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Abstract

The analysis of data complexity is a proper framework to characterize the tackled classification problem and to identify domains
of competence of classifiers. As a practical outcome of this framework, the proposed data complexity measures may facilitate the
choice of a classifier for a given problem. The aim of this paper is to study the behaviour of a fuzzy rule based classification system
and its relationship to data complexity. We use as a case of study the fuzzy hybrid genetic based machine learning method presented
in [H. Ishibuchi, T. Yamamoto, T. Nakashima, Hybridization of fuzzy GBML approaches for pattern classification problems, IEEE
Transactions on Systems, Man, and Cybernetics—Part B: Cybernetics 35 (2) (2005) 359–365]. We examine several metrics of data
complexity over a wide range of data sets built from real data and try to extract behaviour patterns from the results. We obtain rules
which describe both good or bad behaviours of the fuzzy rule based classification system. These rules use values of data complexity
metrics in their antecedents, so we try to predict the behaviour of the method from the data set complexity metrics prior to its
application. Therefore, we can establish the domains of competence of this fuzzy rule based classification system.
© 2009 Elsevier B.V. All rights reserved.
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1. Introduction

Fuzzy rule based classification systems (FRBCSs) [17,19] are a very useful tool in the ambit of machine learning
since they are capable of building a linguistic model clearly interpretable by human beings. There is a vast literature in
the field of FRBCSs [19], which is very active at this time.
The prediction capabilities of classifiers are strongly dependent on the problem’s characteristics. An emergent field

has recently arisen, that uses a set of complexity measures applied to the problem to describe its difficulty. These
measures quantify particular aspects of the problem which are considered complicated to the classification task [15].
Studies of data complexity metrics applied to particular classification algorithms can be found in [15,3,2,22].
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The complexity in the data can be used for characterizing FRBCS performance and it can be considered a new trend
in the use of FRBCSs in pattern recognition. We understand that no data complexity metrics have been analysed with
FRBCSs up to now.
In this work we are interested in analysing the relationship between FRBCSs and the complexity measures, consider-

ing a case of study using the fuzzy hybrid genetic based machine learning (FH-GBML) method proposed by Ishibuchi
and Yamamoto [18]. In particular we consider three types of data complexity measures based on the overlaps in feature
values from different classes; separability of classes; and measures of geometry, topology, and density of manifolds.
To perform this study, we have created 438 binary classification data sets from real world problems, and computed

the value of eight metrics proposed by Ho and Basu [14]. We have analysed the intervals of the complexity measure
values related to the created data sets, in which FH-GBML method performs well or badly, and then formulated a rule
for such intervals. The rules try to describe the ranges where some information and conclusions about the behaviour
of the FH-GBML method can be stated.
The paper is organized as follows. In Section 2 we describe the FRBCS we have used. In Section 3 the considered

complexity measures are introduced as well as the most recent literature on the topic. In Section 4 we show the process
used to build up the bunch of data sets used and the validation scheme. In Section 5 we include the experimental set-up
and the results obtained and rules extracted, along with their analysis. Finally, in Section 6 some concluding remarks
are pointed out.

2. Preliminaries: fuzzy rule based classification systems

Any classification problem consists of m training patterns xp = (xp1, . . . , xpn), p = 1, 2, . . . ,m from M classes
where xpi is the ith attribute value (i = 1, 2, . . . , n) of the p-th training pattern.
In this work we use fuzzy rules of the following form:

Rule R j : If x1 is A j1 and . . . and xn is A jn then Class = C j with RWj , (1)

where R j is the label of the jth rule, x = (x1, . . . , xn) is an n-dimensional pattern vector, A ji is an antecedent fuzzy
set, C j is a class label, and RWj is the rule weight. We use triangular membership functions as antecedent fuzzy sets.
As learning method we use FH-GBML [18], which belongs to the genetic fuzzy system (GFS) [8]. In the following

three subsections we include the fuzzy reasoning model, a complete description of the algorithm, and a short review
on the GFSs topic.

