
ORIGINAL PAPER

Evaluating a local genetic algorithm as context-independent local
search operator for metaheuristics

Carlos Garcı́a-Martı́nez • Manuel Lozano

Published online: 8 October 2009

� Springer-Verlag 2009

Abstract Local genetic algorithms have been designed

with the aim of providing effective intensification. One of

their most outstanding features is that they may help

classical local search-based metaheuristics to improve their

behavior. This paper focuses on experimentally investi-

gating the role of a recent approach, the binary-coded local

genetic algorithm (BLGA), as context-independent local

search operator for three local search-based metaheuristics:

random multi-start local search, iterated local search,

and variable neighborhood search. These general-purpose

models treat the objective function as a black box, allowing

the search process to be context-independent. The results

show that BLGA may provide an effective and efficient

intensification, not only allowing these three metaheuristics

to be enhanced, but also predicting successful applications

in other local search-based algorithms. In addition, the

empirical results reported here reveal relevant insights on

the behavior of classical local search methods when they

are performed as context-independent optimizers in these

three well-known metaheuristics.

Keywords Local evolutionary algorithms �
Local search-based metaheuristics �
Context-independent local search � Intensification �
Discrete parameter optimization

1 Introduction

About 30 years ago, a new family of search and optimi-

zation algorithms arose based on extending basic heuristic

methods by including them into an iterative framework

augmenting their exploration capabilities. This group of

advanced approximate algorithms received the name

metaheuristics (MHs) (Glover and Kochenberger 2003;

Siarry and Michalewicz 2008) and an overview of various

existing methods is found in Blum and Roli (2003). MHs

have proven to be highly useful for approximately solving

difficult optimization problems in practice because they

may obtain good solutions in a reduced amount of time.

Most MHs are flexible and applicable to a wide range of

optimization problems, allowing the design of general-

purpose (also called context-independent) optimizers

(Campos et al. 2005; Gortazar et al. 2008), which have a

long tradition in the field of operations research. Context-

independent refers to methods that do not take advantage of

problem structure to search the solution space because they

have no knowledge of specific characteristics of the

objective function. They operate by treating the objective

function evaluation as a black box. The solution repre-

sentation is the only information that could be considered

part of the problem context. Nowadays, general-purpose

optimization is an issue in several commercial tools such as

OptQuest (by OptTek Systems, Inc.) and Evolver (by

Palisade Corp.).

Intensification and diversification are two major issues

when designing MHs. Diversification generally refers to

the ability to visit different parts of the search space when

needed, in order to avoid wasting computation time,

whereas intensification concerns the exploitation of the

collected search experience to obtain high-quality solu-

tions. A search algorithm should strike a tactical balance

C. Garcı́a-Martı́nez (&)

Department of Computing and Numerical Analysis,

University of Córdoba, 14071 Córdoba, Spain

e-mail: cgarcia@uco.es

M. Lozano

Department of Computer Science and Artificial Intelligence,

University of Granada, 18071 Granada, Spain

123

Soft Comput (2010) 14:1117–1139

DOI 10.1007/s00500-009-0506-1

between these two sometimes-conflicting goals. Blum and

Roli (2003) define an I&D component as any algorithmic

or functional component that has an intensification and/or

diversification effect on the search process. Examples are

genetic operators, perturbations of probability distributions,

the use of tabu lists, or changes in the objective function.

Thus, I&D components are operators, actions, or strategies

of MHs.

Local search (LS) algorithms start from one initial

solution and iteratively try to replace the current solution

by a better one in an appropriately defined neighborhood

of the current solution (they may be categorized as tra-

jectory MHs (Blum and Roli 2003), because the search

process performed by these methods is characterized by

a trajectory in the search space). LS algorithms may

effectively and quickly explore the basin of attraction of

optimal solutions, finding an optimum with a high degree

of accuracy and within a small number of iterations, i.e.,

they show a clear intensification trend. Despite of their

distant origins (Dunham et al. 1963), LS methods remain

the object of study of many researchers (Boros et al.

2007; Brimberg et al. 2008; Fournier 2007). The main

interest on these algorithms comes from the fact that

they are used as intensification component of specific

MHs (LS-based MHs) that are state-of-the-art for many

optimization problems. LS-based MHs settle in the

Multi-start Methods framework (Marti 2003; Martı́ et al.

2009) because they intend to exploit a local search

procedure, by applying it from multiple initial solutions.

LS-based MHs include, among others, Random Multi-

start LS (Boender et al. 1982; Marti 2003), Greedy

Randomized Adaptive Search Procedures (Resende and

Ribeiro 2003), Ant Colony Optimization (Dorigo and

Stützle 2004), Iterated LS (ILS) (Lourenço et al. 2003),

Variable Neighborhood Search (VNS) (Hansen and

Mladenović 2002), and Scatter Search (Laguna 2003).

Genetic Algorithms (GAs) (Goldberg 1989; Holland

1975) are population-based MHs that mimic the metaphor

of natural biological evolution. These algorithms have

recently received increased interest because they offer

practical advantages to researchers facing difficult opti-

mization problems (they may locate high performance

regions of vast and complex search spaces). Other advan-

tages include the simplicity of the approach, their flexi-

bility, their robust response to changing circumstances, and

the existence of public libraries that implement them, such

as ECJ1 or JCLEC (Ventura et al. 2008), which is included

in the KEEL data mining library (Alcalá-Fdez et al. 2009).

Precisely, the flexibility offered by the GA paradigm

allows specialized models to be obtained with the aim of

providing intensification (Garcı́a-Martı́nez and Lozano

2008; Lozano and Garcı́a-Martı́nez 2010). Some compo-

nents of GAs may be specifically designed and their

strategy parameters tuned, in order to provide an effective

refinement. In fact, several GAs that specialize in intensi-

fication have been presented with this purpose (Kazarlis

et al. 2001; Lozano et al. 2004; Noman and Iba 2008).

They are denominated local GAs (LGAs) (Garcı́a-Martı́nez

and Lozano 2008). Initial studies on these algorithms have

shown they present two appealing features:

• LGAs may improve the performance of classical LS

algorithms. Most LS algorithms lack the ability to

follow the proper path to the optimum on complex

search spaces. This difficulty becomes much more

evident when the search space contains very narrow

paths of arbitrary direction, also known as ridges. That

is due to most LS algorithms attempt successive steps

along orthogonal directions that do not necessarily

coincide with the direction of the ridge. However, it

was observed that LGAs are capable of following

ridges of arbitrary direction in the search space

regardless of their direction, width, or even, disconti-

nuities (Kazarlis et al. 2001).

• LGAs may help classical LS-based MHs to improve

their behavior. LGAs may easily assume the role of LS

operator in LS-based MHs (i.e., they may be employed

as intensification components), obtaining, in this way, a

new class of MHs, which may be called LGA-based

MHs. Most examples appeared in the literature are

approaches of Memetic Algorithms (Gang et al. 2007;

Kazarlis et al. 2001; Lozano et al. 2004; Mutoh et al.

2006; Noman and Iba 2008; O’Reilly and Oppacher

1995; Soak et al. 2006) and Random Multi-start LS

(Garcı́a-Martı́nez and Lozano 2008; Garcı́a-Martı́nez

et al. 2006). Nevertheless, the outstanding role played

by LS-based MHs at present justifies the investigation

of new alternative LGA-based MH approaches, being

able to enhance their performance. In this way, the

study of LGA-based MHs is, nowadays, an insightful

line of research.

This paper focuses on a recent approach of LGA, Bin-

ary-coded Local Genetic Algorithm (BLGA) (Garcı́a-

Martı́nez and Lozano 2008; Garcı́a-Martı́nez et al. 2006).

It is a GA with binary representation that applies a

crowding replacement method in order to favor the for-

mation of species occupying the niches of the fitness

landscape. Then, BLGA performs an oriented LS process

to a new solution, in the niches close to that solution.

Our main objective is to provide new results and insights

on the application of LGAs as LS operator for LS-based

MHs. Specifically, we present an empirical analysis of

BLGA as context-independent LS operator for Random

Multi-start LS (Boender et al. 1982; Marti 2003), ILS1 http://cs.gmu.edu/eclab/projects/ecj/.

1118 C. Garcı́a-Martı́nez, M. Lozano

123

http://cs.gmu.edu/eclab/projects/ecj/

(Lourenço et al. 2003), and VNS (Hansen and Mladenović

2002). They are particularly interesting, because they allow

us to analyze the combination of the intensification power of

BLGA with very specific, but general and well-understood,

diversification techniques: random (Random Multi-start

LS), adjustable (ILS), and adaptive (VNS) mechanisms. On

the other hand, these MHs were never considered as basis for

designing LGA-based MHs. In our opinion, these results are

relevant to forecast the advantages of applying BLGA in

other LS-based MHs, such as Ant Colony Optimization or

Memetic Algorithms.

The paper is set up as follows. In Sect. 2, we give an

overview of the existing research on LGAs. In Sect. 3, we

provide a complete description of BLGA. In Sect. 4, we

design the empirical framework, describing the test func-

tions and four baseline LS methods. In Sect. 5, we compare

the performance of a Random Multi-start LS algorithm

using BLGA with other MH approaches based on classical

LS methods. We also investigate the way effectiveness and

efficiency of BLGA affect the operation of the Random

Multi-start LS algorithm. In Sect. 6, we study the benefits

of an ILS method that uses BLGA as local optimizer in

comparison to other ILS methods based on classical LS

methods. In Sect. 7, we analyze the BLGA behavior within

a VNS algorithm, putting special attention on examining

the way it couples with the underlying diversification

strategy in VNS that attempts to renew, at every iteration,

the best solution so far. In Sect. 8, we develop an empirical

study comparing previous algorithms when they have much

computation resources at their disposal. Finally, in Sect. 9,

we provide the main conclusions of this work and examine

future research lines.

2 Local genetic algorithms

GAs (Goldberg 1989; Holland 1975) rely on the concept of

a population of individuals (representing search points in

the space of potential solutions to a given problem), which

undergo probabilistic operators such as crossover, muta-

tion, and selection to evolve toward increasingly better

fitness values of the individuals.

Traditionally, GAs have been applied following two

different ways:

• As autonomous MHs, i.e. carefully designing their

components to provide both diversification and inten-

sification with the aim of obtaining reliable and

accurate solutions at the same time.

• As diversification algorithms that are combined with LS

procedures, forming hybrid MHs (Talbi 2002). An

example are Memetic Algorithms (Krasnogor and Smith

2005; Moscato 1999).

However, due to the flexibility of the GA architecture, it

is also possible to design GA models specifically providing

intensification (Lozano and Garcı́a-Martı́nez 2010). In fact,

several studies use carefully designed GA models with the

unique purpose of obtaining accurate solutions (Kazarlis

et al. 2001; Lozano et al. 2004; Noman and Iba 2008).

These GA models are called LGAs (Garcı́a-Martı́nez and

Lozano 2008). Next, we review some outstanding LGA

models presented in the literature.

Earlier LGA approaches are GAs with enhanced inten-

sification abilities that work together with other indepen-

dent GAs in a cooperative manner within a distributed

framework (where a migration mechanism produces a

chromosome exchange between them). For example, Potts

et al. (1994) use four GAs, denoted as species I–IV, which

apply different mutation probabilities. Species IV is a LGA

that attempts to achieve high intensification by using a low

mutation probability. Tsutsui et al. (1997) combine an

explorer GA and an exploiter one. The former explores the

search space, whereas the second one searches the neigh-

borhood of the best solution obtained so far. The exploiter

GA uses a fine-grained mutation and a population with half

the size of the explorer one. Finally, Herrera and Lozano

(2000) propose to combine several real-coded GAs that

apply different real-parameter crossover operators. These

operators are differentiated according to their associated

exploration and exploitation properties and the degree

thereof (the distance between offspring and parents is

gradually different from one GA to another). In this case,

the exploitative real-coded GAs may be clearly categorized

as LGAs.

Later, different authors stressed the convenience of

employing LGAs as LS procedures for Memetic Algo-

rithms. These algorithms combine a master Evolutionary

Algorithm in charge of the global search with a LS oper-

ator, which is executed within the Evolutionary Algorithm

run, looking for a synergy that takes benefits from both.

The classic scheme of Memetic Algorithms (Krasnogor and

Smith 2005; Moscato 1999) applies the LS procedure to the

solutions obtained by the Evolutionary Algorithm with the

aim of improving the accuracy of the population members.

Several Memetic Algorithms have been presented that use

micro GAs (GAs with a small population and short evo-

lution) to refine the members of the population:

• The micro GA presented in Kazarlis et al. (2001) is a

GA with five individuals that encode perturbations of a

solution given by the Evolutionary Algorithm.

• The one in Lozano et al. (2004) is a crossover hill-

climbing operator that is specifically designed to tackle

real parameter optimization. This operator is a micro

selecto-recombinative real-coded GA that maintains a

pair of parents (one parent is the solution to be refined

Evaluating a local genetic algorithm 1119

123

and the other is the current best solution in the

population) and performs repeatedly crossover on this

pair until some number of offspring is reached. Then,

the best offspring is selected and replaces the worst

parent, only if it is better. The key idea of crossover

hill-climbing operator is to take advantage of the self-

adaptive ability of some crossover operators for real

coding, which sample offspring according to the parent

distribution without any adaptive parameter, to induce

an effective local tuning.

• Other researchers have extended this LGA model

(Wang et al. 2009). In particular, in Noman and Iba

(2008), an adaptive crossover hill-climbing operator,

which adaptively adjusts the length of the refinement

process, is proposed for Memetic Algorithms based on

Differential Evolution.

