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Abstract— Recently, multiobjective evolutionary algorithms
have been applied to improve the difficult tradeoff between
interpretability and accuracy of fuzzy rule-based systems. It
is known that both requirements are usually contradictory,
however, these kinds of algorithms can obtain a set of solutions
with different trade-offs.

The application of multiobjective evolutionary algorithms to
fuzzy rule-based systems is often referred to as multiobjective
genetic fuzzy systems. The first study on multiobjective genetic
fuzzy systems was multiobjective genetic fuzzy rule selection
in order to simultaneously achieve accuracy maximization and
complexity minimization. This approach is based on the genera-
tion of a set of candidate fuzzy classification rules by considering
a previously fixed granularity or multiple fuzzy partitions with
different granularities for each attribute. Then, a multiobjective
evolutionary optimization algorithm is applied to perform fuzzy
rule selection. Although the multiple granularity approach is
one of the most promising approaches, its interpretability loss
has often been pointed out.

In this work, we propose a mechanism to generate single
granularity-based fuzzy classification rules for multiobjective
genetic fuzzy rule selection. This mechanism is able to specify
appropriate single granularities for fuzzy rule extraction before
performing multiobjective genetic fuzzy rule selection. The
results show that the performance of the obtained classifiers
can be even improved by avoiding multiple granularities, which
increases the linguistic interpretability of the obtained models.

I. INTRODUCTION

Many automatic techniques have been proposed in the
literature to extract a proper set of fuzzy rules from numerical
data. Most of these techniques usually try to improve the
performance associated to the prediction error without paying
a special attention to the system interpretability, an essential
aspect of fuzzy rule-based systems. In the last years, the
problem of finding the right trade-off between interpretability
and accuracy, in spite of the original nature of fuzzy logic,
has arisen a growing interest in methods which take both
aspects into account [4]. Of course, the ideal thing would be
to satisfy both criteria to a high degree, but since they are
contradictory issues generally it is not possible.

Evolutionary Multiobjective Optimization (EMO) algo-
rithms [6], [7] generate a family of equally valid solutions,
where each solution tends to satisfy a criterion to a higher
extent than another. For this reason, EMO algorithms have
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been also applied to improve the accuracy-interpretability
trade-off of fuzzy rule-based systems [5], [9], [10], [11],
[12], where each solution in the Pareto front represents
a different trade-off between interpretability and accuracy
(typically measured as complexity and prediction error).

Some of the most recognized works [10], [11] were
devoted to the application of EMO algorithms to perform a
genetic fuzzy rule selection on an initial set of classification
rules involving “don’t care” conditions and considering two
different objectives, classification accuracy and the number
of rules. Then, a third objective was also included in order
to minimize the length of the rules in [12].

In genetic fuzzy rule selection, a previously fixed granular-
ity [10], [11] or multiple granularities [12] of triangular fuzzy
membership functions have been used for the design of fuzzy
classifiers, even regression models [1], since an appropriate
granularity for each attribute is not known beforehand. By
using multiple granularities, the number of fuzzy rules can be
successfully reduced in a model. Although the multiple gran-
ularity approach is one of the most promising approaches, its
interpretability loss has often been pointed out.

To solve the above-mentioned problem, in this work, we
propose a single granularity specification for multiobjective
genetic fuzzy rule selection. Multiobjective genetic fuzzy
rule selection is the following two-step method. In the first
phase, a prespecified number of promising fuzzy rules are
generated by a heuristic procedure. In the second phase, a
multiobjective genetic algorithm is used to select a small
number of fuzzy rules from the extracted ones in the first
phase. A single granularity specification is an additional
process before the second phase. After extracting a prespec-
ified number of fuzzy rules with multiple granularities, a
single granularity is specified for each attribute individually
according to the frequency of employed partitions and the
importance of the multiple granularity-based extracted rules.
Then a prespecified number of fuzzy rules are extracted again
based on the specified granularity for each attribute.

Following the same main idea, four different mechanisms
have been proposed and compared with the original ap-
proach on a set of 15 well-known datasets. As well as
the interpretability improvement that the use of a single
granularity involves, the results show that the performance
of the obtained classifiers can be even improved by avoiding
multiple granularities.