2.1. Fuzzy reasoning model

Considering a new pattern xp = (xp1, . . . , xpn) and a rule base (RB) composed of L fuzzy rules, the steps followed
by the reasoning model are the following [7]:

1. Matching degree. To calculate the strength of activation of the if-part for all rules in the RB with the pattern xp,
using a conjunction operator (usually a T-norm):

�A j
(xp) = T (�A j1

(xp1), . . . , �A jn
(xpn)), j = 1, . . . , L . (2)

In this work we will use the product T-norm.
2. Association degree. To compute the association degree of the pattern xp with the M classes according to each rule

in the RB. When using rules with the form of (1), this association degree only refers to the consequent class of the
rule (i.e., k = C j ):

bkj = h(�A j
(xp), RWk

j ), k = 1, . . . , M, j = 1, . . . , L . (3)

We model function h as the product T-norm in every case.
3. Pattern classification soundness degree for all classes. We use an aggregation function that combines the positive

degrees of association calculated in the previous step:

Yk = f (bkj , j = 1, . . . , L and bkj > 0), k = 1, . . . , M. (4)
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Fig. 1. Four fuzzy partitions for each attribute membership function.

As fuzzy reasoning method we use the winner rule method (classical approach) for classifying new patterns with
the rule set. Every new pattern is classified as the consequent class of a single winner rule which is determined as

Yk = max{bkj , j = 1, . . . , L and k = C j }. (5)

4. Classification. We apply a decision function F over the soundness degree of the system for the pattern classification
for all classes. This function will determine the class label l corresponding to the maximum value:

F(Y1, . . . , YM ) = l such that Yl = {max(Yk), k = 1, . . . , M}. (6)

2.2. Learning approach: fuzzy hybrid genetic based machine learning method

The basis of this algorithm described here, FH-GBML, consists of a hybrid Pittsburgh andMichigan genetic learning
approach [18]:

• The Pittsburgh approach in which each rule set is handled as an individual.
• TheMichigan approach (where an individual represents an unique rule), which is used as a kind of heuristic mutation
for partially modifying each rule set, because of its high search ability to efficiently find good fuzzy rules.

This method simultaneously uses four fuzzy set partitions for each attribute, as shown in Fig. 1. As a result, each
antecedent attribute is initially associated with 14 fuzzy sets generated by these four partitions as well as a special “do
not care” set (i.e., 15 in total).
The main steps of this algorithm are described below:
Step 1: Generate Npop rule sets with Nrule fuzzy rules.
Step 2: Calculate the fitness value of each rule set in the current population.
Step 3: Generate (Npop − 1) rule sets by the selection, crossover and mutation in the same manner as the Pittsburgh-

style algorithm. Apply a single iteration of the Michigan-style algorithm (i.e., the rule generation and the replacement)
to each of the generated rule sets with a pre-specified probability.
Step 4: Add the best rule set in the current population to the newly generated (Npop − 1) rule sets to form the next

population.
Step 5: Return to Step 2 if the pre-specified stopping condition is not satisfied.
Next, we will describe every step of the algorithm:

• Initialization: Nrule training patterns are randomly selected. Then, a fuzzy rule from each of the selected training
patterns is generated by choosing probabilistically (as shown in (7)) an antecedent fuzzy set from the 14 candidates
Bk(k = 1, 2, . . . , 14) (see Fig. 1) for each attribute. Then each antecedent fuzzy set of the generated fuzzy rule is
replaced by the don’t care condition using a pre-specified probability Pdon’t care:

P(Bk) = �Bk (xpi )∑14
j=1 �Bj

(xpi )
. (7)
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• Fitness computation: The fitness value of each rule set Si in the current population is calculated as the number of
correctly classified training patterns by Si . For the Michigan approach the computation follows the same scheme.

• Selection: It is based on binary tournament.
• Crossover: The substring-wise and bit-wise uniform crossover is applied in the Pittsburgh part. In the case of the
Michigan part only the bit-wise uniform crossover is considered.

• Mutation: Each fuzzy partition of the individuals is randomly replaced by a different fuzzy partition using a pre-
specified mutation probability for both approaches.

In our study, we have used the following parameters’ values for the Ishibuchi and Yamamoto’s FH-GBML method:

• Number of fuzzy rules: 5 × p rules (where p is the number of examples in the data set).
• Number of rule sets (Npop): 200 rule sets.
• Crossover probability: 0.9.
• Mutation probability: 1/p (where p is the number of examples in the data set).
• Number of replaced rules: All rules except the best-one (Pittsburgh-part, elitist approach), number of rules/5
(Michigan-part).