• Recent micro GA models embedded in Memetic

Algorithms may be found in Mutoh et al. (2006) and

Soak et al. (2006).

The feature that makes these LGA models well suited as

operators for Memetic Algorithms is that they allow high-

quality solutions to be reached with few fitness function

evaluations. Other LGA approaches have been proposed as

subordinate algorithm for Memetic Algorithms. In Gang

et al. (2007), a Memetic Algorithm is presented for the

traveling salesman problem, which includes a LGA aimed

at refining partial subtours within the solutions of the

master algorithm.

Nowadays, researchers notice that LGAs may be

incorporated into other LS-based MHs, playing the same

role as the LS component but more satisfactorily. This

methodology stands for a prospective line of research to

design integrative hybrid MHs (Raidl 2006; Talbi 2002)

that was not very explored in the past. We have only found

two examples in the literature: Binary-coded Local GA

(Garcı́a-Martı́nez et al. 2006; Garcı́a- Martı́nez and Lozano

2008), described in the next section and Global and Local

Real-coded GAs (Garcı́a-Martı́nez et al. 2008). In the latter

case, the authors propose a procedure that determines

female and male parents in the population of real-coded

GAs that apply parent-centric crossover operators. This

procedure makes possible the design of Global Real-coded

GAs and Local Real-coded GAs (i.e. LGAs), which are

differentiated according to the considered number of

female members. Furthermore, they combine these GA

models according to the GA then LS idea (Chelouah and

Siarry 2003; Harada et al. 2006): first, they run the Global

Real-coded GA during a determinate percentage of the

available evaluations, and then, they perform the Local

Real-coded GA.

Finally, there is also promising progress on the design of

Evolutionary Algorithms for intensification from Estimation

of Distribution Algorithms (Lima et al. 2006; Sastry and

Goldberg 2004), Ant Colony Optimization Algorithms (Blum

2002; Kong et al. 2008; Randall 2006), and Evolution

Strategies applying covariance matrix adaptation (CMA-ES)

(Auger and Hansen 2005). All these models can be gathered

into a new framework called Local Evolutionary Algorithms.

The interested reader is also referred to Lozano and Garcı́a-

Martı́nez (2010) for an overview on Evolutionary Algorithms

specializing in intensification and diversification.

3 Binary-coded local genetic algorithm

In this section, we describe BLGA, a recent LGA approach

that may be used as context-independent LS in LS-based

MHs. It is a steady-state GA (Sywerda 1989; Whitley

1989) that inserts one single new member into the popu-

lation (P) at each iteration. It uses a crowding replacement

method (restricted tournament selection (Harik 1995)) in

order to force a member of the current population to perish

and to make room for the new offspring. It is important

to know that the selected replacement method favors

the formation of species in P occupying the niches of the

fitness landscape. In nature, a niche is an environmental

subspace that can support different types of life (species, or

organisms). In a multimodal optimization domain, each

peak can be thought of as a niche, and solutions that locate

in that region form a species. Therefore, species consist of

similar solutions populating promising regions of the

search space (see Fig 2).

BLGA performs LS by orienting the search in the

nearest niches to an external chromosome, the leader

chromosome (CL). In particular, it iteratively crosses over

CL with individuals of the population belonging to species

close to CL; and then, the best solution between CL and the

offspring becomes the new leader solution, and the other

one is inserted in the population by means of the replace-

ment method (see Fig. 1).

Fig. 1 General schema of BLGA

1120 C. Garcı́a-Martı́nez, M. Lozano

123

An outstanding feature of BLGA is that it performs LS

by describing a trajectory in the search space, as classical

LS procedures do. Most LS algorithms follow a hill-

climbing paradigm; they commence from a single solution

and, at each step, a candidate solution is generated using a

move operator of some sort. They simply move the search

from the current solution to a candidate solution if the

candidate has better fitness. The basic idea of BLGA is to

use hill-climbing as the move accepting criterion of the

search and crossover as the move operator. This scheme of

LS based on crossover was first suggested by Jones (1995)

and O’Reilly and Oppacher (1995), and it has been fol-

lowed to obtain different LGA approaches (Lozano et al.

2004; Noman and Iba 2008). The main novelty of BLGA

concerns the acquisition of information about the location

of the best search regions (by favoring the formation of

species), which is then employed to generate individuals

around CL by means of the crossover operator.

An important aspect when using BLGA in LS-based

MHs is that P should undergo initialization only once, at

the beginning of the corresponding MH run, and not at

every invocation as LS operator. This way, BLGA may

form stable species and employ accumulated search expe-

rience from previous refinements to enhance future ones. In

the following sections, we explain, in detail, the main

components of BLGA.

3.1 General scheme of BLGA

Let us suppose that a particular LS-based MH applies

BLGA as LS procedure. When this MH calls BLGA to

refine a particular solution, BLGA will consider this solu-

tion as CL and then, the following steps are carried out:

1. Mate selection: m chromosomes (Y1; Y2; . . .; Ym) are

selected from the population applying m times the

positive assortative mating (Sect. 3.2).

2. Crossover: CL is crossed over with Y1; Y2; . . .; Ym by

the multi-parent uniform crossover operator with short

term memory, generating an offspring Z (Sect. 3.3).

3. Update of the leader solution and replacement: if Z is

better than CL; then CL is inserted into the population

using the restricted tournament selection (Sect. 3.4)

and Z becomes the new CL: Otherwise, Z is inserted in

the population using the same replacement scheme.

All these steps are repeated until a termination condition

is attained (Sect. 3.5).

3.2 Positive assortative mating

Assortative mating is the natural occurrence of mating

between individuals of similar phenotype more or less

often than expected by chance. Mating between individuals

with similar phenotype more often is called positive

assortative mating and less often is called negative assor-

tative mating. Fernandes and Rosa (2001, 2008) implement

these ideas to design two mating selection mechanisms. A

first parent is selected by the roulette wheel method and

nass chromosomes are selected with the same method (in

BLGA, all the candidates are selected at random). Then,

the similarity between each of these chromosomes and the

first parent is computed (similarity between two binary-

coded chromosomes is defined as the Hamming distance

between them). If assortative mating is negative, then the

one with less similarity is chosen. If it is positive, the

chromosome more similar to the first parent is chosen to be

the second parent. BLGA always applies positive assorta-

tive mating. In addition, the first parent is always CL and

the method is repeated m times, in order to obtain m

parents.

In BLGA, positive assortative mating is in charge of

locating the relevant information for the task of optimizing

CL: The selected method identifies this information as the

one represented by the closest species to CL: Figure 2

shows the effect of crossing over CL with individuals from

the nearest species (dark circles). This way, the vicinity of

CL is explored in a biased way (Ishibuchi et al. 2009).

3.3 Multi-parent uniform crossover operator with short

term memory

BLGA applies a multi-parent version of parametrized uni-

form crossover (Spears and De Jong 1991; Sywerda 1989)

to create offspring in the proximity of CL: Parametrized

uniform crossover creates offspring from two parents, by

choosing genes from the first parent with probability pf :

Notice that, applying a high pf value, the offspring is gen-

erated near to the first parent. The multi-parent approach

receives CL and a set of mates (Y ¼ fY1; Y2; . . .; Ymg).

Fig. 2 CL optimization by BLGA

Evaluating a local genetic algorithm 1121

123

Then, it creates offspring with genes from CL; with proba-

bility pf ; and genes from members of the set of mates.

In addition, two mechanisms are added to ensure that

new genetic material is provided:

• A short term memory mechanism ensures that new

offspring are sampled in different regions, from those

where previous offspring have been sampled, within the

proximity of CL: To do this, the mechanism stores in a

memory (M) the genes where there are differences

between CL and any previously generated offspring of

the current CL (M ¼ fi : zk
i 6¼ cL

i ; 8Zk sampled off-

spring from current CL }). Then, differences between

CL and the new offspring in those genes are avoided. At

the beginning, and every time CL is replaced by a better

offspring, M is emptied.

• At last, if Z is equal to CL (there were no changes), a

random gene zi such that i is not in M, is flipped.

The pseudocode of the crossover operator with short

term memory is shown in Fig. 3, where Uð0; 1Þ is a random

number in ½0; 1�; RIð1;mÞ is a random integer in

f1; 2; . . .;mg; and pf is the probability for choosing genes

from CL: In addition, Fig. 4 shows an application example.

There, M has been represented as a binary vector where, Mi

equal to 1 indicates that the ith gene is in M, and therefore,

zi should be equal to cL
i ; and Z incorporates genes from

random mates with low probability, which update M when

they produce a change with regards to CL: Finally, to sum

up, it creates the offspring Z as follows:

• zi is equal to cL
i for all i in M.

• If i is not in M, then zi is also equal to cL
i with

probability pf : Otherwise, zi is equal to the ith gene of a

randomly chosen parent Yj: The memory is updated if zi

and cL
i are different.

• Finally, if Z and CL are equal, then a random chosen

gene zi such that i is not in M, is flipped and the

memory is updated.

3.4 Restricted tournament selection

Crowding methods (Mahfoud 1992) attempt to maintain

stable species within the niches of the fitness landscape by

means of the replacement procedure as follows: new

individuals are more likely to replace existing individuals

in the parent population that are similar to themselves

based on genotypic similarity. They have been used for

locating and preserving multiple local optima in multi-

modal functions.

BLGA uses restricted tournament selection (Harik

1995), a crowding method that replaces the chromosome

more similar to the one being inserted in the population,

from a set of nT randomly selected ones (pseudocode is

shown in Fig. 5). The application of this crowding method

together with the use of a high population size may favor

the creation of fitted species in the population. Later,

BLGA uses them as relevant information sources for the

task of locally optimizing CL:

3.5 Stop condition

It is important to notice that when all the genes of CL have

been marked by the short term memory (Sect. 3.3), BLGA

will not further improve CL; because crossover operator

will create new solutions exactly equal to CL: Therefore,

Fig. 3 Pseudocode of multi-parent uniform crossover operator with

short term memory

Fig. 4 Crossover application example

1122 C. Garcı́a-Martı́nez, M. Lozano

123

this condition will be used to stop the refinement process

and to return the resultant CL to the LS-based MH.

4 Experimental framework

We have carried out different experiments to assess the

performance of BLGA as context-independent LS in three

different BLGA-based MHs: Random Multi-start LS, ILS,

and VNS. In order to do this, we have compared BLGA

with, to our knowledge, the most representative context-

independent LS methods for binary combinatorial optimi-

zation problems, and their corresponding LS-based MHs:

• First LS (FirstLS) (Blum and Roli 2003; Davis 1991;

Dunham et al. 1963) flips a random selected bit of the

current solution and accepts the sampled solution if it is

better.

• Best LS (BestLS) (Blum and Roli 2003; Davis 1991;

Dunham et al. 1963) flips each bit of the current

solution and chooses the one that makes the best

improvement.

• K-opt LS (Kopt) (Katayama and Narihisa 2005; Merz

and Katayama 2004) is a variant from Lin-Kernighan

LS (Lin and Kernighan 1973), which has shown being a

powerful component of Memetic Algorithms when

solving the traveling salesman problem (Nguyen et al.

2007; Ray et al. 2007; Tsai et al. 2004). Kopt tries to

change a variable number of bits of the current solution

to choose the best sampled one. In every iteration, it

produces a sequence of Dim solutions (Dim is the

problem dimension) by 1-flip based sub-moves leading

from one solution to another. The flipped bit is the one

making the best improvement, even when it results in a

worse solution. At the end of the iteration, the best

solution in the sequence is adopted as the new current

solution for the next iteration. Such process is repeated

until no better solution is found. To produce the

sequence, the 1-flip based moves are sequentially

performed so that each bit of the current solution is

flipped no more than once. All Dim solutions in the

sequence are different and each solution differs one to

Dim bits from the current solution. Since the best

solution is selected from the resulting sequence, the

hamming distance between that solution and the current

one is variable in each iteration of the algorithm.

• RandK-opt LS (RandK) (Katayama and Narihisa 2001;

Merz and Katayama 2004) performs the same as Kopt

but, the sequence is produced by flipping a random bit

that makes an improvement, if it exists, or the one that

makes the less detriment, otherwise.

To assess the performance of BLGA as a context-inde-

pendent LS operator, we will carry out experiments on a

test suite composed by 22 binary optimization problems of

different nature, selected from the literature (Appendix 1).

Table 1 shows the name of the tackled problems, their

dimension, maximum number of evaluations allowed, and

fitness value of the global optimum. All of them have been

formulated as maximization problems.