This contribution is arranged as follows. Next section
introduces fuzzy rule-based classifiers by describing the rule
structure and inference used in this paper. Section III presents
the algorithm proposed to generate single granularity-based



fuzzy classification rules for multiobjective genetic fuzzy rule
selection. Section IV shows an experimental study of this
method on a set of 15 well-known datasets. Finally, Section V
points out some conclusions.

II. PRELIMINARIES: FUZZY RULE-BASED CLASSIFIERS
STRUCTURE AND INFERENCE

Let us assume that we have m training (i.e., labeled)
patterns ~xp = (xp1, ..., xpn), p = 1, 2, ..., m from
M classes in an n-dimensional pattern space where xpi is
the attribute value of the pth pattern for the ith attribute
(i = 1, ..., n). For the simplicity of explanation, we assume
that all the attribute values have already been normalized
into real numbers in the unit interval [0, 1]. Thus the pattern
space of our classification problem is an n-dimensional unit-
hypercube [0, 1]n.

For our n-dimensional pattern classification problem, we
use fuzzy rules of the following type:

Rq : If x1 is Aq1 and ... and xn is Aqn

then Class Cq with CF q, (1)

where Rq is the label of the qth fuzzy rule, ~x = (x1, ..., xn)
is an n-dimensional pattern vector, Aqi is an antecedent fuzzy
set (i = 1, ..., n), Cq is a class label, and CF q is a rule
weight. We denote the antecedent fuzzy sets of Rq as a fuzzy
vector ~Aq = (Aq1, Aq2, ..., Aqn).

Fourteen fuzzy sets are initially considered in four fuzzy
partitions with different granularities. Figure 1 depicts these
partitions. In addition to those 14 fuzzy sets, we also use
the domain interval [0, 1] itself as an antecedent fuzzy set
in order to represent a don’t care condition.
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Fig. 1. The fourteen antecedent fuzzy sets considered.

Let S be a set of fuzzy rules of the form in (1). When an
input pattern ~xp is to be classified by S, first we calculate
the compatibility grade of ~xp with the antecedent part ~Aq =
(Aq1, Aq2, ..., Aqn) of each fuzzy rule Rq in S using the
product operation as,

µ ~Aq
(~xp) = µAq1(xp1) · ... · µAqn(xpn), (2)

where µAqi
(·) is the membership function of the antecedent

fuzzy set Aqi. Then a single winner rule Rw is identified

using the compatibility grade and the rule weight of each
fuzzy rule as

µ ~Aw
(~xp) · CFw = max{µ ~Aq

(~xp) · CF q | Rq ∈ S}. (3)

The input pattern ~xp is classified as the consequent class
Cw of the winner rule Rw. When multiple fuzzy rules
with different consequent classes have the same maximum
value in (3), the classification of ~xp is rejected. If there is
no compatible fuzzy rule with ~xp, its classification is also
rejected.

III. AN ALGORITHM FOR GENERATING SINGLE
GRANULARITY-BASED FUZZY CLASSIFICATION RULES

As we have already explained, multiobjective genetic
fuzzy rule selection has been based on a previously fixed
granularity [10], [11] (five linguistic terms in all the at-
tributes) or multiple granularities [12]. Based on this last
approach [12], in this section we propose a mechanism to
generate single granularity-based fuzzy classification rules, a
nearer to the interpretability approach. The proposed proce-
dure is as follows:

• Step 1: Rule extraction with multiple granularities.
• Step 2: Specification of single granularity for each at-

tribute based on the extracted rules.
• Step 3: Rule extraction with selected single granulari-

ties.
• Step 4: Multiobjective genetic fuzzy rule selection.

The original multiple granularities based procedure [12]
is composed of Steps 1 and 4. Steps 2 and 3 are additional
procedures. In Step 1, we extract a fixed short number of
rules for each class based on well-known data mining rule
evaluation measures [2] and multiple granularities. In Step
2, we select a single granularity for each attribute based
on the extracted rules. Then, we extract the final set of
candidate rules for each class by using the selected single
granularities in Step 3. Step 4 is the same as the original
one to perform multiobjective genetic fuzzy rule selection.
The next subsections present detailed explanations of these
steps.