• Total number of generations: 1000 generations.
• Don’t care probability: 0.5.
• Probability of the application of the Michigan iteration: 0.5.

For more details about this proposal, please refer to [18].

2.3. Genetic fuzzy systems

A GFS is basically a fuzzy system augmented by a learning process based on evolutionary computation, which
includes genetic algorithms, genetic programming, and evolutionary strategies, among other evolutionary algorithms
(EAs) [11].

The automatic definition of a fuzzy rule based system (FRBS) can be seen as an optimization or search problem. EAs
are a well known and widely used global search technique with the ability to explore a large search space for suitable
solutions only requiring a performance measure. In addition to their ability to find near optimal solutions in complex
search spaces, the generic code structure and independent performance features of EAs make them suitable candidates
to incorporate a priori knowledge. In the case of FRBSs, this a priori knowledge may be in the form of linguistic
variables, fuzzy membership function parameters, fuzzy rules, number of rules, etc. These capabilities extended the
use of EAs in the development of a wide range of approaches for designing FRBSs over the last few years, as has been
pointed out in the last international journal special issues on GFSs [4,5,9,6].
Finally, an extensive review of the most recent developments of GFS and FRBS can be found in [12]. The web site

http://sci2s.ugr.es/gfs/ provides complete information and material on the topic.

3. Data complexity measures

In the following subsections, we first present a short review on recent studies on data complexity metrics (Section
3.1), and then we describe the measures of overlapping (Section 3.2), measures of separability of classes (Section 3.3)
and measures of geometry (Section 3.4) used in our study.

3.1. Recent studies on data complexity

As we have mentioned, data complexity measures are a series of metrics that quantify data set characteristics which
imply some difficulty to the classification task. In the following we gather several recent publications related to these
complexity measures and their applications. They can show a picture of the most recent developments in the topic:

• In [14], Ho and Basu propose some complexity measures for binary classification problems, gathering metrics of
three types: overlaps in feature values from different classes; separability of classes; and measures of geometry,
topology, and density of manifolds.

• In [23], Singh offers a review of data complexity measures and proposes two new ones.

http://sci2s.ugr.es/gfs/
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Table 1
Complexity metrics used in this study.

Measure Description

F2 Volume of overlap region
F3 Maximum (individual) feature efficiency
L1 Minimized sum of error distance by linear programming
L2 Error rate of linear classifier by linear programming
N2 Ratio of average intra/inter class NN distance
N3 Error rate of 1-NN classifier
N4 Nonlinearity of 1-NN classifier
T2 Average number of points per dimension

• In [3], Bernadó-Mansilla and Ho investigate the domain of competence of XCS by means of a methodology that
characterizes the complexity of a classification problem by a set of geometrical descriptors.

• In [20], Li et al. analyse some omnivariate decision trees using the measure of complexity based in data density
proposed by Ho and Basu.

• Baumgartner and Somorjai define specific measures for regularized linear classifiers in [2], using Ho and Basu’s
measures as reference.

• Sánchez et al. analyse the effect of the data complexity in the nearest neighbours (NNs) classifier in [22].
• Dong and Kothari propose in [10] a feature selection algorithm based on a complexity measure defined by Ho and
Basu.

• Mollineda et al. in [21] extend some of Ho and Basu’s measure definitions for problems with more than two classes.
They analyse these generalized measures in two classic prototype selection algorithms and remark that Fisher’s
discriminant ratio is the most effective for prototype selection.

In our study we will study eight of the measures proposed in [14] which offer information for the FH-GBMLmethod.
They are summarized in Table 1.
In the following subsections we describe the measures we have used, classified by their family.