We should indicate that one advantage of LS procedures

over other heuristics is that, when solving some problems,

the search space can be searched very efficiently: instead of

Fig. 5 Restricted tournament selection

Table 1 Tackled problems

Fnc Name Dim FEs f �

1 Deceptive 39 105 390

2 Trap(1) 36 105 220

3 M-Sat(100,1200,3) 100 105 1a

4 M-Sat(100,2400,3) 100 105 1a

5 NkLand(48,4) 48 105 1a

6 NkLand(48,12) 48 105 1a

7 PPeaks(50,50) 50 105 1

8 PPeaks(50,100) 100 105 1

9 PPeaks(50,150) 150 105 1

10 PPeaks(50,200) 200 105 1

11 PPeaks(50,250) 250 105 1

12 PPeaks(100,100) 100 105 1

13 BQP(50) 50 105 2,098b

14 BQP(100) 100 105 7,970b

15 BQP(250) 250 105 45,607b

16 BQP(500) 500 106 116,586b

17 Maxcut(G10) 800 106 2485.08e

18 Maxcut(G12) 800 106 621d

19 Maxcut(G17) 800 106 Not known

20 Maxcut(G18) 800 106 1063.4c

21 Maxcut(G19) 800 106 1082.04e

22 Maxcut(G43) 1,000 106 7,027d

a 1 is the maximum possible fitness value, however, there may not

exist any optimal solution with that fitness value, depending on the

current problem instance
b Best known values presented in Beasley (1998)
c Upper bounds presented in the literature
d Upper bounds presented in the literature
e Best known values presented in Helmberg and Rendl (2000)

Evaluating a local genetic algorithm 1123

123

calculating the objective value of a new sampled solution, it

is sufficient to calculate the difference Df with regards to

the fitness of the current solution by utilizing problem-

specific knowledge. Df can often be computed much faster

than the objective value of the new solution. For example, in

the unconstrained binary quadratic programming problem,

the calculation of Df takes time OðnÞ; while the calculation

of the fitness takes Oðn2Þ: Despite of this, optimization can

be performed on several of the tackled problems [and many

others (Merz 2001)], we will not apply them in our exper-

iments because they use problem-specific knowledge, i.e.,

LS procedures applying them are not context-independent.

In future works, we intend to study the application of BLGA

on specific problems making use of this fitness calculation

technique. This is possible because multi-parent uniform

crossover operator with short term memory, applying a high

pf value, creates offspring near the first parent, i.e., few bits

are changed.

In most real-world optimization problems, the evalua-

tion of a solution requires a simulation process that is

usually very time-consuming, i.e., solution evaluation is

the bottleneck of the search process. For that reason, in

order to perform a fair comparison between different

algorithms as context-independent optimizers, we will run

every algorithm with the same budget of fitness evalua-

tions. In general, each run of an algorithm (LS-based MH

with a specific LS method) on a test function, will perform

105 or 106 fitness evaluations according to the tackled

problem (see Table 1) (106 evaluations have been allowed

for problems where significant improvements still occur, in

all the algorithms, after the first 105 evaluations). The

performance measure is the average of the best fitness

value found over 50 independent runs.

Non-parametric tests can be used for comparing the

results of different search algorithms (Garcia et al. 2008,

2009). Given that the non-parametric tests do not require

explicit conditions for being conducted, it is recommended

that the sample of results are obtained following the same

criterion, which is, to compute the same aggregation

(average, mode, etc.) over the same number of runs for

each algorithm and problem.

We have considered the following procedure based on

non-parametric tests to analyze the experimental results:

1. Application of Iman and Davenport test to ascertain

whether there are significant statistical differences

among the algorithms in a certain group.

2. If differences are detected, then Holm test is employed

to compare the best algorithm (control algorithm)

against the remaining ones.

3. Utilization of Wilcoxon matched-pairs signed-ranks

test to compare the best algorithm with those for which

Holm test does not find significant differences.

We explain, in detail, these statistical tests in Appendix

3.

The parameter setting of BLGA is the following: Pop-

ulation size and nT are set to 500 individuals and 15,

respectively, because these values favor the formation of

species in the population. The parameter nass is set to 5 as it

is usually done in papers applying assortative mating

(Fernandes and Rosa 2001; Garcı́a-Martı́nez et al. 2008).

Regarding m, which sets the number of mates to be crossed

over with CL; and pf ; which controls the distance between

offspring and CL; we performed an empirical study on a

subset of previous problems, applying BLGA from random

starting points with every combination of the values

f2; 5; 10; 15g for m and 1� f1; 2; 4; 7; 10; 15g=Dim for pf :

Though this experiment did not reveal significant differ-

ences between the performances of the parameter settings

tested, the values 10 for m and 1� 7=Dim for pf seemed to

perform well on most of the used test functions.

5 BLGA-based random multi-start local search

Random multi-start LS (RMLS) (Boender et al. 1982;

Marti 2003) is the easiest LS-based MH. It restarts a LS

method a given number of times, or until a stop condition is

fulfilled, from different initial solutions and the best local

optimum reached is returned.

In this section, we focus our attention on a RMLS

method that uses BLGA as context-independent LS oper-

ator. In particular, we compare its performance with the

one of other RMLS algorithms based on classical LS

methods and investigate the way the effectiveness and

efficiency of BLGA affect the operation of the RMLS

algorithm. We have implemented five RMLS methods,

named RMLS–{First, Best, Kopt, RandK, BLGA}

according to the applied LS algorithm. We have forced

initial solutions to be the same for all the RMLS algo-

rithms. Table 15, in Appendix 2, shows the results of the

algorithms when tackling each test function.

We should point out that the original idea of RMLS is to

perform a number of independent LS invocations that have

not any type of relation each other. That is not really true

for RMLS–BLGA: since BLGA population is not reiniti-

ated before every BLGA invocation, it accumulates infor-

mation that may be employed for subsequent invocations.

5.1 RMLS–BLGA versus RMLS algorithms

with classical LS methods

We applied a non-parametric statistical test to detect

whether there exist significant differences among the

results of RMLS–BLGA and the ones of the RMLS algo-

rithms that use classical LS methods.

1124 C. Garcı́a-Martı́nez, M. Lozano

123

Table 2 shows the Iman–Davenport statistic (see

Appendix 3) and its critical value at the 5% level when the

average rankings [computed by the Friedman test

(Appendix 3)] of the RMLS methods on the tackled

problems are compared. We may observe the existence of

significant differences among the results because the sta-

tistic value is greater than the critical one (2.48).

Attending to this result, we compare the best ranked

algorithm (RMLS–BLGA) and the other RMLS methods

by means of a post-hoc statistical analysis. Table 3 shows

the average rankings of the RMLS algorithms (low rank-

ings are better) and Holm procedure (columns i, p-value,

and a=i) at 0.05 level of significance (the best ranked

algorithm, highlighted with the * character, is the control

algorithm). Last column indicates whether the equality

hypothesis are rejected (R) (the control algorithm performs

significantly better than the corresponding algorithm) or

not rejected (N) (the corresponding algorithm might per-

form equivalently to the control algorithm).

The results presented in Table 3 reveal that RMLS–

BLGA achieves the best ranking, and Holm test confirms

that there are significant differences between the perfor-

mance of RMLS–BLGA and the other RMLS algorithms.

In this way, we may conclude that BLGA allows RMLS to

improve its results as general-purpose optimizer with

regards to the use of other classical LS methods.

5.2 Behavior of BLGA in the RMLS algorithm

Next, we attempt to discover those behavioral character-

istics that allow BLGA to decisively affect the RMLS

performance. In particular, we attempt to see whether

BLGA may really employ accumulated search experience

from previous refinements to enhance future ones. In order

to do this, we investigate the way BLGA behaves

throughout the run, when it is performed in the RMLS

framework, in terms of:

• Effectiveness: we study the quality of the solutions

reached by the refinements that each LS technique

performs.

• Efficiency: we compare the number of evaluations that

each LS procedure consumes to perform a refinement.

We have considered a fixed test set of 50 random initial

solutions (Sis) and studied the results of using BLGA to

refine them at different stages of the run of a RMLS that

performs LS on 250 randomly chosen solutions (training

set). Every 50 refinements in the RMLS algorithm, BLGA

is applied to the solutions in Sis; and the average final

fitness value reached and the average number of consumed

evaluations are recorded. Figures 6 and 7 display these

measures, respectively, for one run on two different test

problems, BQP(250) and Maxcut(G17). The results

obtained by similar RMLS algorithms with classical LS

methods are included as well. We should point out that

solutions resulting from the local tuning of the individuals

in Sis are never introduced in the BLGA population, i.e.,

these individuals are uniquely used to test the performance

of BLGA.

Taking into consideration Figs. 6 and 7, we may make

the following comments:

• The performance of BLGA on the solutions in Sis

becomes better as RMLS–BLGA processes more

solutions (see Fig. 6). This fact indicates that the

knowledge BLGA acquired (forming species around

promising niches) may be used, in a fruitful manner, to

guide the local tuning of new solutions.

• The trend for improvement exhibited by BLGA (Fig. 6)

does not appear when using other LS methods. Just as

we expected, since they do not incorporate any memory

method, their behavior is not affected by decisions

made previously. In fact, in general, they show a

similar behavior throughout the whole execution. We

may only remark the changeable conduct of RMLS–

First for BQP(250). In this LS algorithm, the positions

to be flipped are examined according to a random

ordering and thus, its behavior may become very

different, even when it is applied to the same solutions

at different moments (which may be clearly seen on this

problem).

• Kopt and RandK LS procedures achieve the best results

according to effectiveness (Fig. 6), but they consume

too much evaluations per refinement (Fig. 7). We will

conduct another experiment later, in order to ascertain

if this high consumption may be the reason for RMLS–

Kopt and RMLS–RandK to be unable to achieve as

good results as RMLS–BLGA (Table 3).

Table 2 Iman–Davenport test on the RMLS algorithms

Statistic Critical value

9.518 2.48

Table 3 Ranking and Holm procedure on the RMLS algorithms

i Algorithm Ranking p-value a=i Result

4 RMLS–Best 4.136 3.378e-7 0.0125 R

3 RMLS–

RandK

3.341 5.981e-4 0.017 R

2 RMLS–First 3 0.007 0.025 R

1 RMLS–Kopt 2.818 0.019 0.05 R

* RMLS–

BLGA

1.705

Evaluating a local genetic algorithm 1125

123

• BLGA starts requiring a number of evaluations per

refinement that is similar to the one of FirstLS (see

Fig. 7). Later, BLGA reduces it throughout the run,

while classic LS methods keep a similar consumption

of evaluations. At the early stages, BLGA population

does not possess useful information about the search

space and the refinement process is guided at

random, in a similar way as FirstLS does. After-

wards, BLGA drives LS towards promising zones

that were previously located, speeding up conver-

gence considerably and causing the search process to

be more efficient.

The employment of an efficient LS algorithm is pri-

mordial to ensure that the RMLS algorithm may achieve an

acceptable level of reliability. When a limited number of

evaluations are available, the use of an efficient LS

algorithm may allow a high number of restarts to be

accomplished, favoring the exploration of the search space.

Next, we count the number of times the initially analyzed

RMLS algorithms (Sect. 5.1), which considered a maxi-

mum number of evaluations of 105 or 106 per execution,

make a restart, i.e., the number of initial solutions that were

refined within the available number of evaluations. Table 4

outlines the value of this measure for the RMLS algorithms

on each problem. We have included a column with the

dimension of the problem (second column), which deci-

sively affects the number of restarts of the algorithms. In

addition, we have highlighted, in bold face, the highest

values for each row (i.e., the highest number of restarts for

each problem).

Several comments are worth being mentioned from

Table 4:

Fig. 6 Fitness evolution for BQP(250) (left) and Maxcut(G17) (right)

Fig. 7 Evolution of the evaluations consumption for BQP(250) (left) and Maxcut(G17) (right)

1126 C. Garcı́a-Martı́nez, M. Lozano

123

• RMLS–BLGA was always the algorithm that refined

more solutions, within the maximum number of

evaluations for every problem. The ability of BLGA

to converge faster throughout the run of RMLS

(observed in Fig. 7) allows it to be finally the most

efficient algorithm on all the test problems and to

improve the reliability of its results.

• RMLS–Kopt and RMLS–RandK conducted too few

restarts. When the size of the problem is high (dimen-

sions higher than 200), they were not able to complete

one or two refinements (it is very probable that the limit

of evaluations is reached before they start the second or

third refinement). Only for problems with low dimen-

sions (50 or less variables), they might make a

significant number of restarts. For the case of Kopt,

though the expensive computational cost of each

refinement was rewarded by obtaining promising final

results (RMLS–Kopt is the algorithm with best ranking

after RMLS–BLGA in Table 3), the effectiveness-

efficiency tradeoff does not yield a proper balance for

RMLS to obtain as good results as RMLS–BLGA does

under the running conditions assumed.

We may conclude that BLGA is the most appropriate

context-independent refinement method for RMLS,

because it combines two determinant features (which

derive from its ability to retain and exploit valuable

information about search space): (1) it is the most efficient

LS algorithm because it consumes few evaluations per

refinement, and (2) it is able to reach a promising level of

effectiveness throughout the run (Fig. 6). The union of

these two prominent aspects allow RMLS–BLGA to keep a

profitable balance between intensification and diversifica-

tion, offering two main advantages at the same time: better

reliability and accuracy. This kind of balance is not

achieved by the other LS techniques. For example, prob-

ably, the low degree of efficiency associated with Kopt

causes RMLS–Kopt to be incapable of attaining the nec-

essary reliability to outperform RMLS–BLGA (Table 3).

6 BLGA-based iterated local search

Essential idea of ILS (Hoos and Stützle 2004; Lourenço

et al. 2003) is to perform a biased, randomized walk in the

space of locally optimal solutions instead of sampling the

space of all possible candidate solutions. This walk is built

by iteratively applying first a perturbation to a locally

optimal solution, then applying a LS algorithm, and finally

using an acceptance criterion, which determines to which

locally optimal solution the next perturbation is applied.

Despite its simplicity, it is at the basis of several state-of-

the-art algorithms for real-world problems.

A high-level description of ILS as it is described in

Lourenço et al. (2003) is given in Fig. 8. The algorithm

starts by applying LS to an initial solution and iterates a

procedure where a perturbation is applied to the current

solution S� in order to move it away from its local neigh-

borhood; the solution so obtained is then considered as

initial point for a new LS processing, resulting in another

locally optimal solution SLS: Then, a decision is made

between S� and SLS to decide from which solution the next

iteration continues.

