
Expert Systems with Applications 36 (2009) 11470–11479
Contents lists available at ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa
Multi-instance genetic programming for web index recommendation

A. Zafra a, C. Romero a, S. Ventura a,*, E. Herrera-Viedma b

a Dept. of Computer Sciences and Numerical Analysis, University of Córdoba, Campus de Rabanales, edificio Albert Einstein, 14071 Córdoba, Spain
b Dept. of Computer Sciences and Artificial Intelligence, University of Granada, Periodista Daniel Saucedo Aranda s/n, 18071 Granada, Spain

a r t i c l e i n f o a b s t r a c t
Keywords:
Grammar-guided genetic programming
Multiple instance learning
User modelling
Web mining
0957-4174/$ - see front matter � 2009 Elsevier Ltd. A
doi:10.1016/j.eswa.2009.03.059

* Corresponding author. Tel.: +34 957212218; fax:
E-mail addresses: azafra@uco.es (A. Zafra), cr

sventura@uco.es (S. Ventura), viedma@decsai.ugr.es (
This article introduces the use of a multi-instance genetic programming algorithm for modelling user
preferences in web index recommendation systems. The developed algorithm learns user interest by
means of rules which add comprehensibility and clarity to the discovered models and increase the quality
of the recommendations. This new model, called G3P-MI algorithm, is evaluated and compared with
other available algorithms. Computational experiments show that our methodology achieves competitive
results and provide high-quality user models which improve the accuracy of recommendations.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

In the last few years, the quantity of information available on
Internet has been growing so rapidly that it now exceeds human
processing capabilities. Users feel overwhelmed by the amount of
information available and are usually unable to locate really rele-
vant information that suits their individual needs in a limited
amount of time. In this situation, there is a pressing need for tools
that anticipate the preferences of users and provide recommenda-
tions about whether or not a particular item will be of interest to
the user. Such systems, referred to in the literature as recommen-
dation systems (Felfernig, Friedrich, & Schmidt-Thieme, 2007),
have features similar to traditional information retrieval ap-
proaches but differ from them, especially in the use of models that
contain information about user tastes, preferences and needs. This
information differs according to the type of processing performed
by the system. So, in collaborative filtering recommender systems
(Schafer, Herlocker, & Sen, 2007) this model reflects similar users’
preferences or needs, while in content-based recommender sys-
tems (Pazzani & Billsus, 2007) this information maps the relation-
ship between the items to be recommended and the preferences of
a given user.

In modelling user preferences, an interesting problem is the
classifying of web index pages into two categories (according to
whether or not they are pertinent for a user), because this allows
us to build a user model for a content-based recommendation sys-
tem. The main difficulty in this problem lies in training set repre-
sentation; web index pages are those which contain references or
brief summaries of other pages and where there is a different num-
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ber of references on each page. Moreover, the information available
about the user is imprecise. We know if the user is interested in an
index page or not, instead of determining exactly which concrete
links the user really considers to be of interest. Recently, Zhou,
Jiang, and Li (2005) have solved the problem from a multi-instance
learning perspective, adapting the well known k-Nearest Neighbor
(k-NN) algorithm to this new learning framework. Experimental
results show that this approach greatly improves supervised learn-
ing algorithm approaches.

In spite of the interesting results reported by Zhou et al. (2005),
their proposal presents two major limitations. The first one is re-
lated to sparsity and to scalability, as the k-NN algorithm requires
computations that grow linearly with the number of items, which
makes it hard to scale when the number of items is high and
maintain reasonable prediction performance and accuracy. The
second one is related to the interpretability of new-found knowl-
edge. The K-NN algorithm is a black box algorithm, that is, it sim-
ply classifies web index pages as being ‘‘of interest” or ‘‘not of
interest”, without providing additional information about user
preferences. This is not a desirable property in recommendation
systems, where any information that allows us to learn more
about the interest of the user is of outmost interest for facilitating
new recommendations.

To overcome the aforementioned drawbacks, we propose the
use of G3P-MI, a grammar-guided genetic programming algorithm
for multiple instance learning. This algorithm learns prediction
rules which provide information on whether any of the links con-
tained on a given web index page are of interest to a given user.
Experimental results concerning several benchmarks show that
this approach obtains competitive results in terms of accuracy, re-
call and precision. Moreover, it adds comprehensibility and clarity
to the knowledge discovery process which is such an important
characteristic for obtaining high predictive accuracy since the
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system’s results can be interpreted easily (understandable user
models) and this data can be used to obtain further information
about the user thus generating even more appropriate
recommendations.