3.2. Measures of overlaps in feature values from different classes

These measures focus on the effectiveness of a single feature dimension in separating the classes, or the composite
effects of a number of dimensions. They examine the range and spread of values in the data set within each class, and
check for overlaps among different classes.
F2: Volume of overlap region. Let the maximum and minimum values of each feature fi in class C j be max( fi ,C j )

and min( fi ,C j ), then the overlap measure F2 is defined as

F2 =
∏
i

MINMAXi − MAXMINi

MAXMAXi − MINMINi
,

where i = 1, . . . , d for a d-dimensional problem, and

MINMAXi =MIN(max( fi ,C1),max( fi ,C2)),

MAXMINi =MAX(min( fi ,C1),min( fi ,C2)),

MAXMAXi =MAX(max( fi ,C1),max( fi ,C2)),

MINMINi =MIN(min( fi ,C1),min( fi ,C2)).

F2 measures the amount of overlap of the bounding boxes of two classes. It is the product of per-feature overlap ratios,
each of which is the width of the overlap interval normalized by the width of the entire interval encompassing the two
classes. The volume is zero as long as there is at least one dimension in which the value ranges of the two classes are
disjoint.
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F3: Maximum (individual) feature efficiency. In a procedure that progressively removes unambiguous points falling
outside the overlapping region in each chosen dimension [13], the efficiency of each feature is defined as the fraction of
all remaining points separable by that feature. To represent the contribution of the most useful feature in this sense, we
use the maximum feature efficiency (largest fraction of points distinguishable with only one feature) as a measure (F3).
This measure considers only separating hyperplanes perpendicular to the feature axes. Therefore, even for a linearly
separable problem, F3 may be less than 1 if the optimal separating hyperplane is oblique.

3.3. Measures of separability of classes

These measures give indirect characterizations of class separability. They assume that a class is made up of a single
or multiple manifolds that form the support of the probability distribution of the given class. The shape, position and
interconnectedness of these manifolds give hints on how well two classes are separated, but they do not describe
separability by design. Some examples are shown as follows:
L1: Minimized sum of error distance by linear programming (LP). Linear classifiers can be obtained by a linear

programming formulation proposed by Smith [24]. The method minimizes the sum of distances of error points to the
separating hyperplane (subtracting a constant margin):

minimize att

subject to Ztw + t�b,

t�0,

where a, b are arbitrary constant vectors (both chosen to be 1), w is the weight vector to be determined, t is an error
vector, and Z is a matrix where each column z is defined on an input vector x (augmented by adding one dimension
with a constant value 1) and its class C (with value C1 or C2) as follows:{

z = +x if C = C1,

z = −x if C = C2.

The value of the objective function in this formulation is used as a measure (L1). The measure has a zero value for
a linearly separable problem. Its value can be heavily affected by outliers located in the wrong side of the optimal
hyperplane. The measure is normalized by the number of points in the problem and also by the length of the diagonal of
the hyperrectangular region enclosing all training points in the feature space. It is zero for a linearly separable problem.
We should notice that this measure can be heavily affected by the presence of outliers in the data set.
L2: Error rate of linear classifier by linear programming. This measure is the error rate of the linear classifier defined

for L1, measured with the training set. With a small training set this can be a severe underestimate of the true error
rate.
N2: Ratio of average intra/inter class nearest neighbour distance. For each input instance xp, we calculate the

distance to its nearest neighbour within the class (intraDist(xp)) and the distance to nearest neighbour of any other
class (inter Dist(xp)). Then, the result is the ratio of the sum of the intra-class distances to the sum of the inter-class
distances for each input example, i.e.,

N2 =
∑m

i=0 intraDist(xi )∑m
i=0 interDist(xi )

,

where m is the number of examples in the data set. This metric compares the within-class spread with the distances
to the nearest neighbours of other classes. Low values of this metric suggest that the examples of the same class lay
closely in the feature space. Large values indicate that the examples of the same class are disperse. It is sensitive to the
classes of the closest neighbours to a point, and also to the difference in magnitude of the between-class distances and
that of the within-class distances.
N3: Error rate of 1-NN classifier. This is simply the error rate of a nearest neighbour classifier measured with the

training set. The error rate is estimated by the leave-one-out method. The measure denotes how close the examples of
different classes are. Low values of this metric indicate that there is a large gap in the class boundary.
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3.4. Measures of geometry, topology, and density of manifolds