The perturbation operator is a key aspect to consider,

because it allows ILS to reach a new solution from the set

of local optima by escaping from the basin of attraction of

the previous local optimum. The perturbation is usually

nondeterministic in order to avoid cycling. For example,

for the case of binary problems, the standard perturbation

Table 4 Number of restarts of RMLS with each LS method

Problem Dim Best First Kopt RandK BLGA

1 39 238.8 820.9 43.1 46.3 1,331.5

2 36 213.4 870.7 53.3 46.2 1,580.2

3 100 33.6 179.4 5.8 4.9 411.1

4 100 30.3 158.1 5.4 5.3 407.1

5 48 155.3 535.6 24.6 20.5 878.5

6 48 293.8 693.5 26.5 22.5 1,006.2

7 50 106.1 555.0 34.5 29.0 940.0

8 100 25.2 228.5 9.0 8.0 348.2

9 150 11.0 137.6 4.3 4.0 190.3

10 200 6.1 96.7 2.8 2.0 120.6

11 250 4.0 73.9 1.8 2.0 88.5

12 100 25.9 229.5 8.7 8.0 306.8

13 50 103.8 442.5 23.4 20.2 1,096.9

14 100 23.5 159.9 5.6 6.2 459.7

15 250 3.9 41.5 1.3 1.5 182.0

16 500 8.6 151.0 1.9 2.3 905.1

17 800 4.9 86.0 1.0 1.0 471.7

18 800 8.1 207.3 1.0 1.0 326.8

19 800 7.0 176.4 1.0 1.1 329.9

20 800 6.0 149.8 1.0 1.0 457.1

21 800 6.0 149.4 1.0 1.0 457.0

22 1,000 3.4 82.8 1.0 1.0 359.4

Fig. 8 Pseudocode algorithm for ILS

Evaluating a local genetic algorithm 1127

123

operator flips the bits with a fixed probability. Its most

important characteristic is the perturbation strength (rp),

roughly defined as the amount of changes made on the

current solution. The perturbation strength should be large

enough such that the LS does not return to the same local

optimum at the next iteration. However, it should not be

too large; otherwise the search characteristics will resemble

those of a RMLS algorithm.

In this section, we experimentally show the benefits of

an ILS method that uses BLGA as context-independent

local optimizer in comparison to other ILS algorithms

based on classical LS methods. We have implemented

several ILS algorithms denoted as ILS-rp -{First, Best,

Kopt, RandK, BLGA} according to the applied perturba-

tion strength and LS algorithm. The perturbation operator

is the standard one, applied on the best solution so far. The

experimental setup was described in Sect. 4.

Next, we study the influence of the diversification

introduced by the perturbation strength in every ILS

algorithm. Then, we compare the best ILS algorithms

among themselves.

6.1 Influence of the perturbation strength

In this section, we investigate the influence of rp on the

performance of the ILS algorithms. In particular, we ana-

lyze the behavior of these algorithms when different values

for this parameter are considered (rp = 0.1, 0.25, 0.5, and

0.75). Tables 15 and 16, in Appendix 2, show the results of

every ILS algorithm when tackling each test problem. For

each ILS algorithm, Fig. 9 shows the average ranking

obtained by its runs with different rp values when com-

pared among themselves.

Two important remarks from Fig. 9 are:

• The best ranked algorithms for ILS-BLGA, ILS-Kopt,

and ILS-RandK use rp ¼ 0:5: Due to their effective-

ness, BLGA, Kopt, and RandK successfully affront

high perturbation strengths, which means that it

becomes possible to jump to new unexplored search

regions and eventually find (by means of the LS

operators) improved solutions. This is essential to

guarantee reliability on the ILS search process.

• ILS-First and ILS-Best obtain their best results with

rp ¼ 0:1 and 0.25, respectively. This indicates that the

behavior of FirstLS and BestLS is better when ILS does

not severely disrupt the current solution. However, this

may give rise to a serious drawback: ILS may be unable

to explore sufficient regions of the search space, being

unable to obtain reliable solutions in complex

problems.

6.2 ILS-BLGA versus ILS algorithms with classical LS

methods

In this section, we compare the results of the best per-

forming ILS algorithms for each LS method: ILS-0.25-

Best, ILS-0.1-First, ILS-0.5-Kopt, ILS-0.5-RandK, and

ILS-0.5-BLGA. Table 5 shows Iman–Davenport statistic

and its critical value at 5% level when comparing the

rankings of the selected ILS algorithms. We observe sig-

nificant differences and proceed performing a post-hoc

study. Table 6 shows the average rankings of the algo-

rithms and the Holm test at 0.05 level of significance. The

best ranked algorithm (ILS-0.5-BLGA) is the control one.

For brevity, intermediate Holm steps (i, p-value and a=i)

have been omitted. In addition, we have added a pairwise

Wilcoxon test (see Appendix 3) between the control

algorithm and the corresponding ones at 0.05 level of

significance, in those cases where Holm test has not found

statistical differences. The last three columns show R�;
associated with the control algorithm, Rþ; with the corre-

sponding algorithm, and the result of this test (the critical

value is 65). The result will be ‘?’ if the performance of

the control algorithm is statistically better than the one of

Fig. 9 Rankings obtained by the ILS algorithms with different rp

values

Table 5 Iman–Davenport test on the ILS algorithms

Statistic Critical value

8.052 2.480

Table 6 Holm and Wilcoxon tests on the ILS algorithms

Algorithm Ranking Holm Wilcoxon (65)

Rþ R� Result

ILS-0.25-Best 4.023 R

ILS-0.5-RandK 3.5 R

ILS-0.1-First 3 R

ILS-0.5-Kopt 2.636 N 62 191 1

*ILS-0.5-BLGA 1.841

1128 C. Garcı́a-Martı́nez, M. Lozano

123

the corresponding algorithm, ‘-’ if the performance of the

corresponding algorithm is statistically better than the one

of the control algorithm, and ‘*’ if no significant differ-

ences were found.

From Table 6, we clearly notice that ILS-0.5-BLGA

obtained improvements with regards to the other ILS

algorithms, which are statistically significant. The ability of

this algorithm to process high diversity levels (rp ¼ 0:5)

may explain, in part, its advantage over ILS-0.25-Best and

ILS-0.1-First, whereas the superior efficiency of BLGA

over Kopt and RandK (Sect. 5.2) may justify its advantage

over the ILS algorithms based on these LS methods. Thus,

we may remark that BLGA has arisen as a context-inde-

pendent LS technique that works suitably in the ILS

framework, as attested by the very competitive results

compared to other LS methods previously presented in the

literature.

7 BLGA-based variable neighborhood search

VNS (Hansen and Mladenović 2002) is an ILS variation

(Fig. 8) including a specific perturbation technique that

adapts the perturbation strength with the aim of providing

the right diversification that lets the next LS refinement to

find a solution better than the best one so far. In VNS, an

ordered set of neighborhoods, usually nested, is given

(fN1; . . .;Nmaxg) (first neighborhoods relate with weak

perturbation strengths and last ones with strong strengths).

A new initial solution is sampled from the current

neighborhood Nk of the best found solution (NkðsbestÞ)
and the LS operator optimizes it. If the new solution is

better than the best one so far, the current neighborhood

becomes the first one (N1), otherwise Nkþ1 is selected.

Initially, k is set to 1 and a random solution is refined by

the LS method.

In this section, we intend to analyze the BLGA behavior

within a VNS algorithm, called VNS-BLGA, which applies

it as context-independent LS method. In particular, we

undertake an experimental study to ascertain if the effec-

tiveness and efficiency associated to BLGA (Sect. 5.2) and

its response to different perturbation strengths (Sect. 6.1)

are suitable to let VNS to accomplish its main objective: to

produce improvements constantly. We will also compare

the quality of the solutions obtained by VNS-BLGA with

regards to the ones of other VNS algorithms using classical

LS methods (VNS-{First, Best, Kopt, RandK}). All VNS

methods use the standard perturbation operator to generate

the neighborhoods. They will iterate on nine perturbation

strengths (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9),

returning to 0.1 if there is no improvement after using 0.9,

until the maximum number of evaluations is reached. The

experimental setup was described in Sect. 4.

7.1 Synergy between VNS and BLGA

VNS uses a heuristic to adjust the value of rp with the

objective of locating, at every iteration and after the LS

refinement, a solution better than the best one so far. In this

section, we attempt to determine whether the use of BLGA

as LS operator for VNS allows its heuristic to act usefully,

which will mean that there exists a positive synergy

between VNS and BLGA.

In order to investigate the synergy between VNS and

BLGA, we have counted the number of successful restarts

(times the perturbation operator provided a new solution

that, after being refined by LS, improved the best solution

so far) produced throughout the run of VNS-BLGA, and

compared it with the ones for RMLS–BLGA and ILS-0.5-

BLGA (the best ILS algorithm based on BLGA found in

Sect. 6.1). In addition, we calculated this measure for VNS

algorithms based on classical LS operators and compared it

with their corresponding versions of RMLS and best ILS

algorithms. Table 17, in App B, shows the results (the

average over 50 runs).

Figure 10 displays the average ranking of every VNS

algorithm according to the number of successful restarts

(i.e., to the results in Table 17), when being compared with

the other LS-based MHs using the same LS method. In

addition, Tables 7 and 8 apply a statistical analysis on

these results. Notice that Table 8 just compares the LS-

based MHs for which Iman–Davenport test finds statistical

differences (BLGA, FirstLS, and BestLS based MHs).

We may remark the following facts:

• VNS-BLGA and VNS-Best obtain the best ranking

when confronting them with their versions of RMLS

and ILS based on BLGA and BestLS, respectively. In

addition, in Table 8, we observe that these improve-

ments are statistically significant. We may conclude

that the heuristic embedded in VNS to adapt rp results

profitable when using BLGA and BestLS, with regards

to the utilization of a constant value for rp (case of ILS)

and the generation of initial solutions at random (case

Fig. 10 Rankings of the LS-based MHs according to the number of

successful restarts

Evaluating a local genetic algorithm 1129

123

of RMLS). Therefore, there exists an adequate synergy

between VNS and these two LS techniques.

• VNS-First did not achieve higher number of successful

restarts than ILS-0.1-First, which attains the best

ranking with regards to this measure. This indicates

that a positive synergy among VNS and FirstLS was

not produced. In Sect. 6.1, we saw that this LS

technique responded poorly to high levels of diversi-

fication. In this way, increasing rp; when the best

solution so far is not improved, does not produce the

expected effect.

• VNS was not favored with either the integration of

Kopt or RandK. There are two possible reasons for

this circumstance: (1) they are refinement methods

that consume too many evaluations per refinement

(few restarts are accomplished) and then, practically,

they do not allow the rp adaptation process to have

real effects throughout the run and (2) they are very

effective, being able to achieve very accurate solutions

from the first refinement (for example, we may

compare the results of RMLS–Kopt and RMLS–

RandK on Maxcut(G10), where they completed only

one refinement, with the ones for the other algo-

rithms), which makes difficult to find better solutions

at posterior iterations.

7.2 VNS-BLGA versus VNS algorithms with classical

LS methods

Finally, we compare the quality of the solutions obtained

by VNS-BLGA and the ones by other VNS algorithms

using classical LS methods. Table 16, in Appendix 2, has

the results of every VNS algorithm for each test problem.

Table 9 shows the Iman–Davenport statistic and its critical

value at 5% when comparing the average rankings of the

VNS algorithms. We notice the existence of significant

differences because the statistic is greater than the critical

value. Table 10 compares the results of the best ranked

algorithm (VNS-BLGA) with the ones of the other VNS

algorithms by means of the Holm and Wilcoxon tests.

We clearly see that VNS-BLGA obtains results that are

statistically better than the ones of the other VNS algo-

rithms. The prospective synergy that BLGA and VNS

produce allowed VNS-BLGA to exhibit overall better

performance than the other VNS algorithms. This synergy

is possible due to: (1) the effectiveness of BLGA, which

allows better solutions to be reached even with high rp

values and (2) its efficiency, which allows VNS to quickly

achieve rp values producing improvements (i.e., the

number of evaluations wasted by failed inspections is

inferior). This became determinant to overtake the other

VNS algorithms. Since classical LS methods are less effi-

cient than BLGA, their corresponding VNS methods did

not dispose of sufficient evaluations to locate solutions

with better quality than the ones found by VNS-BLGA.

8 Analysis on long runs

From previous experiments, we have realized that some of

the applied LS methods consume too many evaluations per

refinement, hindering the corresponding LS-based MHs to

Table 7 Iman–Davenport tests on the number of successful restarts

of the LS-based MHs

MHs Statistic Critical value

BLGA-based MHs 17.831 3.220

FirstLS-based MHs 3.958 3.220

BestLS-based MHs 9.454 3.220

Kopt-based MHs 0.208 3.220

RandK-based MHs 0.308 3.220

Table 8 Holm and Wilcoxon tests on the number of successful

restarts of the LS-based MHs

LS-based MH Ranking Holm Wilcoxon (65)

Rþ R� Result

ILS-0.5-BLGA 2.568 R

RMLS–BLGA 2.182 R

*VNS-BLGA 1.25

RMLS–First 2.41 R

VNS-First 1.977 NR 117.5 135.5 *

*ILS-0.1-First 1.614

RMLS–Best 2.545 R

ILS-0.25-Best 2.023 NR 36.5 216.5 1

*VNS-Best 1.432

Table 9 Iman–Davenport test on the VNS algorithms

Statistic Critical value

13.695 2.48

Table 10 Holm and Wilcoxon tests on the VNS algorithms

Algorithms Ranking Holm Wilcoxon (65)

Rþ R� Result

VNS-Best 3.841 R

VNS-RandK 4.045 R

VNS-Kopt 3.068 R

VNS-First 2.364 N 62 191 1

*VNS-BLGA 1.682

1130 C. Garcı́a-Martı́nez, M. Lozano

123

perform enough restarts on large problems. This fact makes

that those LS-based MHs are unable to work properly for

context-independent optimization, when the number of

available evaluations is limited.