The rest of this paper is organized as follows. Section 2 is de-
voted to introducing the multi-instance learning paradigm, and
Section 3 describes the proposed G3P-MI algorithm. Section 4 pre-
sents Web Index Recommendation as a multi-instance learning
problem. Sections 5 and 6 presents and analyses the experimental
results of our system. Finally, Section 6 presents conclusions and
future work.
2. Multiple instance learning

The term Multiple Instance Learning was coined by Dietterich,
Lathrop, and Lozano-Perez (1997) when investigating a qualitative
structure–activity relationship problem. In this problem, the task
consisted of determining if a given substance does or does not
present pharmacological activity in information about its molecu-
lar structure. The difficulty of this task is due to the fact that a sub-
stance can present more than one spatial configuration, each of
which showing different structural properties. Because conforma-
tions can most naturally be represented as fixed-length vectors
of attribute values (or instances), the most convenient form for
representing these learning examples seems to be in collections
of these instances, with one associated class label representing
the concept that we can learn. This is called ‘‘multiple instance”
and contrasts with the manner of representing examples in super-
vised learning, where each example contains only one labeled
instance.

To solve this last problem, Dietterich et al. (1997) proposed as
the learning hypothesis that an example should be considered po-
sitive (that is, it represents the concept that we can learn) if it con-
tains at least one instance that represents this concept. On the
other hand, an example should be considered negative if it does
not contain any instances representing the concept of learning.
Using this learning hyphothesis, they developed three Axis-Parallel
Rectangle (abbreviated as APR) algorithms, which attempt to
search for appropriate axis-parallel rectangles constructed by the
conjunction of their features. Their best performing algorithm
(iterated-discrim) starts with a point in the feature space and
‘‘grows” a box with the goal of finding the smallest box that can
cover at least one instance from each positive bag and no instances
from any negative bags. The resulting box was then expanded (via
a statistical technique) to get optimum results.

Following Dietterich et al.’s study, Auer (1997) tries to avoid
some potentially difficult computational problems that were re-
quired by the heuristics used in the iterated-discrim algorithm,
presenting a theoretical algorithm that does not require product
distribution, MULTINST. With a new approach, Maron and Loz-
ano-Pérez (1997) proposed one of the most famous multi-instance
learning algorithms, Diverse Density (DD). The diverse density of a
point, p, in the feature space is defined as a probabilistic measure
taking into consideration how many different positive bags have
an instance near p, and how far the negative instances are from
p. This algorithm was combined with the Expectation Maximiza-
tion (EM) algorithm, resulting in EM-DD (Zhang & Goldman,
2001), a general-purpose MI algorithm whose basic premise is to
show which instance corresponds to the bag labeled as a missing
attribute which can be estimated using the EM approach. Recently,
Pao, Chuang, Xu, and Fu (2008) have proposed an EM based learn-
ing algorithm to provide a comprehensive procedure to maximize
the measurement of DD on given multiple instances.

In 1998, Long and Tan (1998) described a polynomial-time the-
oretical algorithm showing that if the instances in the bags drawn
from product distribution are independent, then the APR is PAC-
learnable. Continuing with PAC-learnable research, Kalai and
Blum (1998) described a reduction in the problem of PAC-learning
in the MIL framework as compared to PAC-learning with one-
sided random classification noise, and presented a theoretical
algorithm with less complexity than the algorithm described in
Auer (1997).

The first approaches using lazy learning, decision trees and rule
learning were studied during the year 2000. In the lazy learning
context, Wang and Zucker (2000) proposed two variants of the
K-nearest neighbor algorithm (kNN) that they referred to as Cita-
tion-kNN and Bayesian-kNN, these algorithms extending the K-
nearest neighbor algorithm for MIL, adopting Hausdorff distance.
With respect to decision trees and learning rules, Zucker and Che-
valeyre (2000) implemented ID3-MI and RIPPER-MI, which are
multi-instance versions of decision tree algorithm ID3 and rule
learning algorithm RIPPER, respectively. At that time, Ruffo
(2000) presented a multi-instance version of the C4.5 decision tree,
which was called RELIC.

There are also many other supervised learning algorithms
which have been adapted to MIL. Thus, we can find the contribu-
tion of Ramon and De Raedt (2000) which extends standard neural
networks to MIL. After this work, further studies appeared improv-
ing or extending it (Chai & Yang, 2007; Zhang, Jack, & Nandi, 2005;
Zhang & Zhou, 2004, 2006). Another approach that has been
adapted to the MIL framework is Support Vector Machines
(SVM). There are numerous proposals in these approaches, Gärtner,
Flach, Kowalczyk, and Smola (2002) adapted kernel methods to
work with MIL data by modifying the kernel distance measures
to handle sets. Using a related approach, Chen and Wang (2004)
and Chen et al. (2006) adapted SVMs by modifying the form of
the data rather than changing the underlying SVM algorithms
while Andrews, Tsochantaridis, and Hofmann (2002) adapted the
SVM kernels directly to produce one of the best MIL classification
systems currently available. Recently, we can also find the propos-
als by Mangasarian and Wild (2008) and Gu et al. (2008). Finally,
there are works such as those by Zhang et al. (2005) and Zhou
and Zhang (2007) that show the use of ensembles to enhance mul-
ti-instance learners.
3. Grammar-guided genetic programming for multiple instance
learning

In this section we introduce G3P-MI, a grammar-guided genetic
programming algorithm for multi-instance learning. In the next
sections, we will introduce the following design aspects: individual
representation, genetic operators, fitness function and evolution-
ary process.

