts. #Num. #Nom. #Cl. Data Set #Ex. #Atts. #Num. #Nom. #Cl.
australian 690 14 8 6 2 iris 150 4 4 0 3
breast 286 9 0 9 2 led7digit 500 7 0 7 10
bupa 345 6 6 0 2 lymphography 148 18 3 15 4
cleveland 297 13 13 0 5 newthyroid 215 5 5 0 3
contraceptive 1,473 9 6 3 3 pima 768 8 8 0 2
crx 125 15 6 9 2 sonar 208 60 60 0 2
ecoli 336 7 7 0 8 wine 178 13 13 0 3
glass 214 9 9 0 7 wisconsin 683 9 9 0 2
haberman 306 3 3 0 2 zoo 101 17 0 17 7

hyperrectangle from each examples in the training set.
For each one, it finds the K − 1 nearest neighbours
being the Kth neighbour an example of different class.
Then each hyperrectangle is built getting the minimal
an maximal values (in case of numerical attributes)
to represent the interval in such attribute or getting
all the different categorical values (in case of nominal
attributes) of all the examples belonging to its set of
K − 1 neighbours. Once all the hyperrectangles are
obtained, the duplicated ones are removed (keeping one
representant in each case), hence |HS| ≤ |TR|. Note
that point hyperrectangles are possible to be obtained
using this heuristic.

IV. EXPERIMENTAL FRAMEWORK AND RESULTS

This section describes the methodology followed in the
experimental study of the hyperrectangles learning tech-
niques compared. We will explain the configuration of the
experiment: used data sets and parameters for the algorithms.
The algorithms used in the comparison are: 1NN [5], BNGE
[2] and RISE [3].

Table II
PARAMETERS CONSIDERED FOR THE ALGORITHMS.

Algorithm Parameters
BNGE It has not parameters to be fixed
RISE Q = 1, S = 2
EHS-CHC Pop = 50, Eval = 10000, α = 0.5

A. Experimental Framework

Performance of the algorithms is analyzed by using 18
data sets taken from the UCI Machine Learning Database
Repository [20]. The main characteristics of these data sets
are summarized in Table I. For each data set, it shows the
number of examples (#Ex.), number of attributes (#Atts.),
number of numerical attributes (#Num.), number of nominal
attributes (#Nom.) and number of classes (#Cl.).

The data sets considered are partitioned using the ten fold
cross-validation (10-fcv) procedure. The parameters of the
used algorithms are presented in Table II.

B. Results and Analysis

Table III shows the results in test data obtained by the
algorithms compared using the accuracy measure. The best
case in each data set is stressed in bold.

Table III
ACCURACY OBTAINED BY THE HYPERRECTANGLE LEARNING METHODS

STUDIED

dataset 1NN BNGE RISE EHS-CHC
australian 0.8145 0.8464 0.8058 0.8478

bre 0.6535 0.6327 0.6710 0.7346
bupa 0.6108 0.6481 0.6468 0.6167

cleveland 0.5314 0.5837 0.4919 0.5583
contraceptive 0.4277 0.4733 0.4494 0.4983

crx 0.7957 0.8391 0.8159 0.8464
ecoli 0.8070 0.8302 0.7621 0.7948
glass 0.7361 0.6654 0.6946 0.6287

haberman 0.6697 0.6862 0.6405 0.7122
iris 0.9333 0.9600 0.9400 0.9267

led7digit 0.4020 0.6260 0.6520 0.6820
lym 0.7387 0.7996 0.7612 0.8334

newthyroid 0.9723 0.9537 0.9580 0.9632
pima 0.7033 0.7318 0.6432 0.7384
sonar 0.8555 0.6021 0.7690 0.7650
wine 0.9552 0.9660 0.9438 0.9490

wisconsin 0.9557 0.9628 0.9456 0.9599
zoo 0.9281 0.9683 0.9683 0.9300

AVERAGE 0.7495 0.7653 0.7533 0.7770

Table IV shows the average number of hyperrectangles
(or rules) obtained by each one of the methods considered
(obviously, excluding 1NN).

From Tables III and IV, the following aspects can be
pointed out:

• EHS-CHC proposal obtains the best average result
in accuracy. It outperforms the other hyperrectangle
learning methods (BNGE and RISE) and 1NN.

• We have to remark that EHS-CHC obtained the best
accuracy rates in 8 of 18 data sets, 6 of which present
nominal attributes. Note that in 6 of 7 data sets (all
except zoo data set) with nominal values, EHS-CHC
outperforms the rest of methods. This behaviour could
be very interesting when dealing with hybrids data sets
that contains both numeric and categorical information.

• The number of hyperrectangles needed by EHS-CHC
to achieve such accuracy rates is much lower than the
needed by BNGE and RISE.
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Table IV
AVERAGE NUMBER OF HYPERRECTANGLES OBTAINED BY THE

HYPERRECTANGLE LEARNING METHODS STUDIED

dataset BNGE RISE EHS-CHC
australian 232.3 226 5.7

bre 82.1 208.7 4.9
bupa 184.3 201.5 9.8

cleveland 125.9 161.7 5
contraceptive 1208 1018.4 12.7

crx 106.9 286.9 6.1
ecoli 88.6 169.2 11.1
glass 78.5 92.2 12.2

haberman 212.4 132.4 4.4
iris 12 37.1 3.4

led7digit 403 279 10.5
lym 29.9 81 6.2

newthyroid 17.3 33.9 4.7
pima 326.9 436.9 11
sonar 64.3 59.1 10.3
wine 10.9 29.7 3.6

wisconsin 66.3 182.9 3.8
zoo 8.9 25.6 5.6

AVERAGE 181.03 203.46 7.28

• In some data set, the number of hyperrectangles se-
lected by EHS-CHC is a little higher or equal to the
number of classes, indicating us that it is able to learn
general concepts, in terms of rules, which collect the
most relevant examples of each class. It is the case of
cleveland, iris, led7digit, wine and zoo data sets.