A. Rule Extraction with Multiple Granularities (Step 1)

Since 14 antecedent fuzzy sets in Figure 1 and an addi-
tional don’t care fuzzy set [0, 1] are used for each attribute
of the n-dimensional classification problem, the total number
of possible fuzzy rules is 15n. Among these possible rules,
we examine only short fuzzy rules with a small number of
antecedent conditions (i.e., short fuzzy rules with many don’t
care conditions) to generate an initial set of candidate rules.
In this work, we specify the maximum number of antecedent
conditions as three for datasets with less than 30 attributes
and two for datasets with more than or equal to 30 attributes.

The consequent class Cq and the rule weight CF q of each
fuzzy rule Rq are specified from training patterns compatible
with its antecedent part ~Aq = (Aq1, Aq2, ..., Aqn) in the



following heuristic manner [13]. First the confidence of each
class for the antecedent part ~Aq is calculated as:

c(Aq ⇒ Class h) =

∑
xp ∈ Class h

µAq (xp)

m∑
p=1

µAq
(xp)

, h = 1, ..., M.

(4)
It should be noted that “Aq ⇒ Class h” means the fuzzy
rule with the antecedent part ~Aq and the consequent class h.
Then the consequent class Cq is specified by identifying the
class with the maximum confidence:

c(Aq ⇒ Class Cq) = max
h=1, 2, ..., M

{c(Aq ⇒ Class h)}.
(5)

In this manner, we generate the fuzzy rule Rq (i.e., Aq ⇒
Class Cq) with the antecedent part ~Aq and the consequent
class Cq . We do not generate any fuzzy rules with the
antecedent part ~Aq if there is no compatible training pattern
with ~Aq .

The rule weight CF q of each fuzzy rule Rq has a large
effect on the performance of fuzzy rule-based classifiers. We
use the following specification of CF q because good results
were reported in the literature [14]:

CF q = c(Aq ⇒ ClassCq)−
M∑

h=1
h 6=Cq

c(Aq ⇒ Classh). (6)

We do not use the fuzzy rule Rq as a candidate rule if the
rule weight CF q is not positive (i.e., if its confidence is not
larger than 0.5).

In the above-mentioned heuristic manner, we can generate
a large number of short fuzzy rules as candidate rules in
multiobjective fuzzy rule selection (some of them with not
interesting properties). In order to directly focus on the
most interesting rules, a prescreening procedure is applied
to decrease the number of candidate rules. This prescreening
procedure is based on well-known rule evaluation measures
in the field of data mining [2]: support and confidence.

For prescreening candidate rules, we use two threshold
values: the minimum support and the minimum confidence.
We exclude fuzzy rules that do not satisfy these two threshold
values. Among short fuzzy rules satisfying these two thresh-
old values, we choose a prespecified number of candidate
rules for each class. As a rule evaluation criterion, we
use the product of the support s(Rq) and the confidence
c(Rq). That is, we choose a prespecified number of the
best candidate rules for each class with respect to product
p(Rq) = s(Rq) · c(Rq).

B. Single Granularity Specification and Rule Extraction
(Steps 2 and 3)

Once a set of candidate rules is obtained based on multiple
granularities (Step 1), the original approach [12] goes to
Step 4 in order to apply multiobjective fuzzy rule selection.
However, there is useful information in the extracted rules

that could be used to specify an appropriate single granularity
for each attribute. Frequency of the employed granularities
in the extracted rules (weighted by the corresponding rule
importance) can be used to fix the most promising granu-
larities. For each attribute i (i = 1, ..., n), we specify the
granularity with the highest sum of importance of the rules
considering such granularity in the corresponding attribute:

Gr(i) = argmax
g=2, ..., 5

{ ∑
Gran(Aqi)=g

Imp(Rq)