In this section, we intend to analyze the results and

behavior of previous algorithms when they have much

more evaluations at their disposal. In particular, previous

algorithms will be run on the test functions described in

Sect. 4, with a budget of 108 function evaluations. Pre-

liminary experiments showed that even MHs based on

expensive LS methods performed a reasonable (50

approximately) number or restarts, when tackling the

largest problems. The performance measure is the average

of just 4 runs, because of the extreme computation times of

these experiments.

Table 11 shows the Iman–Davenport statistics and their

critical values at 5% when comparing the average rankings

of the algorithms according to the group they belong. We

see that Iman–Davenport test does not find significant

differences among the RMLS and the VNS algorithms.

This means that those algorithms tend to achieve similar

results when there are enough evaluations available.

Table 12 shows the results of Holm and Wilcoxon tests

on the ILS algorithms, the only ones for which Iman–

Davenport test finds statistical differences. We can see that

ILS-0.5-RandK and ILS-0.5-Kopt obtain the first and sec-

ond rankings, respectively. However, the statistical analy-

sis does not find statistical differences between the

performances of ILS-0.5-RandK (best ranked algorithm)

and ILS-0.5-BLGA. The conclusion is that, MHs based on

expensive LS methods are not able to obtain statistically

better results than those reached by BLGA-based MHs,

even when they have a large number of function evalua-

tions at their disposal.

Next, we study the behavior of the algorithms along the

whole run. Figures 11, 12, and 13 show convergence

graphs of each group of algorithms, RMLS, ILS, and VNS,

respectively, when tackling all the problems. In order

to obtain those graphs, which summarize the behavior of

the algorithms on all the problems, we have accomplished

the following two steps: (1) taking into consideration the

highest and lowest fitness values achieved by all the

algorithms on each test problem, we have normalized every

result, along the whole run, in the interval ½0; 1�; (2) then,

mean values, over the 22 problems, have been obtained for

each algorithm, along the 108 evaluations. Notice that

evaluation axis is logarithmic scaled.

We can see that, BLGA-based MHs are always able to

reach the best results in the range from 104 to 106 evalu-

ations, which is usually considered as a reasonable range of

evaluations when dealing with black-box optimization

problems. Besides, from previous studies, we know that

those results are statistically different from the ones of the

other algorithms. From 106 evaluations onward, RandK

Table 11 Iman–Davenport tests on results with 108 evaluations

MHs Statistic Critical value

RMLS algorithms 2.066 2.48

ILS algorithms 2.745 2.48

VNS algorithms 2.13 2.48

Table 12 Holm and Wilcoxon tests on results with 108 evaluations

Algorithms Ranking Holm Wilcoxon (65)

Rþ R� Result

ILS-0.1-First 3.705 R

ILS-0.25-Best 3.364 N 49.5 203.5 1

ILS-0.5-BLGA 2.864 N 96.5 156.5 *

ILS-0.5-Kopt 2.727 N 97.5 155.5 *

*ILS-0.5-RandK 2.341

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1000 10000 100000 1e+06 1e+07 1e+08

F
itn

es
s

A
ve

ra
ge

Evaluations

RMLS-First
RMLS-Best

RMLS-RandK
RMLS-Kopt

RMLS-BLGA

Fig. 11 Convergence graphs for RMLS algorithms

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1000 10000 100000 1e+06 1e+07 1e+08

F
itn

es
s

A
ve

ra
ge

Evaluations

ILS-0.1-First
ILS-0.25-Best

ILS-0.5-RandK
ILS-0.5-Kopt

ILS-0.5-BLGA

Fig. 12 Convergence graphs for ILS algorithms

Evaluating a local genetic algorithm 1131

123

and Kopt based MHs usually obtain better results, however,

they are not statistically different from the ones of BLGA-

based MHs, at least at the level applied in the whole paper

(5%). Therefore, the conclusion is that BLGA-based MHs

are more appropriate when dealing with black-box opti-

mization problems, where evaluating a new solution

requires invoking the objective function, and this number

of invocations is limited, than the other algorithms.

Otherwise, almost any other studied algorithm performs

well.

9 Conclusions

In this paper, different studies were conducted with the aim

of investigating the suitability of BLGA as context-inde-

pendent LS operator for three well-known LS-based MHs:

RMLS, ILS, and VNS. In order to do this, the benefits of

this novel LS technique in comparison to other LS meth-

ods, considered as classical models, were experimentally

shown. We realized that:

• BLGA achieved a high level of efficiency, which

allowed many restarts to be accomplished. In addition,

it showed a profitable intensification power, which was

able to cope with strong diversification levels coming

from an operator with high perturbation strength (high

rp value). These two features are possible because

BLGA has the ability to guide the LS using knowledge

on zones of the search space visited in previous

invocations.

• The joint effects of these two desirable properties made

possible RMLS, ILS, and VNS to face the conflict

between accuracy and reliability in a fruitful manner to

enhance their performance with regards to the use of

classical LS methods. Then, BLGA arise as an

algorithm that shows promise as context-independent

LS operator for LS-based MHs.

In addition, we should point out that our extensive study

provided, as well, new insights on the behavior of classical

LS methods when they are embedded in LS-based MHs

tackling black-box optimization problems. In fact, an

important remark is that Kopt is a LS procedure able to

reach outstanding solutions regardless the used initial

solutions. Its main disadvantage comes by the fact that it

consumes too much evaluations per refinement, when it is

applied as a context-independent optimizer. This unbal-

anced effectiveness-efficiency tradeoff makes its applica-

tion in LS-based MHs inappropriate, when the number of

evaluations is limited. Otherwise, when there are enough

evaluations available, almost every studied algorithm per-

form well.

The research line focused in this paper is indeed worthy

of further studies. We are currently extending our investi-

gation to analyze the role of BLGA as LS operator of other

LS-based MHs, such as Memetic Algorithms, Greedy

Randomized Adaptive Search Procedures, and Ant Colony

Optimization algorithms. We also mention that BLGA

might be modified in order to imitate other trajectory

methods such as Simulated Annealing or Tabu Search.

While, at present, BLGA is aimed only at intensification,

Simulated Annealing and Tabu Search are complete MHs

pursuing a wide space exploration. In the near future, we

intend to study the benefits of using GA concepts on these

methods.

Acknowledgments This work was supported by Research Projects

TIN2008-05854 and P08-TIC-4173.

Appendix 1: A test suite

The test suite that we have used for the experiments con-

sists of 22 binary-coded test problems. They are described

in the following sections.

Deceptive problem

In deceptive problems (Goldberg et al. 1989), there are

certain schemata that guide the search toward some

solution that is not globally competitive. The schemata

that have the global optimum do not bear significance and

so they may not proliferate during the genetic process.

The used deceptive problem consists of the concatenation

of k subproblems of length 3. The fitness for each 3-bit

section of the string is given in Table 13. The overall

fitness is the sum of the fitness of these deceptive

subproblems.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1000 10000 100000 1e+06 1e+07 1e+08

F
itn

es
s

A
ve

ra
ge

Evaluations

VNS-First
VNS-Best

VNS-RandK
VNS-Kopt

VNS-BLGA

Fig. 13 Convergence graphs for VNS algorithms

1132 C. Garcı́a-Martı́nez, M. Lozano

123

We have used a deceptive problem with 13

subproblems.

Trap problem

Trap problem (Thierens 2004) consists of misleading

subfunctions of different lengths. Specifically, the fitness

function f ðxÞ is constructed by adding subfunctions of

length 1 (F1), 2 (F2), and 3 (F3). Each subfunction has

two optima: the optimal fitness value is obtained for an

all-ones string, while the all-zeroes string represents a

local optimum. The fitness of all other string in the

subfunction is determined by the number of zeroes: the

more zeroes, the higher the fitness value. This causes a

large basin of attraction toward the local optimum. The

fitness values for the subfunctions are specified in

Table 14 where the columns indicate the number of ones

in the subfunctions F1; F2; and F3: The fitness function

f ðxÞ is composed of 4 F3 subfunctions, 6 F2 subfunctions,

and 12 F1 subfunctions. The overall length of the problem

is thus 36. There are 210 optima of which only one is the

global optimum: the string with all ones having a fitness

value of 220.

f ðxÞ ¼
X3

i¼0

F3ðx½3i:3iþ2�Þ þ
X5

i¼0

F2ðx½2iþ12:2iþ13�Þ

þ
X11

i¼0

F1ðx24þiÞ

Max-Sat Problem

The satisfiability problem in propositional logic (SAT)

(Smith et al. 2003) is the task to decide whether a given

propositional formula has a model. More formally, given a

set of m clauses fC1; . . .;Cmg involving n boolean vari-

ables X1; . . .;Xn the SAT problem is to decide whether an

assignment of values to variables exists such that all

clauses are simultaneously satisfied.

Max-Sat is the optimization variant of SAT and can be

seen as a generalization of the SAT problem: given a

propositional formula in conjunctive normal form (CNF),

the Max-Sat problem then is to find a variable assignment

that maximizes the number of satisfied clauses. It returns

the percentage of satisfied clauses.

We have used two set of instances of the Max-Sat

problem with 100 variables, 3 variables by clause, and

1,200 and 2,400 clauses, respectively. They have been

obtained from De Jong et al. (1997). They are denoted as

M-Sat(n, m, l), where l indicates the number of variables

involved in each clause (3). Each run i, of every algorithm,

uses a specific seed (seedi) for generating the M-Sat(n, m, l)

instance, i.e. ith execution of every algorithm uses the same

seedi; whereas jth execution uses seedj:

NK-landscapes

In the NK model (Kauffman 1989), N represents the

number of genes in a haploid chromosome and K repre-

sents the number of linkages each gene has to other genes

in the same chromosome. To compute the fitness of the

entire chromosome, the fitness contribution from each

locus is averaged as follows:

f ðsÞ ¼ 1

N

XN

i¼1

f ðlocusiÞ ð1Þ

where the fitness contribution of each locus, f ðlocusiÞ; is

determined by using the (binary) value of gene i together

with values of the K interacting genes as an index into a

table Ti of size 2Kþ1 of randomly generated numbers uni-

formly distributed over the interval ½0; 1�: For a given gene

i, the set of K linked genes may be randomly selected or

consist of the immediately adjacent genes.

We have used two set of instances of the NK-Landscape

problem: one with N ¼ 48 and K ¼ 4; and another with

N ¼ 48 and K ¼ 12: They are denoted as NKLand (N, K).

They have been obtained from De Jong et al. (1997). Each

run i, of every algorithm, uses a different seed (seedi) for

generating the NKLand (N, K) instance, i.e. the ith exe-

cution of every algorithm has used the same seedi; whereas

the jth execution has used seedj:

P-peak problems

P-peak problem generator (Spears 2000) creates instances

with a certain number of peaks (the degree of multi-

modality). For a problem with P peaks, P bit strings of

length L are randomly generated. Each of these string is a

peak (a local optima) in the landscape. Different heights

can be assigned to different peaks based on various

schemes (equal height, linear, logarithm-based, and so on).

Table 13 Deceptive order-3 problem

Chromosomes 000 001 010 100 110 011 101 111

Fitness 28 26 22 14 0 0 0 30

Table 14 Fitness values of the subfunctions Fi

0 1 2 3

F3 4 2 0 10

F2 5 0 10

F1 0 10

Evaluating a local genetic algorithm 1133

123

To evaluate an arbitrary solution S, first locate the nearest

peak in Hamming space, call it PeaknðSÞ: Then, the fitness

of s is the number of bits the string has in common with

PeaknðSÞ; divided by L, and scaled by the height of the

nearest peak. In case there is a tie when finding the nearest

peak, the highest peak is chosen.

We have used different groups of P-Peak instances

denoted as PPeaks(P, L). Each run i, of every algorithm,

uses a different seed (seedi) for generating the PPeaks(P , L)

instance. Linear scheme have been used for assigning

heights to peaks in ½0:6; 1�:

Max-cut problem

The Max-cut problem (Karp 1972) is define as follows: Let

an undirected and connected graph G ¼ ðV;EÞ; where V ¼
f1; 2; . . .; ng and E � fði; jÞ : 1� i\j� ng; be given. Let

the edge weights wij ¼ wji be given such that wij ¼ 0

8ði; jÞ 62 E; and in particular, let wii ¼ 0: The max-cut

problem is to find a bipartition ðV1;V2Þ of V so that the sum

of the weights of the edges between V1 and V2 is

maximized.

We have used 6 instances of the max-cut problem (G10,

G12, G17, G18, G19 G43), obtained from Helmberg and

Rendl (2000).

Unconstrained binary quadratic programming problem

The objective of the Unconstrained Binary Quadratic

Programming (BQP) (Beasley 1998) is to find, given a

symmetric rational n� n matrix Q ¼ ðQijÞ; a binary vector

of length n that maximizes the following quantity:

f ðxÞ ¼ xtQx ¼
Xn

i¼1

Xn

j¼1

qijxixj; xi 2 f0; 1g ð2Þ

We have used four instances with different values for n.