3.1. Individual representation

In G3P-MI, an individual represents rules that determine if a gi-
ven pattern should be considered positive (that is, is an example of
the concept we want to represent) or negative (if it is not):

if ðcondBðbÞÞ then
pattern b is an instance of the concept:

else
pattern b is not an instance of the concept:

end if

ð1Þ

where condB is a condition that is applied to the pattern. Consider-
ing the Dietterich hypothesis, which states that a pattern is positive
if any of its instances represent the concept that we want to learn
and negative otherwise, we could represent condB as:
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condBðbÞ ¼
true; 9i 2 ½1; sizeðbÞ�=condIðinstanceði;bÞÞ ¼ true
false; otherwise:

�

ð2Þ

where sizeðbÞ returns the number of instances in pattern b,
instanceði; bÞ is a function that returns the ith instance to bag b
and condI is a condition that is applied to an instance contained
in a given bag. Considering the properties of the disjunction opera-
tor, Eq. (2) can be rewritten as

condBðbÞ ¼
_

i¼1;sizeðbÞ
condIðinstanceði; bÞÞ ð3Þ

where _ is the disjunction operator. As can be seen, condI is the only
variable part in Eqs. (1)–(3) that can experiment an evolutionary
process. So, in G3P-MI, an individual’s genotype is a syntax tree that
contains the code of function condI, while the individual’s pheno-
type is the whole rule that is applied to the bags (Eq. 1). Fig. 1 shows
the context free grammar that represents these individuals in a gen-
eral form. As can be seen, the code of the condition can contain one
or several valid clauses, that check conditions related to instances
contained in patterns. In the case of there being more than one
clause, they can be combined by the conjunctions or disjunctions
found in any order. The format of the clauses depends on the type
of data contained in the instances analyzed (in Section 5 we will de-
scribe the format of the clauses used in the web index recommen-
dation problem).

3.2. Initialization

To initialize the population in the algorithm, the procedure used
is inspired by that defined by Geyer-Schulz (1995). This procedure
builds a new syntax tree at random given the maximum number of
derivations. To guarantee that the syntax tree generated is valid
and uses a maximum number of derivations, the system calculates
a selection probability for each symbol in the grammar for a spec-
ified number of available derivations. This table of probabilities,
although implying some computational input, only has to be calcu-
lated once since it is saved with the rest of the structural informa-
tion about individuals.

To guarantee greater diversity in the number of individuals gen-
erated, the initialization procedure generates individuals of differ-
ent sizes, with two parameters as the minimum number of
derivations and maximum number of individuals in the
population.

3.3. Genetic operators

G3P-MI uses two genetic operators, called respectively selective
crossover and selective mutation, to generate new individuals in a
given generation of the evolutionary algorithm. Both operators
were proposed by Whigham (1996) in the definition of grammar-
based genetic programming. In this section, we will briefly de-
scribe their basic principles and functioning.

3.3.1. Selective crossover
This operator creates new programs by mixing the contents of

two parent programs. To do so, a non-terminal symbol is chosen
at random and two sub-trees (one from each parent) are selected
whose roots coincide with the symbol adopted. Fig. 2 shows how
this operation is performed.
Fig. 1. Grammar used for representing individuals’ genotypes in G3P-MI.
Selective crossover presents several configuration parameters.
On one hand, a list of eligible symbols can be defined in order to
increase the probability of crossover for certain symbols and lessen
that probability for certain others. On the other hand, in order to
reduce bloating (Banzhaf, Francone, Keller, & Nordin, 1998), there
is a parameter that defines the largest size possible for offspring
generated in a crossover. Surpassing this size, the operations will
reproduce the original parents which would also occur if one of
the parents does not possess the symbol in question.

3.3.2. Selective mutation
Mutation is associated with a small change in the structure of

the representation it is applied to. As can be seen in Fig. 3, this is
achieved by randomly selecting a sub-tree within the individual
to be mutated, and replacing this sub-tree with a new randomly-
generated one. The procedure used to generate this sub-tree is
the same as that used to create new individuals.

As in the case of selective crossover, this operator presents two
configuration parameters: on one hand, the list of eligible non-ter-
minal symbols as the root of the sub-tree to be mutated, and on the
other, a maximum size for the offspring generated.