}
, (7)

where Gran(Aqi) is the granularity of the partition contain-
ing the fuzzy set used in attribute i of rule Rq and Imp(Rq)
is a criterion associated to the importance of the rule in
the sum. Many criteria can be considered involving different
specification mechanisms:
• Frequency: Imp(Rq) = 1,∀q.
• Confidence: Imp(Rq) = c(Rq),∀q.
• Weight: Imp(Rq) = CFq,∀q.
• Support: Imp(Rq) = s(Rq),∀q.
• Product: Imp(Rq) = p(Rq),∀q.
However, the first three criteria are not recommended since

they usually provoke overfitting. We will study the last two
criteria as a way to extract more general rules instead of
very specific ones, which helps to the generalization ability.
In the same way, in order to preferably take into account
more general rules we examine two approaches named, 1-
ALL approach and 1-2-3 approach, with the two basic criteria
(i.e., product and support). Both approaches give priority
to granularities in the rules with a single condition, i.e.,
Equation (7) is applied by only considering size one rules
if possible. The difference is only when there is no rule
with a single condition in the corresponding attribute. Let us
consider the product criterion and the next six rules, where
gi represents any fuzzy set of a partition with granularity i,

R1 : If x1 is g2 and x2 is g4 and x3 is g3 then Class 1,
p(R1) : 0.4.

R2 : If x1 is g4 then Class 2, p(R2) : 0.8.
R3 : If x2 is g3 then Class 2, p(R3) : 0.3.
R4 : If x2 is g2 then Class 1, p(R4) : 0.8.
R5 : If x2 is g3 and x3 is g4 then Class 1, p(R5) : 0.6.
R6 : If x1 is g2 and x2 is g2 and x3 is g3 then Class 1,

p(R6) : 0.3.

When we specify a granularity for the first attribute, we
first check rule(s) with a single condition related to the first
attribute by both approaches (1-ALL and 1-2-3). Since rule
R2 is the only rule in this situation, we select granularity
4 for the first attribute. Next, in the same manner, we can
find two rules: R3 and R4 for the second attribute. We
select Granularity 2 for the second attribute because of the
high product value by both approaches. Finally, we select a
granularity for the third attribute but there is no rule with
a single condition. In 1-ALL approach, we specify a single
granularity from all the rules including the third attribute



independently of the number of conditions they have (rules
R1, R5 and R6). The sum of product values for granularity
3 is 0.7 and 0.6 for granularity 4. From this comparison,
we select granularity 3 for the third attribute. On the other
hand, in 1-2-3 approach, we give priority to the rules with a
smaller number of conditions (two conditions). That is, we
select granularity 4 for the third attribute (if there are no rules
with two conditions then those with three are considered).

In Step 2, we select a single granularity for each attribute.
Four different mechanisms have been defined: Support/1-
ALL, Product/1-ALL, Support/1-2-3 and Product/1-2-3. Fi-
nally, in Step 3, we apply again the candidate rule extraction
procedure explained in Step 1 by only using the specified
single granularities for each attribute.

C. Multiobjective Fuzzy Rule Selection (Step 4)

Let us assume that we have N candidate rules (i.e., N/M
candidate rules for each of M classes). Any subset S of the
N candidate rules can be represented by a binary string of
length N : S = s1s2...sN where sj = 1 and sj = 0 mean
the inclusion and the exclusion of the jth candidate rule Rj

in the subset S, respectively (j = 1, ..., N ). Such a binary
string S is used as an individual in an EMO algorithm for
multiobjective fuzzy rule selection.

It should be noted that S can be viewed as a fuzzy
rule-based classifier. Each fuzzy rule-based classifier S is
evaluated by the next three objectives:
• f1(S): the number of correctly classified training pat-

terns.
• f2(S): the number of selected fuzzy rules.
• f3(S): the total number of antecedent conditions.
That is, our multiobjective fuzzy rule selection problem is

written as:

Maximize f1(S), and minimize f2(S) and f3(S). (8)

We use NSGA-II of Deb et al. [8] to search for non-
dominated fuzzy rule-based classifiers with respect to these
three objectives, uniform crossover and bit-flip mutation. The
execution of NSGA-II was terminated at the prespecified
number of generations.

In order to efficiently decrease the number of fuzzy rules
in each rule set S, two heuristic techniques are used. One
is biased mutation where a larger mutation probability is as-
signed to the mutation from 1 to 0 than that from 0 to 1. The
other is the removal of unnecessary fuzzy rules. Since we use
the single winner-based scheme in (3) for classifying each
training pattern by a fuzzy rule-based classifier S, some fuzzy
rules in S may classify no training patterns. We can remove
those unnecessary fuzzy rules from S without changing any
classification results by S (i.e., without changing the first
objective f1(S)). This heuristic procedure can be viewed as
a kind of local search since f2(S) and f3(S) are improved
without deteriorating f1(S).