These measures evaluate to what extent two classes are separable by examining the existence and shape of the class
boundary. The contributions of individual feature dimensions are combined and summarized in a single score, usually
a distance metric, rather than evaluated separately. Two measures from this family are described as follows:
N4: Nonlinearity of 1-NN classifier. This is the nonlinearity measure, as defined by linear programming. Hoekstra

and Duin [16] proposed a measure for the nonlinearity of a classifier with respect to a given data set. Given a training
set, the method first creates a test set by linear interpolation (with random coefficients) between randomly drawn pairs
of points from the same class. Then the error rate of the classifier (trained by the given training set) on this test set is
measured. Here we use such a nonlinearity measure for the linear classifier defined for L1. In the case of N4, error is
calculated for a nearest neighbour classifier. This measure is for the alignment of the nearest neighbour boundary with
the shape of the gap or overlap between the convex hulls of the classes.
T2: Average number of points per dimension. This is a simple ratio of the number of points in the data set over the

number of feature dimensions, i.e.,

T 2 = m

n
,

where m is the number of examples in the data set and n is the number of attributes of the data set. This measure is
included mostly for connection with prior studies on sample sizes. Because the volume of a region scales exponentially
with the number of dimensions, a linear ratio between the two is not a good measure of sampling density.

4. Data sets choice for the experimental study

We evaluate FH-GBML on a set of 438 binary classification problems. These problems are generated from pairwise
combinations of the classes of 21 problems from the University of California, Irvine (UCI) repository [1]. The selected
ones are iris, wine, new-thyroid, solar-flare, led7digit, zoo, yeast, tae, balanced, car, contraceptive, ecoli, hayes-roth,
shuttle, australian, pima, monks, bupa, glass, haberman, and vehicle.
In order to do that, first we take each data set and extract the examples belonging to each class. Then we construct

a new data set with the combination of the examples from two different classes. This will result in a new data set with
only two classes and the examples which have two such classes as output. For example, one data set obtained from iris
with this procedure could contain only the examples of Iris-setosa and Iris-virginica and not those from Iris-versicolor.
We perform this process for every possible pairwise combination of classes. However, if a data set obtained with

this procedure proves to be linearly separable, we discard it. If the data set proves to be linearly separable, then we
could classify it with a linear classifier with no error, so such a data set would not be a representative problem. The
complexity measure L1 indicates if a problem is linearly separable when its value is zero, so every data set with a L1
value of zero will be discarded.
This method for generating binary data sets is limited by the combinatorics itself, and we can only obtain over 200

new data sets with the original 20 data sets with this first approach. In order to obtain additional data sets, we take the
next step to combine the classes from a data set: we group the classes two by two, that is, we create a new binary data
set, and each of its two classes are the combination of two original classes each. For this second approach we have used
ecoli, glass, and flare data sets, since they have a high number of class labels. For example, using ecoli we can create a
new binary data set combining cp and im classes into a new one (say class “A”), and pp and imU (say new class “B”).
The new data set would contain only the examples of classes cp, im, pp, and imU, but their class label now would be
“A” if their original class was cp or im, and “B” if it was pp or imU. Again, those data sets with an L1 value of 0 are
discarded.
Finally, these pairwise combinations resulted in 438 binary classification problems which are used as our test-bed.

Although simple, these two methods for creating binary data sets produce a wide range of values for the complexity
measures, even from the same original data set.
To estimate the classifiers’ error, we use a 10-fold cross validation test once all the measures are computed. We take

the mean accuracy of training and test of the 10 partitions as a representative measure of the method’s performance.
Fig. 2 contains the results of FH-GBML showing the training and test accuracy over all the 438 data sets, plotted in

ascending training accuracy value. We would like to point out how over-fitting is continuously present in Fig. 2.
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Fig. 2. Accuracy in training/test for FH-GBML sorted by training accuracy.

5. Experimental study: analysis of the FH-GBMLmethod with data complexity measures

This study begins with the obtained results of the FH-GBML for the data sets considered. For each complexity
measure, the data sets are sorted by its value, and put altogether in a figure. From these figures we obtain useful
intervals which represent a good or bad behaviour of the classification method for the mentioned eight complexity
measures. From these intervals we construct several rules that model the performance of the used FRBCS.
In order to do this analysis, we divide this section into the following two studies:

1. Determination of rules based on FH-GBML method’s behaviour in Section 5.1.
2. Analysis of the collective evaluation of the set of rules in Section 5.2.