3.4. Evolutionary algorithm

G3P-MI follows the structure of a classical generational and elit-
ist evolutionary algorithm. First of all, there is the creation of an
initial population, following the procedure described in Section
3.2. Once the individuals are evaluated, we encounter the main
loop of the algorithm composed of the following operations:

(1) Parents selection. The procedure followed to choose the indi-
viduals to be reproduced by crossover and/or mutation is
roulette selection.

(2) Parents reproduction. Once the parents are obtained, the
crossover operator is applied with a certain probability,
and later on the mutation operator as well, also with a deter-
mined probability. The offspring obtained through this pro-
cedure are then evaluated.

(3) Population update. The population is updated by direct
replacement, that is, the resulting offspring replace the pres-
ent population. To guarantee that the best individual in the
population is not lost during the updating process, the algo-
rithm employs elitism.

Finally, there are two conditions for exiting from the main loop. On
one hand, the algorithm ends if the maximum number of genera-
tions defined by the user is surpassed and, on the other, it also ends
if the best individual in the population achieves the quality objec-
tives indicated by the user.
4. Web index recommendation: a multiple instance problem

Web Index Pages are pages that provide titles or brief summa-
ries of other pages. These pages contain a lot of information
through references, leaving detailed presentations to their linked
pages. An example of a web index page is http://health.yahoo.com
as shown in Fig. 4.

The web index recommendation problem consists of building a
model to establish exactly which web page index it is that interests
a given user from among the contents of a myriad of web index
pages that have already been labeled as being ‘‘of interest” or
‘‘not of interest” for this particular user. This problem is more dif-
ficult than other analogous ones related to the construction of user
models for content-based recommendation systems (Mooney, Ray-
mond, & Loriene, 2000; Pazzani & Billsus, 2007) since, in this case,

http://health.yahoo.com
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Fig. 2. Selective crossover.
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Fig. 3. Selective mutation.
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the information on the user’s preferences has to do with web index
pages as a whole and not with the items contained on the page in
question. For this reason, supervised learning algorithms could not
produce results that met with expectations (Zhou et al., 2005).
On observing this problem in detail, it is seen to adjust perfectly
to multi-instance representation. In fact, the web index page could
be represented by a bag, and each of the connected pages is an
example of a bag. Moreover, Dietterich’s hypothesis also seems



Fig. 4. Web index recommendation problem.

Table 1
Experimental data sets.

Data sets

V1 V2 V3 V4 V5 V6 V7 V8 V9

Training Positive 17 18 14 56 62 60 39 35 37
Negative 58 57 61 19 13 15 36 40 38

Test Positive 4 3 7 33 27 29 16 20 18
Negative 34 35 31 5 11 9 22 18 20

hese datasets and a more detailed description of them can be downloaded from
llowing Internet address: http://cs.nju.edu.cn/zhouzh/zhouzh.files/publication/

x/milweb-datafile.htm.
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appropriate for resolving this problem. A web index page is consid-
ered to be of interest if at least one of the links on it leads to a page
of interest for the user, while a page is not of interest if none of the
pages indicated are useful for the user.

Based on previously mentioned considerations, we have consid-
ered the use of multi-instance representation for web index recom-
mendation problems. Two different codification schemes normally
used to categorize documents (Sebastiani, 2002) have been taken
into consideration to build this type of instance. The first scheme
is representing a page as a vector of Boolean values, each of which
representing the presence (true) or absence (false) of a term in the
document. The second scheme represents the page as a vector of
integer values, each element represents the absolute frequency of
the appearance of term on the page. As seen in Section 5, each of
these coding schemes requires learning rules with different com-
parison operators and thus the result is two different versions of
the G3P-MI algorithm.

5. Experimental setup

This section describes the data sets that have been used in the
experimentation as well as several especially relevant methodo-
logical and configuration aspects.

5.1. Data sets

In order to evaluate our G3P-MI algorithm in the web index rec-
ommendation task, and to compare with other results previously
published, we have used the data sets prepared by Prof. Z.H. Zhou’s
team. These datasets have been used in a previous paper about cat-
egorization of web index pages (Zhou et al., 2005). There are nine
data sets and in each a different volunteer labeled 113 web index
pages according to his/her interests. For each data set, 75 web in-
dex pages are randomly selected as training bags while the remain-
ing 38 index pages are used as test bags. Table 1 summarizes the
information about these data sets.1

To be able to use the original datasets, it has been necessary to
preprocess information in order to adapt the original data to the
format represented in our algorithms. In fact, although Zhou
et al. represent web index pages as bags with one or various in-
stances, they represent each instance by a list containing the N
terms that most frequently appear on the page (where N takes val-
ues between 5 and 15). In our case, each instance is represented in
vector format, where each component of the vector is related to a
term in the corpus of available documents. The concrete value of
each component can be binary (if we opt for Boolean representa-
tion) or whole if we opt for representation based on absolute
frequencies.

