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a b s t r a c t

Classification with imbalanced data-sets supposes a new challenge for researches in the framework of
data mining. This problem appears when the number of examples that represents one of the classes of
the data-set (usually the concept of interest) is much lower than that of the other classes. In this manner,
the learning model must be adapted to this situation, which is very common in real applications.

In this paper, we will work with fuzzy rule based classification systems using a preprocessing step in
order to deal with the class imbalance. Our aim is to analyze the behaviour of fuzzy rule based classifi-
cation systems in the framework of imbalanced data-sets by means of the application of an adaptive
inference system with parametric conjunction operators.

Our results shows empirically that the use of the this parametric conjunction operators implies a higher
performance for all data-sets with different imbalanced ratios.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Fuzzy rule based classification systems (FRBCSs) (Ishibuchi,
Nakashima, & Nii, 2004) are a very useful tool in the ambit of ma-
chine learning, since they provide an interpretable model for the
end user. There are many real applications in which the FRBCS
have been employed, including anomaly intrusion detection
(Tsang, Kwong, & Wang, 2007), cloud cover estimation from satel-
lite imagery (Ghosh, Pal, & Das, 2006) and image processing (Naka-
shima, Schaefer, Yokota, & Ishibuchi, 2007). In most of these areas
the data used is highly skewed, i.e. the number of instances of one
class is much lower than the instances of the other classes. This sit-
uation is known as the imbalanced data-set problem, and it has
been recently identified as one important problem in data mining
(Chawla, Japkowicz, & Kolcz, 2004).

Most learning algorithms obtain a high predictive accuracy over
the majority class, but predict poorly over the minority class
(Weiss, 2004). Furthermore, the examples in the minority class
can be treated as noise and they might are completely ignored
by the classifier. In fact, there are studies that show that most clas-
sification methods lose their classification ability when dealing
with imbalanced data (Japkowicz & Stephen, 2002; Phua, Alahak-
ll rights reserved.
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dez), mjjesus@ujaen.es (M.J.
oon, & Lee, 2004). In this manner, many recent studies are focused
on developing new approaches in this area (Hong, Chen, & Harris,
2007; Lee, Tsai, Wu, & Yang, 2008; Su, Chen, & Yih, 2006).

The use of the appropriate conjunction connectors in the Infer-
ence System can improve the fuzzy system behaviour by using
parametrized expressions, while maintaining the original inter-
pretability associated to fuzzy systems (Crockett, Bandar, Fowdar,
& O’Shea, 2006; Crockett, Bandar, Mclean, & O’Shea, 2006; Wu &
Mendel, 2004). This approach is usually called Adaptive Inference
System (AIS) and it has shown very good results in fuzzy modelling
(Alcalá-Fdez, Herrera, Márquez, & Peregrín, 2007; Márquez, Pere-
grín, & Herrera, 2007).

Our aim in this paper is to analyze the influence of the AIS for
FRBCSs in the framework of imbalanced data-sets. We start from
the analysis performed in Fernández, García, del Jesus, and Herrera
(2008), where we studied different configurations for FRBCS in or-
der to determine the most suitable model for imbalanced data-
sets. Furthermore, we showed the necessity to apply a re-sampling
procedure; specifically, we found a very good behaviour in the case
of the ‘‘Synthetic Minority Over-Sampling Technique” (SMOTE)
(Chawla, Bowyer, Hall, & Kegelmeyer, 2002).

We will present a postprocessing study on the tuning of param-
eters with a previously established Rule Base (RB), using Genetic
Algorithms (GAs) as a tool to evolve the connector parameters.
We will develop an experimental study with 33 data-sets from
UCI repository with different imbalance ratios. Data-sets with
more than two classes have been modified by taking one against
the others or by contrasting one class with another. To evaluate
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our results we have applied the geometric mean metric (Barandela,
Sánchez, García, & Rangel, 2003; Kubat, Holte, & Matwin, 1998)
which aims to maximize the accuracy of both classes. We have also
made use of some non-parametric tests (Demšar, 2006; García,
Fernández, Luengo, & Herrera, in press) with the aim to show the
significance in the performance improvements obtained with the
AIS model.

In order to do that, the paper is organized as follows: Section 2
presents an introduction on the class imbalance problem, including
the description of the problem, proposed solutions, and proper
measures for evaluating classification performance in the presence
of the imbalance data-set problem. In Section 3, we describe the
fuzzy rule learning methodology used in this study, the Chi et al.
rule generation method (Chi, Yan, & Pham, 1996), and introduces
the AIS with the parametric conjunction operators and the evolu-
tionary algorithm that tunes these parameters. In Section 4, we in-
clude our experimental analysis in imbalanced data-sets with
different degrees of imbalance. Finally, in Section 5 some conclud-
ing remarks are pointed out.