IV. EXPERIMENTS

In order to examine the effects of the granularity specifica-
tion mechanisms proposed in this paper, we have selected 15

datasets from the UCI repository [3]. Table I summarizes the
properties of these datasets. It shows, for each dataset, the
number of patterns, the number of attributes and the number
of classes. In the case of presenting missing values (Aut,
Cleveland and Dermatology) we have removed the instances
with any missing value before partitioning.

TABLE I
DATASETS CONSIDERED FOR COMPARISONS

Name Patterns Attributes Classes
Appendicitis 106 7 2
Aut 159 25 4
Cleveland 297 13 5
Dermatology 358 34 6
Glass 214 9 6
Haberman 306 3 2
Hayes-roth 132 4 3
Iris 150 4 3
Newthyroid 215 5 3
Pasture 36 22 3
Pima 768 8 2
Saheart 462 9 2
Tae 151 5 3
Vehicle 846 18 4
Wine 178 13 3

In order to analyze the performance of the single gran-
ularity specification, we compare the original approach
(All Granularities) with the four mechanisms proposed to
specify single granularities (Support/1-ALL, Product/1-ALL,
Support/1-2-3 and Product/1-2-3). The parameter settings for
all the considered approaches are as follows (same conditions
in all the cases):
• The number of fuzzy rules for each class: 300.
• Optimizer: NSGA-II.
• Population size: 200.
• The number of generations: 5000.
• Crossover probability: 0.9 (Uniform crossover).
• Mutation probability: 0.05 (from 1 to 0), 1/L (from 0

to 1, where L is the string length).
We consider a 10-fold cross-validation model, i.e., 10 ran-

dom partitions of data each with 10%, and the combination
of 9 of them (90%) as training and the remaining one as
test. For each one of the 10 data partitions, the studied
methods have been run 3 times, showing for each problem
the averaged results of a total of 30 runs (10fcv x 3 different
random seeds). Since these methods present a multi-objective
nature, the averaged values are calculated considering the
most accurate solution from each Pareto front obtained (the
one with the highest classification rate in training). Our
main aim following this approach is to obtain more reliable
information at least in this part of the Pareto front, which in
any case is comprised by quite simple models.

Table II shows the averaged number of rules/conditions
(#R / #C) and classification percentages in training (Tr.) and
test (Ts.) of the most accurate classifier from each of the
obtained Pareto fronts. The overall mean values for each
method are in the last row. Taking into account these results
we can highlight the following facts:



TABLE II
RESULTS OBTAINED BY THE STUDIED METHODS (MOST ACCURATE)