Both these data sets are characterized by a high degree of
dimensionality and great sparsity. In order to reduce both effects
and probably also thus improve the yield of the algorithm, the ori-
ginal sets were preprocessed to eliminate the terms that appear
only in a few documents and others that appear in most of them.
In both cases, term discriminating capacity is so limited that their
elimination does not reduce the information available. After a ser-
ies of preliminary tests, it was decided to eliminate those terms
that appeared in less than 3 documents or more than 40. In this
way the total number of attributes is reduced from 5763 to 600.

In consequence, there are 4 different types of data sets:

Boolean all. These 9 data sets use Boolean representation (pres-
ence or absence of a term in a document), and each document
vector presents a size of 5763 components. It is considered all
terms belonging to the original corpus of documents.
1 T
the fo
anne

http://cs.nju.edu.cn/zhouzh/zhouzh.files/publication/annex/milweb-datafile.htm
http://cs.nju.edu.cn/zhouzh/zhouzh.files/publication/annex/milweb-datafile.htm


Fig. 6. Grammar used for learning from numerical (term frequency) datasets.

Table 2
Configuration parameters for all G3P-MI versions.

General Population size = 1000 individuals
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Boolean filtered. These 9 data sets use Boolean representation
(presence or absence of a term in the document), and each doc-
ument vector is made up of 600 components. It is considered
the terms from the corpus that appear in more than 3 and less
than 40 documents.
Frequency all. These 9 data sets use numeric representation (fre-
quency of appearance of a term in a document), and each doc-
ument vector is composed of 5763 elements. It is considered all
terms from the original corpus of documents.
Frequency filtered. These 9 data sets use numerical representa-
tion (frequency of appearance of a term in a document), and
each document vector has 600 components. It is considered
the terms that appear in more than 3 and less than 40 docu-
ments of the corpus.

As will be seen now, one of the objectives of this study is to eval-
uate which of the representation schemes (and associated versions
of the G3P-Ml algorithm) produces the best results. Then, we will
compare our best version with others algorithms which have
solved the same problem.

5.2. Algorithm details

This section presents details about the adaptation of the G3P-MI
algorithm for the task of recommendation of web index pages. First
of all there are algorithm variants that have been defined to resolve
this problem using, respectively, boolean and integer representa-
tions. The fitness function used in all the tests done is then ex-
plained. Finally there is a brief presentation of other
configuration parameters of interest.

5.2.1. G3P-MI variants
As has already been mentioned, two variants of the G3P-MI

algorithm have been specially developed for the two types of rep-
resentations. Actually these variants only differ in the format of the
prediction rules learned in the evolutionary process. Thus in the
case of boolean representation, the rules generated refer to the
presence or absence of a term on a given page, which respectively
uses the functions ‘‘CONTAINS” and ‘‘DOES NOT CONTAIN”, whose
operator is the name of any of the terms that appear in the corpus
of training documents (see Fig. 5).

When the representation of the pages is numerical (based on
frequencies), the rules generated inform about whether a given
term appears on a given page more or less frequently than a de-
fined threshold. In this case the comparison operators ‘‘GT” (great-
er than), ‘‘GE” (greater than and equal to), ‘‘LT” (less than) and ‘‘LE”
(less than and equal to) are used to compare the frequency of
appearance of a term in the document with the threshold (an inte-
ger value). Fig. 6 shows the grammar that represents this type of
rules.

5.2.2. Fitness function
The problem of developing good metrics to measure the effec-

tiveness of recommendations is not a trivial task (Herlocker, Kon-
stan, Borchers, & Riedl, 1999, 2004; Yang & Padmanabhan, 2005).
To begin with, as it deals with a classification task, it would be log-
ical to think that the use of such measures as accuracy (the percent-
Fig. 5. Grammar used for learning from boolean datasets.
age of web index pages that are correctly classified by the
classifier) would be appropriate.

However, in recommender systems it is very common to work
with unbalanced data sets, where the number of pages of interest
is much lower than the number of pages that are not of interest. In
this case, by solely using accuracy, the classifier obtains better re-
sults if no examples of the minority class (interesting examples)
are classified than if only some are classified and mistakes are
made with respect to the bigger class (uninteresting examples).
For that reason, other measures are considered, such as precision,
the percentage of accepted documents that are in fact relevant to
a given user, that is

precision ¼ #interesting and recommended
#recommended

ð4Þ

In other cases, the problem is that there are many more interesting
examples than uninteresting ones. In this case, precision is not the
best measure to take into account, and it is necessary to use another
measure such as recall

recall ¼ #interesting and recommended
#interesting

ð5Þ

For the above-mentioned reasons, we have tried to build a fitness
function combining accuracy, precision and recall. Of all the combi-
nations tested, the product has been that which produced the best
results since it weighs the 3 measurements equally, as well as
penalizing those individuals with a value of 0 in any of the above
measurements. In consequence,

fitness ¼ accuracy � recall � precision ð6Þ

has been the fitness function used in all the experiments.