They have been taken from the OR-Library (Beasley

1990). They are the first instances of the BQP problems in

the files ‘bqp50’, ‘bqp100’, ‘bqp250’, and ‘bqp500’. They

are BQP(50), BQP(100), BQP(250), and BQP(500),

respectively.

Appendix 2: Results

Tables 15 and 16 show the fitness values obtained by the

algorithms studied in the empirical analysis in Sects. 5, 6,

and 7. Best results of every group of algorithms (RMLS,

ILS, and VNS) are boldfaced. Table 17 displays the

number of successful restarts obtained by the algorithms in

Sect. 7.1. Best results of every group with the same LS

method are marked.

Appendix 3: Statistical analysis

In this section, we explain the basic functionality of each

non-parametric test applied in this study together with the

aim pursued with its use:

• Friedman test: Although we will not use this test,

because of its conservative undesirably effect, we

describe it because it is the basis of the following one.

Friedman test is a non-parametric equivalent of test of

repeated-measures ANOVA. It computes the ranking of

the observed results for each algorithm (rj for the

algorithm j with k algorithms) for each function,

assigning to the best of them the ranking 1, and to

the worst the ranking k. Under the null hypothesis,

formed from supposing that the results of the algo-

rithms are equivalent and, therefore, their average

rankings are also similar, the Friedman statistic

v2
F ¼

12N

kðk þ 1Þ
X

j

R2
j �

kðk þ 1Þ2

4

" #
ð3Þ

is distributed according to v2
F with k � 1 degrees of

freedom, being Rj ¼ 1=N
P

i ri
j ; and N the number of

functions. The critical values for the Friedman statistic

coincide with the established in the v2 distribution when

N [10 and k [5: In a contrary case, the exact values

can be seen in Zar (1999).

• Iman and Davenport test (Iman and Davenport 1980): It

is a metric derived from the Friedman statistic given

that this last metric produces a conservative undesirably

effect. The statistic is

FF ¼
ðN � 1Þv2

F

Nðk � 1Þ � v2
F

ð4Þ

and it is distributed according to a F distribution with

k � 1 and ðk � 1ÞðN � 1Þ degrees of freedom.

• Holm method (Holm 1979): If the null hypothesis is

rejected in Iman–Davenport test, we can proceed with a

post-hoc test. The test of Holm is applied when we

want to compare a control algorithm (the one with the

best average Friedman ranking) opposite to the remain-

ders. Holm test sequentially checks the hypotheses

ordered according to their significance. We will denote

the p-values ordered by p1; p2; . . .; in the way that

p1� p2� � � � � pk�1: Holm method compares each pi

with a=ðk � iÞ starting from the most significant

p-value. If p1 is below than a=ðk � 1Þ; the correspond-

ing hypothesis is rejected and it leaves us to compare p2

with a=ðk � 2Þ: If the second hypothesis is rejected,

we continue with the process. As soon as a certain

hypothesis cannot be rejected, all the remaining

hypotheses are maintained as accepted. The statistic

for comparing algorithm i with algorithm j is:

1134 C. Garcı́a-Martı́nez, M. Lozano

123

T
a

b
le

1
5

R
es

u
lt

s
o

f
th

e
R

M
L

S
,

IL
S

-0
.1

,
an

d
IL

S
-0

.2
5

al
g

o
ri

th
m

s
w

it
h

ea
ch

re
fi

n
em

en
t

p
ro

ce
d

u
re

P
ro

b
le

m
R

M
L

S
IL

S
-0

.1
IL

S
-0

.2
5

B
es

tL
S

F
ir

st
L

S
K

o
p

t
R

an
d

K
B

L
G

A
B

es
tL

S
F

ir
st

L
S

K
o

p
t

R
an

d
K

B
L

G
A

B
es

tL
S

F
ir

st
L

S
K

o
p

t
R

an
d

K
B

L
G

A

1
3

8
6

3
8

1
3

9
0

3
7

5
3

8
0

3
9

0
3

8
7

3
9

0
3

7
3

3
8

8
3

9
0

3
8

3
3

9
0

3
7

5
3

8
5

2
2

1
9

2
1

3
2

2
0

2
0

2
2

2
0

2
2

0
2

2
0

2
2

0
1

9
6

2
2

0
2

2
0

2
2

0
2

2
0

1
9

7
2

2
0

3
0

.9
5

5
0

.9
5

8
0

.9
5

9
0

.9
5

9
0

.9
6

0
0

.9
5

7
0

.9
5

8
0

.9
5

8
0

.9
5

8
0

.9
5

7
0

.9
5

7
0

.9
5

9
0

.9
5

9
0

.9
5

9
0

.9
5

8

4
0

.9
3

5
0

.9
3

6
0

.9
3

7
0

.9
3

7
0

.9
3

7
0

.9
3

5
0

.9
3

7
0

.9
3

6
0

.9
3

6
0

.9
3

6
0

.9
3

6
0

.9
3

7
0

.9
3

7
0

.9
3

7
0

.9
3

6

5
0

.7
6

0
0

.7
6

2
0

.7
7

1
0

.7
6

7
0

.7
7

4
0

.7
7

3
0

.7
7

4
0

.7
6

9
0

.7
6

9
0

.7
7

3
0

.7
7

3
0

.7
7

3
0

.7
7

3
0

.7
6

9
0

.7
7

4

6
0

.7
4

2
0

.7
4

5
0

.7
6

3
0

.7
4

9
0

.7
3

9
0

.7
6

1
0

.7
6

8
0

.7
6

8
0

.7
5

3
0

.7
6

3
0

.7
5

2
0

.7
5

3
0

.7
6

4
0

.7
5

1
0

.7
5

4

7
1

1
1

0
.9

9
9

1
0

.8
9

2
0

.8
7

7
0

.9
5

9
0

.8
4

7
0

.9
0

8
0

.9
9

6
0

.9
9

7
0

.9
8

0
0

.9
5

8
0

.9
9

1

8
0

.9
9

7
1

0
.9

9
3

0
.9

7
8

1
0

.8
7

1
0

.8
4

3
0

.9
3

0
0

.8
3

0
0

.8
7

3
0

.8
8

3
0

.9
0

8
0

.9
2

6
0

.8
4

0
0

.9
2

4

9
0

.9
9

0
1

0
.9

7
1

0
.9

4
8

1
0

.8
6

1
0

.8
5

7
0

.9
3

1
0

.8
5

5
0

.8
8

3
0

.8
6

1
0

.8
6

1
0

.9
2

3
0

.8
5

5
0

.8
9

1

1
0

0
.9

7
3

1
0

.9
6

4
0

.9
1

5
1

0
.8

6
7

0
.8

3
1

0
.9

2
2

0
.8

3
8

0
.8

6
9

0
.8

6
7

0
.8

3
1

0
.9

2
1

0
.8

3
8

0
.8

6
9

1
1

0
.9

3
7

0
.9

9
9

0
.9

1
9

0
.8

7
7

0
.9

9
9

0
.8

5
5

0
.8

2
1

0
.8

8
4

0
.8

2
7

0
.8

5
8

0
.8

5
5

0
.8

2
1

0
.8

8
6

0
.8

2
7

0
.8

5
8

1
2

0
.9

9
7

1
0

.9
9

0
0

.9
8

0
1

0
.8

8
1

0
.8

5
9

0
.9

2
7

0
.8

6
1

0
.9

1
4

0
.9

0
5

0
.9

2
9

0
.9

2
9

0
.8

7
1

0
.9

5
8

1
3

2
,0

9
4

2
,0

9
8

2
,0

9
8

2
,0

9
8

2
,0

9
8

2
,0

8
0

2
,0

9
8

2
,0

9
8

2
,0

9
5

2
,0

9
3

2
,0

9
8

2
,0

9
8

2
,0

9
8

2
,0

9
6

2
,0

9
8

1
4

7
,8

4
9

7
,8

9
9

7
,9

3
8

7
,8

8
6

7
,9

4
6

7
,8

7
1

7
,9

1
5

7
,9

1
3

7
,8

6
7

7
,8

8
7

7
,9

2
5

7
,9

3
4

7
,9

4
0

7
,8

6
8

7
,9

0
3

1
5

4
5

,1
6

8
4

5
,5

4
5

4
5

,5
1

6
4

5
,5

1
1

4
5

,5
6

3
4

5
,2

7
7

4
5

,5
9

0
4

5
,5

3
4

4
5

,4
9

0
4

5
,5

2
0

4
5

,3
7

9
4

5
,5

8
4

4
5

,5
3

4
4

5
,4

9
0

4
5

,5
2

4

1
6

1
1

4
,7

9
2

1
1

5
,9

3
9

1
1

5
,7

1
7

1
1

6
,2

5
1

1
1

5
,9

2
3

1
1

5
,4

2
2

1
1

6
,4

5
4

1
1

5
,6

5
1

1
1

6
,2

1
1

1
1

5
,8

0
8

1
1

5
,8

0
2

1
1

6
,5

3
7

1
1

5
,6

8
0

1
1

6
,2

1
4

1
1

5
,8

2
4

1
7

1
,7

6
2

1
,8

1
9

1
,8

7
1

1
,8

8
7

1
,8

9
7

1
,8

2
9

1
,9

2
1

1
,8

6
9

1
,8

8
6

1
8

7
2

1
,8

2
3

1
,9

1
6

1
,8

6
9

1
,8

8
6

1
,8

7
7

1
8

4
2

1
4

3
7

5
3

4
5

2
9

5
0

8
4

8
2

5
1

7
5

3
5

5
2

9
5

2
2

4
4

9
4

7
1

5
3

5
5

2
9

5
2

6

1
9

2
,9

2
0

2
,9

3
1

2
,9

9
1

2
,9

8
7

3
,0

0
8

2
,9

6
9

2
,9

9
2

2
,9

9
1

2
,9

8
6

3
,0

0
2

2
,9

4
0

2
,9

5
4

2
,9

9
1

2
,9

8
6

3
,0

0
7

2
0

8
4

3
8

6
6

9
1

6
9

2
9

9
5

3
9

0
0

9
5

0
9

2
0

9
2

9
9

3
5

8
8

5
9

2
2

9
2

0
9

2
9

9
4

7

2
1

7
5

9
7

8
2

8
3

1
8

4
2

8
6

9
8

1
0

8
6

1
8

3
0

8
3

9
8

4
6

7
9

5
8

4
4

8
3

0
8

3
9

8
5

5

2
2

6
,4

1
0

6
,4

6
0

6
,5

0
6

6
,5

4
8

6
,5

7
2

6
,4

7
2

6
,5

8
2

6
,5

0
4

6
,5

4
5

6
,5

4
8

6
,4

5
2

6
,5

4
6

6
,5

0
4

6
,5

4
5

6
,5

6
0

Evaluating a local genetic algorithm 1135

123

T
a

b
le

1
6

R
es

u
lt

s
o

f
th

e
IL

S
-0

.5
,

IL
S

-0
.7

5
,

an
d

V
N

S
al

g
o

ri
th

m
s

w
it

h
ea

ch
re

fi
n

em
en

t
p

ro
ce

d
u

re

P
ro

b
le

m
IL

S
-0

.5
IL

S
-0

.7
5

V
N

S

B
es

tL
S

F
ir

st
L

S
K

o
p

t
R

an
d

K
B

L
G

A
B

es
tL

S
F

ir
st

L
S

K
o

p
t

R
an

d
K

B
L

G
A

B
es

tL
S

F
ir

st
L

S
K

o
p

t
R

an
d

K
B

L
G

A

1
3

8
6

3
8

1
3

9
0

3
7

6
3

8
0

3
8

2
3

8
0

3
9

0
3

7
6

3
8

0
3

8
9

3
8

3
3

9
0

3
7

6
3

8
3

2
2

1
9

2
1

2
2

2
0

2
0

1
2

2
0

2
1

1
2

0
5

2
2

0
2

0
6

2
2

0
2

2
0

2
1

8
2

2
0

2
0

5
2

2
0

3
0

.9
5

5
0

.9
5

7
0

.9
5

9
0

.9
5

9
0

.9
6

0
0

.9
5

3
0

.9
5

6
0

.9
5

9
0

.9
5

9
0

.9
5

8
0

.9
5

7
0

.9
5

9
0

.9
5

8
0

.9
5

9
0

.9
5

9

4
0

.9
3

5
0

.9
3

6
0

.9
3

7
0

.9
3

7
0

.9
3

7
0

.9
3

3
0

.9
3

5
0

.9
3

7
0

.9
3

6
0

.9
3

6
0

.9
3

6
0

.9
3

7
0

.9
3

7
0

.9
3

7
0

.9
3

7

5
0

.7
6

1
0

.7
6

2
0

.7
7

0
0

.7
6

7
0

.7
7

4
0

.7
5

3
0

.7
5

5
0

.7
7

0
0

.7
6

6
0

.7
6

7
0

.7
6

9
0

.7
7

3
0

.7
7

3
0

.7
6

8
0

.7
7

4

6
0

.7
4

3
0

.7
4

8
0

.7
6

5
0

.7
4

9
0

.7
3

8
0

.7
4

2
0

.7
4

9
0

.7
6

2
0

.7
4

7
0

.7
3

6
0

.7
5

5
0

.7
5

4
0

.7
6

4
0

.7
5

1
0

.7
5

2

7
1

1
1

0
.9

9
7

1
1

1
0

.9
9

9
0

.9
9

5
1

1
1

0
.9

9
9

0
.9

9
0

1

8
0

.9
9

7
1

0
.9

9
4

0
.9

7
5

1
0

.9
9

7
1

0
.9

8
9

0
.9

8
1

0
.9

9
9

0
.9

9
4

1
0

.9
7

6
0

.9
1

9
1

9
0

.9
8

9
1

0
.9

8
1

0
.9

6
0

1
0

.9
8

8
0

.9
9

9
0

.9
7

5
0

.9
4

8
0

.9
9

7
0

.9
8

1
0

.9
9

8
0

.9
3

6
0

.8
5

5
0

.9
9

9

1
0

0
.9

8
0

1
0

.9
6

2
0

.9
1

3
1

0
.9

7
3

0
.9

9
7

0
.9

5
9

0
.9

1
6

0
.9

9
7

0
.9

4
6

0
.9

9
7

0
.9

2
1

0
.8

3
8

0
.9

9
9

1
1

0
.9

4
6

0
.9

9
9

0
.9

1
8

0
.8

9
6

1
0

.9
4

6
0

.9
9

6
0

.9
2

2
0

.8
9

4
0

.9
9

7
0

.8
6

9
0

.9
9

4
0

.8
8

4
0

.8
2

7
0

.9
9

6

1
2

0
.9

9
8

1
0

.9
9

3
0

.9
7

7
1

0
.9

9
5

0
.9

9
9

0
.9

9
1

0
.9

7
7

1
0

.9
9

4
1

0
.9

7
8

0
.9

3
3

1

1
3

2
,0

9
5

2
,0

9
8

2
,0

9
8

2
,0

9
5

2
,0

9
8

2
,0

0
6

2
,0

5
9

2
,0

9
8

2
,0

9
4

2
,0

9
5

2
,0

9
8

2
,0

9
8

2
,0

9
8

2
,0

9
6

2
,0

9
8

1
4

7
,8

3
6

7
,8

9
7

7
,9

4
4

7
,8

8
4

7
,9

4
6

7
,6

9
9

7
,8

2
7

7
,9

4
6

7
,8

8
0

7
,9

2
0

7
,8

8
0

7
,9

0
9

7
,9

3
4

7
,8

7
6

7
,9

5
1

1
5

4
5

,1
0

4
4

5
,5

2
4

4
5

,5
3

4
4

5
,4

8
8

4
5

,5
5

1
4

4
,8

8
0

4
5

,4
5

2
4

5
,5

3
4

4
5

,4
8

4
4

5
,5

8
3

4
5

,3
5

6
4

5
,5

7
3

4
5

,5
3

4
4

5
,4

9
0

4
5

,5
8

9

1
6

1
1

4
,8

1
5

1
1

5
,8

9
0

1
1

5
,6

8
6

1
1

6
,2

6
1

1
1

5
,8

6
2

1
1

3
,8

2
3

1
1

5
,2

0
7

1
1

5
,6

3
8

1
1

6
,0

9
5

1
1

6
,0

2
4

1
1

5
,4

7
5

1
1

6
,4

7
7

1
1

5
,6

5
0

1
1

6
,2

2
8

1
1

6
,0

7
9

1
7

1
,7

6
4

1
,8

2
2

1
,8

6
9

1
,8

8
6

1
,9

0
8

1
,8

2
1

1
,9

1
6

1
,8

6
9

1
,8

8
6

1
,8

9
3

1
,8

2
6

1
,9

2
0

1
,8

6
9

1
,8

8
6

1
,9

0
5

1
8

4
2

2
4

3
7

5
3

5
5

2
9

5
1

0
4

4
6

4
7

2
5

3
5

5
2

9
5

2
8

4
5

8
5

0
1

5
3

5
5

2
9

5
2

3

1
9

2
,9

2
0

2
,9

3
1

2
,9

9
1

2
,9

8
6

3
,0

0
9

2
,9

3
9

2
,9

5
3

2
,9

9
1

2
,9

8
6

3
,0

1
0

2
,9

5
3

2
,9

7
8

2
,9

9
1

2
,9

8
6

3
,0

0
6

2
0

8
4

5
8

6
8

9
2

0
9

2
9

9
5

6
8

8
0

9
2

4
9

2
0

9
2

9
9

4
6

8
9

4
9

3
7

9
2

0
9

2
9

9
4

8

2
1

7
6

4
7

8
1

8
3

0
8

3
9

8
6

8
8

0
0

8
4

2
8

3
0

8
3

9
8

5
9

8
0

6
8

5
4

8
3

0
8

3
9

8
5

7

2
2

6
,4

1
0

6
,4

5
6

6
,5

0
4

6
,5

4
5

6
,5

7
1

6
,4

4
8

6
,5

5
1

6
,5

0
4

6
,5

4
5

6
,5

7
1

6
,4

7
2

6
,5

6
9

6
,5

0
4

6
,5

4
5

6
,5

7
2

1136 C. Garcı́a-Martı́nez, M. Lozano

123

z ¼ ðRi � RjÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðk þ 1Þ

6N

r
ð5Þ

The value of z is used for finding the corresponding

probability from the table of the normal distribution,

which is compared with the corresponding value of a:
• Wilcoxon signed rank test: This is the analogous of the

paired t test in non-parametrical statistical procedures;

therefore, it is a pairwise test that aims to detect

significant differences between the results of two

algorithms. Let di be the difference between the

performance scores of two algorithms on the ith out

of N functions (we have normalized the results on every

function to be in ½0; 1� according to the best and worst

results obtained by all the algorithms). The differences

are ranked according to their absolute values; average

ranks are assigned in case of ties. Let Rþ be the sum of

ranks for the functions on which the second algorithm

outperformed the first, and R� the sum of ranks for the

opposite. Ranks of di ¼ 0 are split evenly among the

sums; if there is an odd number of them, one is ignored:

Rþ ¼
X

di [0

rankðdiÞ þ 1=2
X

di¼0

rankðdiÞ ð6Þ

R� ¼
X

di\0

rankðdiÞ þ 1=2
X

di¼0

rankðdiÞ ð7Þ

Let T be the smallest of the sums, T ¼ minðRþ;R�Þ: If T is

less than or equal to the value of the distribution of Wil-

coxon for N degrees of freedom [Table B.12 in Zar (1999)],

the null hypothesis of equality of means is rejected.

References

Alcalá-Fdez J, Sánchez L, Garcı́a S, del Jesus MJ, Ventura S, Garrel

JM, Otero J, Romero C, Bacardit J, Rivas VM, Fernández JC,

Herrera F (2009) KEEL: a software tool to assess evolutionary

algorithms for data mining problems. Soft Comput 13(3):307–

318

Auger A, Hansen N (2005) Performance evaluation of an advanced

local search evolutionary algorithm. In: Corne D, Michalewicz

Z, McKay B, Eiben G, Fogel D, Fonseca C, Greenwood G, Raidl

G, Tan KC, Zalzala A (eds) Proceedings of the IEEE interna-

tional conference on evolutionary computation, vol 2. IEEE,

New York, pp 1777–1784

Beasley JE (1990) OR-library: distributing test problems by electronic

mail. J Oper Res Soc 41(11):1069–1072. http://people.brunel.ac.

uk/mastjjb/jeb/info.html

Table 17 Number of successful restarts for each LS-based MH

Problem BestLS FirstLS Kopt RandK BLGA

RMLS ILS-0.25 VNS RMLS ILS-0.1 VNS RMLS ILS-0.5 VNS RMLS ILS-0.5 VNS RMLS ILS-0.5 VNS

1 3.2 5.5 5.2 3.8 8.1 5.0 0.0 0.0 0.0 1.9 2.2 2.5 3.8 3.7 5.1

2 3.2 3.6 4.0 4.5 6.9 6.4 0.0 0.0 0.0 2.2 2.4 3.0 5.3 5.3 6.3

3 2.5 5.0 4.8 3.7 6.7 6.2 1.0 1.0 1.3 1.1 0.9 1.0 6.1 6.1 7.3

4 2.1 4.4 4.2 4.5 5.0 5.0 0.9 1.0 1.2 1.0 1.2 1.5 6.7 6.3 6.5

5 4.2 7.3 6.9 6.0 10.0 8.4 2.5 2.7 3.0 2.3 2.5 2.9 9.6 9.3 9.8

6 5.2 6.2 6.2 5.4 8.2 6.9 3.0 2.8 3.2 2.6 3.1 2.6 6.5 6.0 7.1

7 2.2 1.8 2.3 2.8 0.2 2.8 1.9 2.0 1.8 2.7 2.4 2.3 3.1 3.3 3.2

8 2.2 0.1 2.1 3.0 0.0 3.0 1.5 1.6 0.9 1.6 1.7 0.7 3.0 2.9 3.7

9 2.0 0.0 1.3 3.1 0.0 2.7 1.1 0.9 0.2 1.1 1.0 0.0 3.5 3.1 3.3

10 1.1 0.0 0.7 3.1 0.0 2.5 0.7 0.5 0.0 0.4 0.5 0.0 3.1 2.6 3.4

11 0.8 0.0 0.2 3.2 0.0 2.8 0.4 0.3 0.0 0.4 0.5 0.0 3.1 2.9 3.1

12 2.5 0.2 2.6 3.6 0.0 3.3 1.5 1.6 1.1 1.8 1.6 0.7 3.7 3.3 3.9

13 3.3 3.4 3.6 4.0 3.8 3.5 0.3 0.4 0.4 1.3 1.5 1.4 4.2 3.6 4.0

14 3.2 4.3 3.3 4.6 5.5 5.4 1.2 1.2 1.0 1.6 1.6 1.6 6.4 6.7 7.7

15 0.9 2.2 2.4 3.4 5.2 4.3 0.0 0.0 0.0 0.2 0.1 0.1 5.6 5.8 5.7

16 1.6 5.8 6.7 4.6 11.7 9.5 0.2 0.3 0.4 0.5 0.6 0.9 15.3 14.6 17.3

17 1.0 2.9 6.6 3.9 18.3 14.1 0.0 0.0 0.0 0.0 0.0 0.0 26.8 29.5 39.5

18 1.3 3.5 4.7 4.3 20.1 14.7 0.0 0.0 0.0 0.0 0.0 0.0 13.2 14.3 23.3

19 1.2 2.9 5.4 4.3 17.5 11.8 0.0 0.0 0.0 0.0 0.0 0.1 20.5 20.5 32.0

20 1.4 3.5 7.8 4.6 25.3 16.7 0.0 0.0 0.0 0.0 0.0 0.0 25.9 28.0 38.4

21 1.2 3.4 7.6 4.4 22.8 17.0 0.0 0.0 0.0 0.0 0.0 0.0 28.1 26.6 36.8

22 0.5 1.8 5.1 4.0 22.8 15.6 0.0 0.0 0.0 0.0 0.0 0.0 30.2 30.1 45.6

Evaluating a local genetic algorithm 1137

123

http://people.brunel.ac.uk/mastjjb/jeb/info.html
http://people.brunel.ac.uk/mastjjb/jeb/info.html

Beasley JE (1998) Heuristic algorithms for the unconstrained binary

quadratic programming problem. Technical report, The Man-

agement School, Imperial College

Blum C (2002) ACO applied to group shop scheduling: a case study

on intensification and diversification. In: Dorigo M, Di Caro G,

Sampels M (eds) ANTS. LNCS, vol 2463. Springer, Heidelberg,

pp 14–27

Blum C, Roli A (2003) Metaheuristics in combinatorial optimization:

overview and conceptual comparison. ACM Comput Surv

35(3):268–308

Boender CGE, Rinnooy-Kan AHG, Stougie L, Timmer GT (1982) A

stochastic method for global optimization. Math Program

22:125–140

Boros E, Hammer PL, Tavares G (2007) Local search heuristics for

quadratic unconstrained binary optimization (QUBO). J Heuris-

tics 13(2):99–132

Brimberg J, Mladenović N, Urošević D (2008) Local and variable

neighborhood search for the k-cardinality subgraph problem.

J Heuristics 14(5):501–517

Campos V, Laguna M, Martı́ R (2005) Context-independent scatter

and tabu search for permutation problems. INFORMS J Comput

17(1):111–122

Chelouah R, Siarry P (2003) Genetic and Nelder-Mead algorithms

hybridized for a more accurate global optimization of continuous

multiminima functions. Eur J Oper Res 148(2):335–348

Davis L (1991) Bit-climbing, representational bias, and test suite

design. In: Belew R, Booker LB (eds) Proceedings of the

international conference on genetic algorithms. Morgan Kauf-

mann, Menlo Park, pp 18–23

De Jong K, Potter MA, Spears WM (1997) Using problem generators

to explore the effects of epistasis. In: Bäck T (ed) Proceedings of

the international conference on genetic algorithms. Morgan

Kaufmann, Menlo Park, pp 338–345

Dorigo M, Stützle T (2004) Ant colony optimization. MIT,

Cambridge

Dunham B, Fridshal D, Fridshal R, North JH (1963) Design by natural

selection. Synthese 15(1):254–259

Fernandes C, Rosa A (2001) A study on non-random mating and

varying population size in genetic algorithms using a royal road

function. In: Proceedings of the congress on evolutionary

computation. IEEE, New York, pp 60–66

Fernandes C, Rosa AC (2008) Self-adjusting the intensity of assortative

mating in genetic algorithms. Soft Comput 12(10):955–979

Fournier NG (2007) Modelling the dynamics of stochastic local

search on k-sat. J Heuristics 13(6):587–639

Garcia S, Molina D, Lozano M, Herrera F (2008) A study on the use

of non-parametric tests for analyzing the evolutionary algo-

rithms’ behaviour: A case study on the CEC’2005 special session

on real parameter optimization. J Heuristics. doi:10.1007/

s10732-008-9080-4

Garcia S, Fernández A, Luengo J, Herrera F (2009) A study of

statistical techniques and performance measures for genetics-

based machine learning: accuracy and interpretability. Soft

Comput 13(10):959–977

Garcı́a-Martı́nez C, Lozano M (2008) Local search based on genetic

algorithms. In: Siarry P, Michalewicz Z (eds) Advances in

metaheuristics for hard optimization. Natural computing.