5.1. Determination of rules based on FH-GBML method’s behaviour

First, we must point out what we understand for good and bad behaviour of FH-GBML:

• We understand for good behaviour an average high test accuracy in the interval as well as the absence of over-fitting.
• By bad behaviour we refer to the presence of over-fitting and/or average low test accuracy in the interval.

In the following we present the results of the execution over the 438 data sets summarized in Figs. 3–10. In each
figure the results obtained by the FH-GBMLmethod are sorted by the ascending value of the corresponding complexity
measure. In the X axis we represent the data sets, not the complexity measure value, and the Y axis depicts the accuracy
obtained both in training and test. The reason to do so is to give each data set the same space in the graphic representation.
For those measures where we can find different ad hoc intervals which present good or bad behaviour of the FH-GBML,
we use a vertical line to delimit the interval of the region of interest.
In Table 2 we have summarized the intervals found ad hoc from Figs. 3–10.
Once we have defined the ad hoc intervals, in Table 3 we have summarized the rules derived from them. Given a

particular data set X, we get the complexity measure (CM) of X with the notation CM[X ]. Table 3 is organized with
the following columns:

• The first column corresponds to the identifier of the rule for further references.
• The “Rule” column presents the rule itself.
• The third column “Support” presents the percentage of data sets which verify the antecedent part of the rule.
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Fig. 4. Accuracy in training/test sorted by F3.
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Fig. 5. Accuracy in training/test sorted by N2.
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Fig. 6. Accuracy in training/test sorted by N3.
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Fig. 7. Accuracy in training/test sorted by N4.
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Fig. 9. Accuracy in training/test sorted by L2.
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Fig. 10. Accuracy in training/test sorted by T2.

Table 2
Significant intervals.

Interval FH-GBML behaviour

N2 < 0.23 good behaviour
L1 < 0.2231 good behaviour
F2 = 1 good behaviour
L2 < 0.125 good behaviour

N3 = 0 bad behaviour
N3 > 0.1631 bad behaviour
N4 = 0 bad behaviour
N4 > 0.1743 bad behaviour
1 < F3 < 1.83 bad behaviour
L2 > 0.2834 bad behaviour
T 2 < 12.29 bad behaviour

• The column “% training, Std. Dev.” shows the average accuracy in training of all the examples which are covered
by the rule. The standard deviation of the average training accuracy is computed as well.

• The column “Training diff.” contains the difference between the training accuracy of the rule and the training accuracy
across all 438 data sets.
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Table 3
One metric rules with obtained from the intervals.

Id. Rule Support (%) % training, Std. Dev. Training diff. (%) % test, Std. Dev. Test diff. (%)

R1+ If N2[X ] < 0.23 25.342 99.283, 1.340 5.713 96.854, 3.371 8.612
then good behaviour

R2+ If L1[X ] < 0.2231 22.603 98.764, 1.868 5.195 95.754, 3.868 7.512
then good behaviour

R3+ If F2[X ] = 1 11.187 96.060, 4.050 2.490 91.829, 5.475 3.588
then good behaviour

R4+ If L2[X ] < 0.125 35.616 98.388, 2.271 4.818 95.094, 4.176 6.852
then good behaviour

R1− If 1 < F3[X] < 1.83 16.210 88.480, 31.537 −5.090 84.305, 30.937 −3.937
then bad behaviour

R2− If N3[X ] = 0 8.676 89.325, 30.643 −4.244 85.460, 30.272 −2.782
then bad behaviour

R3− If N3[X ] > 0.1631 21.005 83.531, 16.633 −10.038 74.521, 15.463 −13.721
then bad behaviour

R4− If N4[X ] = 0 12.557 87.083, 33.262 −6.487 82.941, 32.390 −5.301
then bad behaviour

R5− If N4[X ] > 0.1743 24.201 87.250, 11.239 −6.319 80.741, 12.707 −7.501
then bad behaviour

R6− If L2[X ] > 0.2834 22.146 85.917, 19.422 −7.652 76.114, 18.050 −12.128
then bad behaviour

R7− If T 2[X ] < 12.29 17.580 87.7356, 30.143 −5.834 79.431, 28.609 −8.811
then bad behaviour

Table 4
Average FH-GBML training and test accuracy.