5.2.3. Other algorithm parameters
Table 2 shows the configuration parameters used in the exper-

iments carried out with all the versions of the G3P-MI algorithm.
As can be seen, the only difference is the depth of the minimum
depth used, which is less in the Boolean version than in the numer-
ical one (perfectly logical taking into account that the number of
substitutions needed to create a valid syntax tree is lower than
in the Boolean version). All of the algorithms used have been devel-
oped in Java, using the Java Class Library for Evolutionary Compu-
tation (Ventura, Romero, Zafra, Delgado, & Hervás, 2008).
Maximum of generations = 100

Initialization Maximum tree depth = 15
Minimum tree depth = 5/6

Crossover Crossover probability = 0.95
Eligible symbols = all non-terminals
Maximum depth for sons = 15

Mutation Mutation probability = 0.05
Eligible symbols = all non-terminals
Maximum depth for sons = 15



Table 4
Average rankings of the algorithms.

Algorithm Ranking

Accuracy Recall Precision

Boolean all 2.6111 2.7777 2.7777
Boolean filtered 2.3888 3.3333 1.8888
Frequency all 2.8333 2.2777 2.8888
Frequency filtered 2.1666 1.6111 2.4444
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6. Results and discussion

We carry out two types of experiments. The first experiment
compares the performance of our proposals with respect to the
problem of Web Index Recommendation. The second experiment
compares the performance of our best algorithm to other classifi-
cation techniques to solve this problem. This section describes
these experiments and the results obtained. Also, at the end of
the section we will comment on the type of knowledge discovered
with G3P-MI algorithms.

6.1. Comparing different versions of G3P-MI

As mentioned previously, the objective of this first experiment
was to analyze which variant of G3P-MI yields the best results in
the web index recommendation task. To do so, we have executed
every variant of the G3P-MI algorithm 10 times, with different ran-
dom seeds, for the nine available data sets. Table 3 shows average
values for accuracy, precision and recall.

To determine if there are significant differences between the re-
sults shown in Table 3, we have performed a Friedman test (Dem-
sar, 2006). This is a non-parametric test that compares the average
ranks of the algorithms, where the algorithm with the best results
for a dataset is given a rank of 1 and the algorithm with the worst
results is given a ranking of 4 (the ranking averages of all the avail-
able datasets are shown in Table 4). According to the Friedman test
results, we accept the null-hypothesis, that is, with the available
information, there do not exist significative differences between
the different variants of G3P-MI analyzed.

In spite of the results yielded by the Friedman test, an inspec-
tion of Table 4 reveals that the versions that use the filtering oper-
ation (boolean filtered and frequency filtered) give slightly better
results than their counterparts that do not have this preprocessing
operation. This result is consistent with the fact that a reduction in
search space facilitates the recommendation problem and achieves
better results.

Another interesting question that can be deduced from the
analysis of Table 4 is that, in general, boolean versions of G3P-MI
seem to yield more precise results, while numerical versions of
the algorithm are better in recall results. This seems to indicate
that the algorithm has not been able to reach a complete trade-
off between the metrics that are in conflict.
Table 3
Results obtained with four different versions of G3P-MI (see text for details).

Algorithm Accuracy

V1 V2 V3 V4

Boolean all 0.8158 0.8684 0.8421 0.8684
Boolean filtered 0.8421 0.7368 0.8421 0.8421
Frequency all 0.9211 0.7368 0.8684 0.8947
Frequency filtered 0.8684 0.9211 0.8684 0.8947

Precision

V1 V2 V3 V4

Boolean all 0.2857 0.2500 0.5714 0.8684
Boolean filtered 0.3333 0.2308 0.5714 0.9355
Frequency all 1.0000 0.2308 0.7500 0.8919
Frequency filtered 0.4286 0.5000 0.6250 0.8919

Recall

V1 V2 V3 V4

Boolean all 0.5000 0.3333 0.5714 1.0000
Boolean filtered 0.5000 1.0000 0.5714 0.8788
Frequency all 0.2500 1.0000 0.4286 1.0000
Frequency filtered 0.7500 1.0000 0.7143 1.0000
6.2. Comparing G3P-MI with other proposals

In this section, we compare our algorithm with other proposals
which have resolved this problem. These proposals are Frecit-kNN,
Citation-kNN and Txt-kNN (Zhou et al., 2005). Txt-kNN is obtained
through adapting the standard kNN algorithm to textual objects.
Citation-kNN is similar to the latter algorithm but considers both
the references and the citers of an unseen object in prediction. Fre-
cit-kNN is similar to Citation-kNN, but is a multi-instance learning
algorithm while the former is a single-instance learning algorithm.
After analyzing our algorithm in the previous section, we choose
the configuration which uses filtered data sets to compare these
techniques. Table 5 shows a summary with the average values ob-
tained by different algorithms using different data sets.