All Granularities Support/1-ALL Product/1-ALL Support/1-2-3 Product/1-2-3
Datasets #R #C Tr. Ts. #R #C Tr. Ts. #R #C Tr. Ts. #R #C Tr. Ts. #R #C Tr. Ts.
Appendicitis 2.37 3.7 91.86 87.91 3.40 6.9 93.22 88.21 3.40 7.0 93.29 88.21 3.40 6.9 93.22 88.21 3.40 7.0 93.29 88.21
Aut 9.87 24.1 81.59 66.52 11.60 29.1 86.49 69.33 11.67 29.3 87.19 69.91 12.20 31.0 87.30 68.38 12.33 30.5 87.09 68.56
Cleveland 20.17 56.1 73.11 55.11 25.07 68.2 70.37 51.08 28.67 77.8 77.28 52.83 24.80 67.8 69.06 52.28 28.93 78.9 76.72 53.30
Dermatology 11.40 19.3 99.07 94.12 13.10 22.7 99.62 94.93 13.53 23.5 99.51 93.26 13.10 22.7 99.62 94.93 13.53 23.5 99.51 93.26
Glass 12.63 32.4 78.65 60.48 16.97 39.0 80.74 66.07 19.30 44.7 83.85 69.96 17.83 41.2 81.23 64.42 19.40 44.7 83.97 68.29
Haberman 6.50 13.9 79.46 71.89 2.50 4.9 74.44 73.19 3.00 6.0 74.70 73.19 2.50 4.9 74.44 73.19 3.00 6.0 74.70 73.19
Hayes-roth 9.17 15.3 90.88 78.03 10.80 16.7 90.79 79.14 10.83 16.9 90.91 79.14 10.80 16.7 90.79 79.14 10.83 16.9 90.91 79.14
Iris 4.03 6.8 99.11 95.11 5.23 7.5 98.30 94.67 5.23 7.5 98.30 95.33 5.23 7.5 98.30 94.67 5.23 7.5 98.30 95.33
Newthyroid 5.37 9.2 96.19 91.78 7.60 15.5 97.71 94.83 7.37 15.7 97.59 93.01 7.60 15.5 97.71 94.83 7.37 15.7 97.59 93.01
Pasture 3.70 5.9 98.05 75.83 4.27 7.7 99.69 73.61 4.43 8.1 100.00 73.61 4.27 7.5 99.58 73.61 4.63 8.4 99.79 77.50
Pima 6.63 14.3 77.80 74.92 10.63 25.9 79.04 73.79 10.63 25.9 79.04 73.79 10.63 25.9 79.04 73.79 10.63 25.9 79.04 73.79
Saheart 5.97 12.8 76.70 71.14 12.33 31.8 79.00 71.22 12.33 31.8 79.00 71.22 12.33 31.8 79.00 71.22 12.33 31.8 79.00 71.22
Tae 7.77 18.9 66.55 54.57 10.77 24.5 69.36 59.22 11.33 25.4 69.88 59.24 9.80 22.1 67.99 55.90 8.53 18.8 65.98 57.03
Vehicle 13.77 35.8 69.34 62.81 15.73 43.1 71.11 66.16 15.60 43.1 71.07 66.20 16.50 44.3 70.69 66.71 16.63 45.1 70.80 66.51
Wine 3.90 8.2 100.00 96.08 6.00 11.7 99.98 93.26 6.37 12.1 99.92 95.11 6.07 11.8 99.98 92.67 6.37 12.1 99.92 94.52
Mean 8.22 18.5 85.22 75.75 10.40 23.7 85.99 76.58 10.91 25.0 86.77 76.93 10.47 23.8 85.86 76.26 10.88 24.9 86.44 76.86

TABLE III
RESULTS OBTAINED BY THE STUDIED METHODS (EQUIVALENT COMPLEXITY)

Support 1-ALL Product 1-ALL Support 1-2-3 Product 1-2-3
Datasets #R #C Tr. Ts. #R #C Tr. Ts. #R #C Tr. Ts. #R #C Tr. Ts.
Appendicitis 2.23 4.1 92.17 88.82 2.17 4.1 92.24 88.82 2.23 4.1 92.17 88.82 2.17 4.1 92.24 88.82
Aut 9.67 24.2 85.11 68.92 9.73 24.4 85.84 68.94 10.17 25.9 85.95 68.01 9.80 24.4 85.20 69.73
Cleveland 20.07 53.2 68.51 51.51 20.20 53.4 74.14 53.48 19.83 52.9 67.22 52.39 20.07 53.4 73.29 53.28
Dermatology 11.23 19.3 99.02 94.65 11.70 20.1 98.90 93.08 11.23 19.3 99.02 94.65 11.70 20.1 98.90 93.08
Glass 12.60 27.7 78.35 66.82 12.57 28.1 80.15 69.90 12.43 27.2 78.11 66.14 12.73 28.2 80.27 68.54
Haberman 2.50 4.9 74.44 73.19 3.00 6.0 74.70 73.19 2.50 4.9 74.44 73.19 3.00 6.0 74.70 73.19
Hayes-roth 9.53 13.1 89.95 80.09 9.57 13.4 90.07 80.09 9.53 13.1 89.95 80.09 9.57 13.4 90.07 80.09
Iris 4.23 5.3 97.56 94.44 4.23 5.3 97.56 94.44 4.23 5.3 97.56 94.44 4.23 5.3 97.56 94.44
Newthyroid 5.30 10.1 96.21 94.42 5.63 11.2 96.54 92.23 5.30 10.1 96.21 94.42 5.63 11.2 96.54 92.23
Pasture 3.83 6.5 97.22 75.00 3.93 6.4 96.90 73.89 3.67 6.3 96.80 69.72 3.93 6.3 96.60 73.61
Pima 6.87 16.0 78.36 73.78 6.87 16.0 78.36 73.78 6.87 16.0 78.36 73.78 6.87 16.0 78.36 73.78
Saheart 6.20 14.9 76.71 70.49 6.20 14.9 76.71 70.49 6.20 14.9 76.71 70.49 6.20 14.9 76.71 70.49
Tae 7.70 15.4 64.82 57.93 7.67 15.1 64.73 57.04 7.83 16.1 65.61 57.01 7.77 16.3 65.15 58.36
Vehicle 13.87 37.6 70.83 66.27 13.77 37.7 70.80 66.08 14.00 37.0 70.32 66.63 14.07 37.6 70.43 66.43
Wine 3.87 7.0 96.71 90.64 3.93 5.3 96.17 90.99 3.70 7.1 96.55 89.48 3.93 5.4 96.19 91.72
Mean 7.98 17.3 84.40 76.47 8.08 17.4 84.92 76.43 7.98 17.4 84.33 75.95 8.11 17.5 84.81 76.52