Springer, Heidelberg, pp 199–221

Garcı́a-Martı́nez C, Lozano M, Molina D (2006) A local genetic

algorithm for binary-coded problems. In: Runarsson TP, Beyer

H-G, Burke E, Merelo-Guervós JJ, Whitley LD, Yao X (eds)

Proceedings of the international conference on parallel problem

solving from nature. LNCS, vol 4193. Springer, Heidelberg, pp

192–201

Garcı́a-Martı́nez C, Lozano M, Herrera F, Molina D, Sánchez AM

(2008) Global and local real-coded genetic algorithms based on

parent-centric crossover operators. Eur J Oper Res 185(3):1088–

1113

Glover F, Kochenberger G (eds) (2003) Handbook of metaheuristics.

Kluwer, Dordrecht

Goldberg DE (1989) Genetic algorithms in search, optimization and

machine learning. Addison-Wesley/Longman, Menlo Park/

London

Goldberg DE, Korb B, Deb K (1989) Messy genetic algorithms:

motivation, analysis, and first results. Complex Syst 3:493–530

Gortazar F, Duarte A, Laguna M, Martı́ R (2008) Context-indepen-

dent scatter search for binary problems. Technical report,

Colorado LEEDS School of Business, University of Colorado

at Boulder

Hansen P, Mladenović N (2002) Variable neighborhood search. In:

Glover F, Kochenberger G (eds) Handbook of metaheuristics.

Kluwer, Dordrecht, pp 145–184

Harada K, Ikeda K, Kobayashi S (2006) Hybridization of genetic

algorithm and local search in multiobjective function optimiza-

tion: recommendation of GA then LS. In: Cattolico M (ed)

Proceedings of the genetic and evolutionary computation

conference. ACM, New York, pp 667–674

Harik G (1995) Finding multimodal solutions using restricted

tournament selection. In: Eshelman LJ (ed) Proceedings of the

international conference on genetic algorithms. Morgan Kauf-

mann, Menlo Park, pp 24–31

Helmberg C, Rendl F (2000) A spectral bundle method for

semidefinite programming. SIAM J Optim 10(3):673–696

Herrera F, Lozano M (2000) Gradual distributed real-coded genetic

algorithms. IEEE Trans Evol Comput 4(1):43–63

Holland JH (1975) Adaptation in natural and artificial systems. The

University of Michigan Press, Ann Arbor

Holm S (1979) A simple sequentially rejective multiple test

procedure. Scand J Stat 6:65–70

Hoos HH, Stützle T (2004) Stochastic local search. Morgan

Kaufmann Publishers, San Francisco

Iman RL, Davenport JM (1980) Approximations of the critical region

of the Friedman statistic. In: Communications in statistics. pp

571–595

Ishibuchi H, Hitotsuyanagi Y, Tsukamoto N, Nojima Y (2009) Use of

biased neighborhood structures in multiobjective memetic algo-

rithms. Soft Comput 13(8–9):795–810

Jones T (1995) Crossover, macromutation, and population-based

search. In: Eshelman L (ed) Proceedings of the sixth interna-

tional conference on genetic algorithms. Morgan Kaufmann,

Menlo Park, pp 73–80

Karp RM (1972) Reducibility among combinatorial problems. In:

Miller R, Thatcher J (eds) Complexity of computer computa-

tions. Plenum, NY, pp 85–103

Katayama K, Narihisa H (2001) A variant k-opt local search heuristic

for binary quadratic programming. Trans IEICE (A) J84-

A(3):430–435

Katayama K, Narihisa H (2005) An evolutionary approach for the

maximum diversity problem. In: Recent advances in memetic

algorithms. Springer, Heidelberg, pp 31–47

Kauffman SA (1989) Adaptation on rugged fitness landscapes. Lec

Sci Complex 1:527–618

Kazarlis SA, Papadakis SE, Theocharis JB, Petridis V (2001)

Microgenetic algorithms as generalized hill-climbing operators

for GA optimization. IEEE Trans Evol Comput 5(3):204–217

Kong M, Tian P, Kao Y (2008) A new ant colony optimization

algorithm for the multidimensional knapsack problem. Comput

Oper Res 35(8):2672–2683

Krasnogor N, Smith J (2005) A tutorial for competent memetic

algorithms: Model, taxonomy and design issues. IEEE Trans

Evol Comput 9(5):474–488

Laguna M (2003) Scatter search. Kluwer, Boston

1138 C. Garcı́a-Martı́nez, M. Lozano

123

http://dx.doi.org/10.1007/s10732-008-9080-4
http://dx.doi.org/10.1007/s10732-008-9080-4

Lima CF, Pelikan M, Sastry K, Butz M, Goldberg DE, Lobo FG

(2006) Substructural neighborhoods for local search in the

bayesian optimization algorithm. In: Proceedings of the interna-

tional conference on parallel problem solving from nature.

LNCS, vol 4193, pp 232–241

Lin S, Kernighan BW (1973) An effective heuristic algorithm for the

traveling-salesman problem. Oper Res 21(2):498–516

Lourenço HR, Martin O, Stützle T (2003) Iterated local search. In:

Glover F, Kochenberger G (eds) Handbook of metaheuristics,

Kluwer, Dordrecht, pp 321–353

Lozano M, Garcı́a-Martı́nez C (2010) Hybrid metaheuristics with

evolutionary algorithms specializing in intensification and

diversification: overview and progress report. Comput Oper

Res 37:481–497

Lozano M, Herrera F, Krasnogor N, Molina D (2004) Real-coded

memetic algorithms with crossover hill-climbing. Evol Comput

12(3):273–302

Mahfoud SW (1992) Crowding and preselection revised. In: Männer

R, Manderick B (eds) Parallel problem solving from nature, vol

2. Elsevier Science, London, pp 27–36

Marti R (2003) Multi-start methods. In: Glover F, Kochenberger G

(eds) Handbook of metaheuristics. Kluwer, Dordrech, pp 355–

368

Martı́ R, Moreno-Vega JM, Duarte A (2009) Advanced multi-start

methods, 2nd edn. In: Handbook of metaheuristics. Springer,

Heidelberg

Merz P (2001) On the performance of memetic algorithms in

combinatorial optimization. In: Second workshop on memetic

algorithms, genetic and evolutionary computation conference.

Morgan Kaufmann, Menlo Park, pp 168–173

Merz P, Katayama K (2004) Memetic algorithms for the uncon-

strained binary quadratic programming problem. Biosystems

79(1–3):99–118

Moscato P (1999) Memetic algorithms: a short introduction. In: Corne

D, Dorigo M, Glover F (eds) New ideas in optimization.

McGraw-Hill, NY, pp 219–234

Mutoh A, Tanahashi F, Kato S, Itoh H (2006) Efficient real-coded

genetic algorithms with flexible-step crossover. Trans Electron

Inf Syst 126(5):654–660

Nguyen HD, Yoshihara I, Yamamori K, Yasunaga M (2007)

Implementation of effective hybrid GA for large-scale traveling

salesman problems. IEEE Trans Syst Man Cybern B 37(1):92–99

Noman N, Iba H (2008) Accelerating differential evolution using an

adaptive local search. IEEE Trans Evol Comput 12(1):107–125

O’Reilly UM, Oppacher F (1995) Hybridized crossover-based search

techniques for program discovery. In: Proceedings of the world

conference on evolutionary computation, vol 2, pp 573–578

Peng G, Ichiro I, Shigeru N (2007) Application of genetic recombina-

tion to genetic local search in TSP. Int J Inf Technol 13(1):57–66

Potts JC, Giddens TD, Yadav SB (1994) The development and

evaluation of an improved genetic algorithm based on migration

and artificial selection. IEEE Trans Syst Man Cybern 24:73–86

Raidl GR (2006) A unified view on hybrid metaheuristics. In:

Almeida F, Aguilera MJB Blesa, Blum C, Vega JM Moreno,

Pérez M Pérez, Roli A, Sampels M (eds) Hybrid metaheuristics.

LNCS, vol 4030. Springer, Heidelberg, pp 1–126

Randall M (2006) Search space reduction as a tool for achieving

intensification and diversification in ant colony optimisation. In:

Ali M, Dapoigny R (eds) LNCS, vol 4031. Springer, Heidelberg,

pp 254–262

Ray SS, Bandyopadhyay S, Pal SK (2007) Genetic operators for

combinatorial optimization in TSP and microarray gene order-

ing. App Intell 26(3):183–195

Resende MGC, Ribeiro CC (2003) Greedy randomized adaptive

search procedures. In: Glover F, Kochenberger G (eds) Hand-

book of metaheuristics. Kluwer, Dordrecht, pp 219–249

Sastry K, Goldberg DE (2004) Designing competent mutation

operators via probabilistic model building of neighborhoods.

In: Deb K, Poli R, Banzhaf W, Beyer H-G, Burk EK, Darwen PJ,

Dasgupta D, Floreano D, Foster JA, Harman M, Holland O,

Lanzi PL, Spector L, Tettamanzi A, Thierens D, Tyrrel AM (eds)

Proceedings of the conference on genetic and evolutionary

computation. LNCS, vol 3103, pp 114–125

Siarry P, Michalewicz Z (eds) (2008) Advances in metaheuristics for

hard optimization. Natural Computing, Springer

Smith K, Hoos HH, Stützle T (2003) Iterated robust tabu search for

MAX-SAT. In: Carbonell JG, Siekmann J (eds) Proceedings of

the Canadian society for computational studies of intelligence

conference. LNCS, vol 2671. Springer, Heidelberg, pp 129–144

Soak S-M, Lee S-W, Mahalik NP, Ahn B-H (2006) A new memetic

algorithm using particle swarm optimization and genetic algo-

rithm. In: Knowledge-based intelligent information and engi-

neering systems. LNCS, vol 4251. Springer, Berlin, pp 122–129

Spears WM (2000) Evolutionary algorithms: the role of mutation and

recombination. Springer, Heidelberg

Spears WM, De Jong KA (1991) On the virtues of parameterized

uniform crossover. In: Belew R, Booker LB (eds) Proceedings of

the international conference on genetic algorithms. Morgan

Kaufmann, Menlo Park, pp 230–236

Sywerda G (1989) Uniform crossover in genetic algorithms. In:

Schaffer JD (ed) Proceedings of the international conference on

genetic algorithms. Morgan Kaufmann, Menlo Park, pp 2–9

Talbi EG (2002) A taxonomy of hybrid metaheuristics. J Heuristics

8(5):541–564

Thierens D (2004) Population-based iterated local search: restricting

neighborhood search by crossover. In: Deb K, Poli R, Banzhaf

W, Beyer H-G, Burk EK, Darwen PJ, Dasgupta D, Floreano D,

Foster JA, Harman M, Holland O, Lanzi PL, Spector L,

Tettamanzi A, Thierens D, Tyrrel AM (eds) Proceedings of the

genetic and evolutionary computation conference. LNCS, vol

3103. Springer, Heidelberg, pp 234–245

Tsai H-K, Yang J-M, Tsai Y-F, Kao C-Y (2004) An evolutionary

algorithm for large traveling salesman problems. IEEE Trans

Syst Man Cybern 34(4):1718–1729

Tsutsui S, Ghosh A, Corne D, Fujimoto Y (1997) A real coded

genetic algorithm with an explorer and an exploiter population.

In: Bäck T (ed) Proceedings of the international conference on

genetic algorithms. Morgan Kaufmann, Menlo Park, pp 238–245

Ventura S, Romero C, Zafra A, Delgado JA, Hervás-Martı́nez C

(2008) JCLEC: A java framework for evolutionary computation.

Soft Comput 12(4):381–392

Wang H, Wang D, Yang S (2009) A memetic algorithm with adaptive

hill climbing strategy for dynamic optimization problems. Soft

Comput 13(8–9):763–780

Whitley D (1989) The GENITOR algorithm and selection pressure:

why rank-based allocation of reproductive trials is best. In:

Schaffer JD (ed) Proceedings of the international conference on

genetic algorithms. Morgan Kaufmann, Menlo Park, pp 116–121

Zar JH (1999) Biostatistical analysis. Prentice Hall, Englewood Cliffs

Evaluating a local genetic algorithm 1139

123

	Evaluating a local genetic algorithm as context-independent local search operator for metaheuristics
	Abstract
	Introduction
	Local genetic algorithms
	Binary-coded local genetic algorithm
	General scheme of BLGA
	Positive assortative mating
	Multi-parent uniform crossover operator with short term memory
	Restricted tournament selection
	Stop condition

	Experimental framework
	BLGA-based random multi-start local search
	RMLS--BLGA versus RMLS algorithms with classical LS methods
	Behavior of BLGA in the RMLS algorithm

	BLGA-based iterated local search
	Influence of the perturbation strength
	ILS-BLGA versus ILS algorithms with classical LS methods

	BLGA-based variable neighborhood search
	Synergy between VNS and BLGA
	VNS-BLGA versus VNS algorithms with classical LS methods

	Analysis on long runs
	Conclusions
	Acknowledgments
	Appendix 1: A test suite
	Deceptive problem
	Trap problem
	Max-Sat Problem
	NK-landscapes
	P-peak problems
	Max-cut problem
	Unconstrained binary quadratic programming problem

	Appendix 2: Results
	Appendix 3: Statistical analysis
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