In order to make an empirical comparison between the different
methods, we use Friedman test (Demsar, 2006) on the results re-
ported in Table 5. The results of applying the Friedman test are re-
ported in Table 6, for precision, recall and accuracy measurements.
The test accepts the null-hypothesis for accuracy values and so we
can determine that there are no significant differences for this mea-
surement. For precision and recall measurements, the test rejects
the null-hypothesis, indicating the existence of significant differ-
ences between the results of different algorithms. Due to these re-
sults, a posteriori statistical analysis is needed. In Fig. 7a and b,
we show the application of the Bonferroni–Dunn test. We mark
the interval of one critical difference (CD) to the left and right in
Fig. 7. Any algorithm ranking outside this area is significantly differ-
ent from the control algorithm (the control algorithm is that with
the lowest ranking). We can see that with recall value, our proposal
obtains the best value and we can assert that five algorithms are
worse than our proposal because they rank outside the (CD) value.
In the case of precision value, Frecit-kNN obtains the best value, and
V5 V6 V7 V8 V9

0.7632 0.7895 0.7632 0.6842 0.6316
0.8421 0.7895 0.8421 0.6053 0.6842
0.7895 0.7632 0.4211 0.5263 0.4737
0.7632 0.8158 0.4737 0.5526 0.5526

V5 V6 V7 V8 V9

0.7500 0.7838 0.6522 0.6429 0.5667
0.8889 0.8621 0.9167 0.5758 0.6875
0.7714 0.7632 0.4211 0.5263 0.4737
0.7500 0.8056 0.4444 0.5405 0.5143

V5 V6 V7 V8 V9

1.0000 1.0000 0.9375 0.9000 0.9444
0.8889 0.8621 0.6875 0.9500 0.6111
1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000



Table 5
Results summary.

Algorithm Accuracy

V1 V2 V3 V4 V5 V6 V7 V8 V9

Txt-kNN 0.8632 0.7948 0.7262 0.8894 0.7318 0.7946 0.5524 0.5896 0.5688
Citation-kNN 0.8788 0.7682 0.7632 0.8156 0.7578 0.8156 0.6842 0.6842 0.6528
Fretcit-kNN 0.9106 0.8682 0.8576 0.8474 0.8526 0.8632 0.7578 0.6898 0.6476
Boolean filtered 0.8421 0.7368 0.8421 0.8421 0.8421 0.7895 0.8421 0.6053 0.6842

Frequency Txt-kNN 0.8738 0.7422 0.7682 0.8948 0.7370 0.8054 0.6474 0.6002 0.5526
Frequency Citation-kNN 0.8526 0.8104 0.8368 0.8630 0.6686 0.8158 0.6792 0.7054 0.6370
Frequency Fretcit-kNN 0.9002 0.8366 0.8734 0.8264 0.8052 0.8000 0.7738 0.7160 0.7052
Frequency filtered 0.8684 0.9211 0.8684 0.8947 0.7632 0.8158 0.4737 0.5526 0.5526

Precision

V1 V2 V3 V4 V5 V6 V7 V8 V9

Txt-kNN 0.3700 0.2710 0.3648 0.9046 0.7346 0.7886 0.4778 0.5974 0.5392
Citation-kNN 0.3998 0.1998 0.4088 0.9460 0.8302 0.8486 0.6132 0.7322 0.7582
Fretcit-kNN 0.5734 0.3476 0.6202 0.9538 0.8548 0.8792 0.7280 0.7388 0.6874
Boolean Filtered 0.3333 0.2308 0.5714 0.9355 0.8889 0.8621 0.9167 0.5758 0.6875

Frequency Txt-kNN 0.4238 0.1996 0.3542 0.9054 0.7612 0.7974 0.5564 0.6010 0.5290
Frequency Citation-kNN 0.3434 0.2762 0.6700 0.9214 0.8210 0.8316 0.6158 0.7316 0.7370
Frequency Fretcit-kNN 0.5000 0.6670 0.7140 0.9346 0.8096 0.8244 0.7224 0.7878 0.8946
Frequency filtered 0.4286 0.5000 0.6250 0.8919 0.7500 0.8056 0.4444 0.5405 0.5143

Recall

V1 V2 V3 V4 V5 V6 V7 V8 V9

Txt-kNN 0.4500 0.9334 0.5714 0.9758 0.9778 1.0000 0.7128 0.7300 0.7222
Citation-kNN 0.3000 0.6002 0.4004 0.8362 0.8298 0.9244 0.6626 0.6300 0.3888
Fretcit-kNN 0.6000 0.6670 0.5996 0.8664 0.9556 0.9522 0.7002 0.6410 0.4666
Boolean Filtered 0.5000 1.0000 0.5714 0.8788 0.8889 0.8621 0.6875 0.9500 0.6111

