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ABSTRACT
One of the main problems that arises when using gene ex-
pression programming (GEP) conditions in learning classi-
fier systems is the increasing number of symbols present as
the problem size grows. When doing model-building LCS,
this issue limits the scalability of such a technique, due to the
cost required. This paper proposes a binary representation
of GEP chromosomes to paliate the computation require-
ments needed. A theoretical reasoning behind the proposed
representation is provided, along with empirical validation.

Categories and Subject Descriptors:
I.5.2 [Pattern Recognition]: Design Methodology - clas-
sifier design and evaluation

General Terms: Algorithms

Keywords: machine learning, genetic algorithms, gene ex-
pression programming, classifier systems

1. INTRODUCTION
There have been interesting results when attempting to

use GEP-based[1] conditions in learning classifier systems
[5]. Despite its flexibility, when used in model-building LCS,
there is a scalability limitation [3]. This limitation comes
from the arity of the individuals growing linearly with the
problem size. Such a growth usually leads to the population
sizes requiring an exponential growth. This paper presents a
possible solution to this problem by using a different repre-
sentation of the GEP chromosome. We begin presenting an
alternative representation, followed by a theoretical analysis
of the advantages. Then, we construct a set of experiments
to test the proposed representation and to confirm its mer-
its. Finally, we analyze the results from our experiments,
and discuss their meaning and relevance.

2. BINARY REPRESENTATION AND GEP
The proposed representation provides:

1. An arity χ = 2.

2. A logarithmic increase of the population size encoding
requirements respect the number of symbols.
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3. A Hamming distance bound between any two func-
tions’ representation: d(f1, f2) <= log2(nFunctions)

This representation uses its first bit to distinguish between
functions and variables/constants. If the bit string starts
with a ’1’, this indicates a variable/constant, and the fol-
lowing bits encode what variable or constant it is (constants
follow inmediately after the last variable in the problem, as
is shown in the example). Otherwise, it is a function, and
again the following bits determine which one it is. Non-
coding bits are ignored. The number of bits to encode a
symbol can be calculated as

bPS = 1 + max(dlog2(nFunctions)e,
dlog2(nConstants+ nV ariables)e). (1)

For instance, let us assume a problem with nV ariables =
30 variables, and let the maximum number of constants
nConstants = 10, and to have nFunctions = 6 different
possible functions. Substituting in (1),

bPS = 1 + max(3, 6) = 7. (2)

The representations of some different possible symbols are:

• 3rd function = 0011 ∗ ∗∗ (∗ represents a non-coding
bit).

• 23rd variable = 1010111.

• 4th constant = 1100010. (The 4th constant is the
equivalent to the nV ariables + 4 variable, so it is the
34th variable in our example).

3. THEORETICAL ANALYSIS
Goldberg[2] gives a theoretical bound for the population

size needed for BB signal:

s = O(m log(m) · χk), (3)

where s is the population size, m is the number of building
blocks, χ is the arity of the alphabet in our representation
and k is the size of the building block. Given a χ-ary rep-
resentation scheme, a building block of size two gives us
m = 1, χ = N (where N = dimensionality of the problem,
in the worst case nV ariables+nConstants+nFunctions),
k = 2. From these values, we can substitute in (3) and we
obtain

s = O(N2), (4)



so the population size grows quadratically with the problem
size.

With a binary representation, the building block size de-
pends on the distance between the symbols we are learning:
k = 2(d+1), where d is the Hamming distance. Substituting
in our population size formula (3), we get

s = O(log(N) log(log(N)) ∗ 22(d+1)). (5)

Since we have an upper bound for the Hamming distance
(d = log2(N)), we can solve (5) to get

s = O(log(N) log(log(N)) ∗ 22 log(N))

= O(log(N) log(log(N)) ∗N2). (6)

Since we chose to separate functions and terminals, we can
bound the maximum Hamming distance when working with
functions to d <= log2(nFunctions); and since nFunctions
is constant, we can solve (5) to get a new theoretical predic-
tion for the binary representation:

s = O(log(N) log(log(N))). (7)

4. EXPERIMENTS AND RESULTS
The aim of the paper was to study how the population size

required for model building grows as a function of the prob-
lem size. The tests were run using ECGA’s model building
algorithm, probing the population size needed to extract the
correct building blocks as the problem size increases. In or-
der to consider a population size to be successful, it has to
extract either all the correct building blocks or all of them
but one in 19 out of 20 runs. To perform the testing, an
artificial population of the desired size was built to apply
the model building to.

We performed two independent experiments. In the first
one, we seek confirmation for the hypothesis stating that
the Hamming distance is the real measure of difficulty when
trying to model a building block composed by two symbols,
doing it with variables: x or y. For this experiment, in
the binary case, we did a worst-case study, by fixing x and
y to be as far away from each other as possible, in terms
of Hamming distance (ie, a population size of 128 actually
means hDistance = log2(128) = 7).

The second experiment was designed to probe the effec-
tiveness of the designed representation when dealing with
functions only. In this experiment, we ignored the termi-
nals that would need to be present in order to have a le-
gal expression, and focused only on the BB formed by the
functions. What this means is that, for an expression like
(xi or xj) and not xk, this experiment would only
focus on the functions (or)and(not), ignoring the variables.

According to the theoretical analysis presented previously,
equivalent results for both tests when using a χ-ary repre-
sentation are to be expected, following equation (4); while
the binary representation should follow (6) for the first ex-
periment, and (7) for the second one, showing a significant
improvement over the χ-ary representation in the second
experiment.

In the first experiment, for the binary case, the growth
follows (6), and in the χ-ary one it follows (4), so there
is a slight advantage for the χ-ary representation. Again,
it should be noted that in the binary case we conducted a
worst-case analysis, while the χ-ary one has the same results
independently of the symbols involved.

Figure 1: Population size as a function of problem
size for binary vs χ-ary representations when learn-
ing (or)and(not)

Figure 1 shows the results obtained in the second experi-
ment. Results accurately match the theoretical model pro-
posed. This a key result of this study, since it shows a real
improvement in the population size needed for model build-
ing when dealing with relationships between functions.

5. DISCUSSION AND CONCLUSIONS
We have designed a new representation for LCS using

GEP that, in theory, can outperform the commonly used χ-
ary representation when working with functions. However,
the binary representation has a slightly worse performance
than the χ-ary one when dealing with relationships between
variables/constants.

The performance improvement is the first step towards
solving the scalability limitations to effectively using GEP
conditions model-building LCS. The empirical data matches
remarkably closely the one predicted by the equations de-
rived from theory, which gives us confidence that we can
develop solutions based on this theory.
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