We have included a second type of table accomplishing
a statistical comparison of methods over multiple data sets.
It is recommended a set of simple, safe and robust non-
parametric tests for statistical comparisons of classifiers [16],
[17]. One of them is Wilcoxon Signed-Ranks Test [21].
Table V collects results of applying Wilcoxon’s test between
our proposed methods and the rest of algorithms studied in
this contribution over the 18 data sets considered. This table
is divided into two parts:

• In the first part, the measure of performance used is the
accuracy classification in test set.

• In the second part, we accomplish Wilcoxon’s test by
using as performance measure the number of hyperrect-
angles yielded.

Each part of this table contains one column, representing
our proposed methods, and Na rows where Na is the number
of algorithms considered in this study. In each one of the
cells can appear three symbols: +, = or -. They represent
that the proposal outperforms (+), is similar to (=) or is
worse (-) in performance than the algorithm which appears
in the column (Table V). The value in brackets is the p-value
obtained in the comparison and the level of significance
considered is α = 0.05.

We make a brief analysis of results summarized in Table
V:

• The use of Wilcoxon’s test confirms the improvement
caused by EHS-CHC over RISE. However, there is no

Table V
WILCOXON’S TEST RESULTS OVER ACCURACY AND NUMBER OF

HYPERRECTANGLES OBTAINED

EHS-CHC EHS-CHC
algorithm Accuracy num. hyperrec.
1NN = (.170) —
BNGE = (.777) + (.001)
RISE + (.031) + (.001)

statistical evidence of the improvement over BNGE and
1NN, although the behaviour in accuracy between our
proposal and each one of them is similar.

• The number of hyperrectangles obtained by EHS-CHC
is clearly much inferior than the obtained by BNGE
and RISE.

• With similar performance in accuracy but with a much
lower quantity of hyperrectangles, EHS-CHC can be
considered a competitive approach in hyperrectangle
learning.

V. CONCLUSIONS

The purpose of this contribution is to present a proposal
of Evolutionary Hyperrectangle selection for hyperrectangle
learning based on NGE theory. The results show that our
proposal obtains very accurate models with a low number
of hyperrectangles. The accuracy of the approach is very
competitive with respect to classical hyperrectangle learning
methods, such as BNGE and RISE, and 1-nearest neighb-
bour classifier. The interpretability of the models obtained
is significantly increased.

REFERENCES

[1] S. Salzberg, “A nearest hyperrectangle method,” Machine
Learning, vol. 6, pp. 151–276, 1991.

[2] D. Wettschereck and T. G. Dietterich, “An experimental com-
parison of the nearest-neighbor and nearest-hyperrectangle
algorithms,” Machine Learning, vol. 19, pp. 5–27, 1995.

[3] P. Domingos, “Unifying instance-based and rule-based induc-
tion,” Machine Learning, vol. 24, pp. 141–168, 1996.

[4] O. Luaces and A. Bahamonde, “Inflating examples to obtain
rules,” International Journal of Intelligent Systems, vol. 18,
no. 11, pp. 1113–1143, 2003.

[5] D. W. Aha, D. Kibler, and M. K. Albert, “Instance-based
learning algorithms,” Machine Learning, vol. 6, no. 1, pp.
37–66, 1991.

[6] J. Fürnkranz, “Separate-and-conquer rule learning,” Artificial
Intelligence Review, vol. 13, no. 1, pp. 3–54, 1999.

[7] D. R. Wilson and T. R. Martinez, “Reduction techniques
for instance-based learning algorithms,” Machine Learning,
vol. 38, no. 3, pp. 257–286, 2000.

[8] S. Garcı́a, J. R. Cano, and F. Herrera, “A memetic algorithm
for evolutionary prototype selection: A scaling up approach.”
Pattern Recognition, vol. 41, no. 8, pp. 2693–2709, 2008.

521



[9] A. E. Eiben and J. E. Smith, Introduction to Evolutionary
Computing. Springer-Verlag, 2003.

[10] D. Whitley, R. Beveridge, C. Guerra, and C. Graves, “Messy
genetic algorithms for subset feature selection.” in Proceed-
ings of the International Conference on Genetic Algorithms,
1998, pp. 568–575.

[11] C. Guerra-Salcedo, S. Chen, D. Whitley, and S. Smith, “Fast
and accurate feature selection using hybrid genetic strategies.”
in CEC, 1999, pp. 177–184.

[12] X. Wang, J. Yang, X. Teng, W. Xia, and R. Jensen, “Feature
selection based on rough sets and particle swarm optimiza-
tion.” Pattern Recognition Letters, vol. 28, no. 4, pp. 459–471,
2007.

[13] J. R. Cano, F. Herrera, and M. Lozano, “Using evolutionary
algorithms as instance selection for data reduction in KDD:
an experimental study.” IEEE Transactions on Evolutionary
Computation, vol. 7, no. 6, pp. 561–575, 2003.

[14] ——, “Evolutionary stratified training set selection for
extracting classification rules with trade-off precision-
interpretability.” Data and Knowledge Engineering, vol. 60,
pp. 90–108, 2007.

[15] G. Venturini, “SIA: A supervised inductive algorithm with
genetic search for learning attributes based concepts,” in
ECML, 1993, pp. 280–296.
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