Frequency Txt-kNN 0.5500 0.7332 0.3146 0.9820 0.9186 1.0000 0.8126 0.7100 0.7002
Frequency Citation-kNN 0.3500 0.7336 0.2860 0.9210 0.6818 0.9520 0.6504 0.7000 0.4332
Frequency Fretcit-kNN 0.5334 0.2826 0.6428 0.8604 0.9482 0.9382 0.7504 0.6310 0.4332
Frequency filtered 0.7500 1.0000 0.7143 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Table 6
Test Friedman ðp < 0:01Þ.

v2 Ranking

Accuracy Recall Precision

18.475 15.7314 28.5185 37.111
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in this case, the Bonferroni–Dunn test does not consider there to be
differences with our proposal, with p ¼ 0:05.
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Fig. 7. Comparison of one classifier against the oth
Summing up, according to statistical tests, Fretcit-kNN is the
control algorithm for recall measures, but our proposal is not sig-
nificantly different according to the Bonferroni–Dunn test. On the
other hand, our proposal for the precision measurement is consid-
ered the control algorithm and, in this case, the Bonferroni–Dunn
test results show that both Fretcit-kNN versions are significantly
different with respect to it. Therefore, from a statistical point of
view, we can indicate that G3P-MI results are slightly better than
Fretcit-kNN results. However, the most significant contribution of
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ers with the Bonferroni–Dunn test, ðp < 0:05Þ.
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our proposal is that it adds comprehensibility and clarity to the
knowledge acquired. This point is dealt in more depth in the fol-
lowing section.

6.3. Knowledge acquired

As we noted in the introduction, the greatest advantage of the
G3P-MI algorithm over other black-box proposals is the compre-
hensibility of the knowledge acquired, that is presented to the user
in the form of prediction rules. In this section we introduce exam-
ples of these rules, and we discuss the advantages of using Boolean
representation instead of frequency representation for comprehen-
sibility criterion.

Firstly, we show a rule obtained for the first user/dataset using
Boolean representation.

IF ((contains planet AND contains forecast ) OR
(contains atmospheric) OR (not_contains football))

THEN Recommend page to V1 user.
ELSE No recommend page to V1 user.

By means of this rule we can learn what topics can be recom-
mended to the user. Thus, user 1 is interested in such topics as
ecology and environment (with words like planet, forecast and
atmospheric) and is not interested in football.

Secondly, we show a rule obtained for the first user/dataset
using numerical representation.

IF ((frech > 16) _ (house > 11) _
(science > 2) _ (aol 6 20 ^
on-line > 4)))

THEN Recommend page to V1 user.
ELSE No recommend page to V1 user.

We can see that this rule is more complex because the words are
limited by their frequency and it is more difficult to identify user
preferences. For this, although both representations obtain similar
results, after this study we can conclude that numerical represen-
tation is less effective because it obtains less comprehensive rules.
7. Conclusions and future work

This study describes the use of the G3P-MI algorithm for recom-
mending Web Index Pages. This algorithm applies grammar-
guided genetic programming to learn rules about whether or not
a page referred to on a Web Index Page is of interest to a given user.
To represent the Web Index Page, this algorithm applies the con-
cept of multi-instances, representing the web pages as a set of in-
stances where each instance represent the different referenced
pages and stores information related to reference page. Two ver-
sions of the algorithms have been developed, one which is applied
when pages are represented in Boolean form and the other which
is applied when the representation format is based on the fre-
quency of the appearance of certain terms on a page. There has also
been analyzed the possibility of carrying out a previous filtering of
information to eliminate less discriminating terminology. The
experiments carried out show that although there is no significant
differences in the application of a Friedman test, the techniques
using a previous information filtering produce better results than
those that do not while those that use numerical representation
produce a less understandable knowledge.

Moreover, our proposal have been compared to the results of
various versions of the kNN algorithm published by the Zhou team.
The statistical tests carried out do not show significant differences
in accuracy, although they do for precision and recall. In fact, our
proposal is the one that produces the best results with respect to
precision, while the Fretcit-kNN algorithm is that with the best re-
sults for recall. Finally, some examples of the rules discovered with
the G3P-MI algorithm are presented. These rules show the high de-
gree of comprehensibility of the knowledge acquired with the G3P-
MI algorithm as compared to in black box methods like those based
on kNN.

Although the results obtained are of great interest, we feel that
the yield of the G3P-MI algorithm in the task of Web Index Page rec-
ommendation could be improved in some ways. On one hand the
algorithm has not always been able to establish an equilibrium
among conflicting objectives. In this sense the problem could be
considered from a multi-objective perspective to see if the balance
of different objectives could be achieved more appropriately. On the
other hand it has been confirmed that a reduction in the space ded-
icated to characteristics can improve the yield of the algorithm. For
this reason we would consider it to be of special interest to study
the application of selection techniques for characteristics and com-
pare the effect these would produce on the yield of our system.
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