FH-GBML global % accuracy training 93.56955

FH-GBML global % accuracy test 88.24174

• The column “% test, Std. Dev.” shows the average accuracy in test of all the examples which are covered by the rule.
The standard deviation of the average test accuracy is computed as well.

• The column “Test diff.” contains the difference between the test accuracy of the rule and the test accuracy across all
438 data sets.

In Table 4 we show the global training and test accuracy obtained by the FH-GBMLmethod across all 438 data sets.
As we can see in Table 3, the positive rules (denoted with a “+” symbol in their identifier) always show a positive

difference with the global average, both in training and test accuracy. The negative ones (with a “−” symbol in their
identifier) verify the opposite case. The support of the rules shows us that we can characterize a wide range of data sets
and obtain significant differences in accuracy, as we can see from rules R1+, R2+, R4+, R3− and R5−. Notice also
that the standard deviations for the positive rules are always lower than those for the negative ones. The robustness of
the method is higher in those data sets which have been covered by a positive rule. FH-GBML performs worse in the
data sets under a negative rule, due usually to method’s over-fitting.
From this set of rules we can state that:

• FH-GBML performs well in those data sets in which the examples of the same class lay closely in the feature space,
since a low N2 offers good results.

• When the problem is linear or almost linearly separable, we obtain good results, as can be drawn from low values
of L1.
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Table 5
Disjunction and intersection rules from all simple rules.

Id. Rule Support % training, Training diff. % test, Std. Dev. Test diff.
(%) Std. Dev. (%)

PRD If R1+ or R2+ or R3+ 42.694 98.360, 3.241 4.791 95.170, 6.213 6.929
or R4+ good behaviour

NRD If R1− or R2− or R3− or R4− 55.479 90.325, 18.168 −3.245 83.864, 18.46784 −4.378
or R5− or R6− or R7− bad behaviour

PRD∧ NRD If PRD and NRD then good behaviour 22.602 98.319, 3.316 4.750 95.048, 5.424 6.806
PRD∧�NRD If PRD and not NRD then good behaviour 20.091 98.406, 1.837 4.837 95.308, 3.455 7.067
NRD∧�PRD If NRD and not PRD then bad behaviour 32.877 84.829, 21.801 −8.741 76.175, 20.254 −12.066

Not characterized If not PRD and not (NRD and 24.429 96.960, 2.097 3.391 92.372, 3.036 4.130
not PRD) then good behaviour

• A low error rate of the LP classifier in the classification, defined by L1 and measured by L2, results in an acceptable
good behaviour of FH-GBML. On the other hand, when the error rate of the LP classifier grows sufficiently, the
behaviour of FH-GBML becomes bad with a difference of −12.13%.

• When the volume of overlap (F2) is 1, the FH-GBML obtains acceptable good results with an improvement of 6.85%
with respect to the global average.

• When the error obtained by the 1-NN method (N3) is 0, the FH-GBML method usually does not perform well as
well as when the nonlinearity of the 1-NN method (N4) is 0. With these conditions, FH-GBML obtains a relative
bad behaviour with differences of −2.78% and −5.30%, respectively.

• The parallel behaviour of N3 and N4 measures is present when they have high values as well. In particular when the
error obtained by the 1-NN method (N3) is above 0.1631 and when the non-linearity of the 1-NN method (N4) is
above 0.1743.With these conditions, FH-GBML obtains a bad behaviour with differences of−13.72% and−7.50%,
respectively.

• An interesting fact is that a ratio between the number of examples and the number of attributes (T2) lower than 12.29
generally results in bad performance.

Although we have obtained some interesting rules, we can extend our study by considering the combination of these
complexity metrics in order to obtain more precise and descriptive rules.

5.2. Collective evaluation of the set of rules

The objective of this section is to jointly analyse the good rules, as well as the bad rules. Thus we can arrive at a more
general description, with a wider support, of the behaviour of the FH-GBMLmethod with these joint rules. We perform
the disjunctive combination of all the positive rules to obtain a single rule. The same is done with all the negative ones,
so we obtain another rule. The new disjunctive rule will be activated if any of the component rules’ antecedents are
verified.
Since the support of the joint rules will be high, we also compute the intersection of these disjunctive rules (the data

sets which activate both disjunctive rules). With the intersection of the disjunction, we try to see the global relations
and competence between positive and negative intervals.
Thus we obtain three different kinds of intersections:

• Intersection of positive disjunction and not the negative disjunction.
• Intersection of positive disjunction and the negative disjunction.
• Intersection of negative disjunction and not the positive disjunction.