• In general, all the proposed approaches present better
classification rates than the original one, obtaining the
best overall result in the case of Product/1-ALL. All of
them get better test performance in 10 of the 15 datasets
(11 in the case of Product/1-2-3), with approximately
two more rules with respect to the original model
considering multiple granularities.

• Product based approaches present slightly better results
than support based ones.

In Table III, we show the average results of the proposed
approaches by considering the closest solution in number of
rules (equivalent complexity) to the most accurate solution
from All Granularities approach for each of the 30 Pareto
fronts. Even though that it seems preferable to ensure a single
granularity than to obtain a simpler solution, with approxi-
mately two less rules, we can observe in this table that very
similar results are obtained when equivalent complexities are
considered. This demonstrates that by fixing an appropriate

single granularity at least equivalent results can be obtained
from the point of view of the accuracy and the complexity.
Further, it is highly preferable to avoid multiple granularities
in terms of the global interpretability of the obtained models.

Figure 2 plots the average Pareto fronts on training and
test sets, composed by the average values of the different
solutions of each of the thirty Pareto fronts (from the most
accurate solution to the simplest one). This method represents
an extension of the idea of analyzing the most accurate
solutions in the Pareto fronts (first, second, etc.) presented in
[9] where the search is focused on the most accurate solutions
only. We consider the next most accurate solution of each of
the 30 fronts to compute a new averaged solution, until no
more solutions remain in any of these fronts. As we can see
in this example, by determining single granularities the test
accuracy can be improved in most of the solutions obtained.
As an example, two rule sets obtained by All Granularities
and Product/1-ALL are depicted in Figure 3.



Fig. 2. Average Pareto fronts (training and test) for Glass dataset with All
Granularities, Product/1-ALL and Product/1-2-3.

V. CONCLUDING REMARKS

In this work, we have proposed a method to generate single
granularity-based fuzzy classification rules for multiobjective
genetic fuzzy rule selection. After extracting a prespecified
number of fuzzy rules with multiple granularities, a single
granularity has been specified for each attribute individually
according to the frequency of employed partitions and the
importance of the multiple granularity-based extracted rules.
Then multiobjective genetic fuzzy rule selection is applied
in order to obtain a set of non-dominated solutions with a
good trade-off between complexity and accuracy.

Following the same main idea, four different mecha-
nisms (Support/1-ALL, Product/1-ALL, Support/1-2-3 and
Product/1-2-3) have been proposed and compared with the
original approach on a set of 15 well-known datasets. As
well as the interpretability improvement that the use of a
fixed single granularity involves, the results show that the
performance of the obtained classifiers can be even improved
by avoiding multiple granularities. Further, we can conclude
that the most promising mechanisms are those based on
Product criterion with no clear differences between 1-ALL
and 1-2-3 based approaches.
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