In Table 5 we summarize both disjunctions and the three intersections.
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Fig. 11. Accuracy results for data sets covered by PRD.
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Fig. 12. Accuracy results for data sets covered by NRD.

From the new obtained rules, we can point out that:

• The positive rule disjunction (PRD) offers a high support (almost the half of the considered data sets), and it gives a
good test accuracy (over the 95%). In spite of its wide support, it presents a low standard deviation of 6.21. Fig. 11
shows FH-GBML’s results for data sets covered by this rule.

• The negative rule disjunction (NRD) obtains a wide support as well (over the 50%). However, it is not very accurate
in indicating the data sets with low FH-GBMLmethods’s performance as we can see from its high standard deviation
and low difference. Fig. 12 shows FH-GBML’s results for the data sets included in the support of this rule.

• The positive and negative rule disjunction (PRD∧NRD) is more specific than PRD in isolation. However, it presents
a similar standard deviation. It is also similar to PRD in the training and test accuracy difference. Fig. 13 shows
the FH-GBML accuracy results of the data sets covered by this latter rule. The Positive and Not Negative Rule
Disjunction (PRD∧�NRD) has a lower support than PRD∧NRD and a lower standard deviation, but its difference is
somewhat higher, since the data sets with low accuracy for FH-GBML have been removed by PRD∧NRD. Fig. 14
shows the accuracy results of FH-GBML for the data sets covered by this rule.

• The negative and not positive rule disjunction (NRD∧�PRD) is a good rule to describe the bad behaviour of FH-
GBML. It has a decent support and both a high difference in training and test sets. Fig. 15 shows the FH-GBML
accuracy results for the data sets in the support of this rule.

From all these new rules, we can present PRD as a representative description of good data sets, and NRD∧�PRD as
a representative description for bad data sets, when using FH-GBML. We can consider three blocks of data sets with
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Fig. 13. Accuracy results for data sets covered by PRD∧NRD.
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Fig. 14. Accuracy results for data sets covered by PRD∧�NRD.
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Fig. 15. Accuracy results for data sets covered by NRD∧�PRD.

their respective support, as depicted in Fig. 17 (with no particular data set order within each block):

• The first block (the left-side one) represents those data sets covered by the PRD rule. They are the data sets recognized
as being those in which FH-GBML has good accuracy.

• The second block (themiddle one) plots the data sets for the rule NRD∧�PRD,which are bad data sets for FH-GBML.
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Fig. 16. Accuracy results for data sets not covered either by PRD and NRD∧�PRD.
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Fig. 17. Three blocks representation for PRD, NRD∧�PRD and not covered data sets.

• The third and last block (the right-side one) contains the unclassified data sets by the previous two rules. This
uncovered bunch of data sets is represented in the last row of Table 5. Fig. 16 also depicts these data sets.

We can see that the 75% of the analysed data sets are covered by these two rules, and hence the good behaviour and
bad behaviour consequents properly represent the accuracy obtained by the FH-GBML method.

6. Conclusions

We have performed a study over a set of binary data sets with the FH-GBML method. We have computed some data
complexity measures for the data sets in order to obtain intervals of such metrics in which the method’s performance is
significantly good or bad. We have constructed descriptive rules as well as studied the interaction between the intervals
and the proper rules.
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We have obtained two rules which are simple, interpretable and precise to describe both good and bad performance
of the FH-GBML method. Furthermore, we present the possibility of determining which data sets would be prove to
FH-GBML to perform well or badly prior to their execution, using the Data Complexity measures.
We must point out that this is a particular study for one specific method, the FH-GBML. On the other hand, this

work presents a new challenge that could be extended to other FRBCSs, to analyse their domains of competence,
and to develop new measures which could provide us with more information on the behaviour of FRBCSs for pattern
recognition.
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