2. Imbalanced data-sets in classification

In this section, we will first introduce the problem of imbal-
anced data-sets. Then we will describe the preprocessing tech-
nique we have applied in order to deal with the imbalanced
data-sets: the SMOTE algorithm. Finally, we will present the eval-
uation metrics for this kind of classification problem.

2.1. The problem of imbalanced data-sets

Learning from imbalanced data is an important topic that has
recently appeared in the machine learning community. When
treating with imbalanced data-sets, one or more classes might be
represented by a large number of examples while the others are
represented by only a few.

We focus on the two class imbalanced data-sets, where there is
only one positive and one negative class. We consider the positive
class as the one with the lowest number of examples and the neg-
ative class the one with the highest number of examples. Further-
more, in this work we use the imbalance ratio (IR) (Orriols-Puig &
Bernadó-Mansilla, 2009), defined as the ratio of the number of in-
stances of the majority class and the minority class, to organize the
different data-sets according to their IR.

The problem of imbalanced data-sets is extremely significant
because it is implicit in most real world applications, such as fraud
detection (Fawcett & Provost, 1997), text classification (Tan, 2005),
risk management (Huang, Hung, & Jiau, 2006), medical diagnosis
Small DisjunctsSmall Disjuncts

(a)

Fig. 1. Example of the imbalance between classes: (a)
(Mazurowski et al., 2008) and classification of weld flaws (Liao,
2008) among others.

In classification, this problem (also named the ‘‘class imbalance
problem”) will cause a bias on the training of classifiers and will re-
sult in the lower sensitivity of detecting the minority class exam-
ples. In fact, the main handicap on imbalanced data-sets is the
overlapping between the examples of the positive and the negative
class, because of the difficulty of most learning algorithms to de-
tect those small disjuncts (Weiss & Provost, 2003). This fact is de-
picted in Fig. 1.

For this reason, a large number of approaches have been previ-
ously proposed to deal with the class imbalance problem. These
approaches can be categorized into two groups: the internal ap-
proaches that create new algorithms or modify existing ones to
take the class imbalance problem into consideration (Barandela
et al., 2003; Hung & Huang, 2008; Xu, Chow, & Taylor, 2007) and
external approaches that preprocess the data in order to diminish
the effect cause by their class imbalance (Batista, Prati, & Monard,
2004; Estabrooks, Jo, & Japkowicz, 2004). Furthermore, cost-sensi-
tive learning solutions incorporating both the data and algorithmic
level approaches assume higher misclassification costs with sam-
ples in the minority class and seek to minimize the high cost errors
(Domingos, 1999; Sun, Kamel, Wong, & Wang, 2007).

The internal approaches have the disadvantage of being algo-
rithm specific, while external approaches are independent of the
classifier used and are, for this reason, more versatile. Furthermore,
in our previous work on this topic (Fernández et al., 2008) we ana-
lyzed the cooperation of some preprocessing methods with
FRBCSs, showing a good behaviour for the oversampling methods,
specially in the case of the SMOTE methodology (Chawla et al.,
2002).

According to this, we will employ in this paper the SMOTE algo-
rithm in order to deal with the problem of imbalanced data-sets.
This method is detailed in the next subsection.

2.2. Preprocessing imbalanced data-sets. The SMOTE algorithm

As mentioned before, applying a preprocessing step in order to
balance the class distribution is a positive solution to the imbal-
ance data-set problem (Batista et al., 2004). Specifically, in this
work we have chosen an oversampling method which is a refer-
ence in this area: the SMOTE algorithm (Chawla et al., 2002).

In this approach, the minority class is over-sampled by taking
each minority class sample and introducing synthetic examples
along the line segments joining any/all of the k minority class near-
est neighbours. Depending upon the amount of over-sampling re-
quired, neighbours from the k nearest neighbours are randomly
chosen. This process is illustrated in Fig. 2, where xi is the selected
(b)

small disjuncts; (b) overlapping between classes.



Fig. 2. An illustration on how to create the synthetic data points in the SMOTE
algorithm.
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point, xi1 to xi4 are some selected nearest neighbours and r1 to r4

the synthetic data points created by the randomized interpolation.
The implementation employed in this work uses only one nearest
neighbour using the euclidean distance, and balance both classes
to the 50% distribution.

Synthetic samples are generated in the following way: Take the
difference between the feature vector (sample) under consider-
ation and its nearest neighbour. Multiply this difference by a ran-
dom number between 0 and 1, and add it to the feature vector
under consideration. This causes the selection of a random point
along the line segment between two specific features. This ap-
proach effectively forces the decision region of the minority class
to become more general. An example is detailed in Fig. 3.

In short, its main idea is to form new minority class examples
by interpolating between several minority class examples that lie
together. Thus, the overfitting problem is avoided and causes the
decision boundaries for the minority class to spread further into
the majority class space.
2.3. Evaluation in imbalanced domains

The measures of the quality of classification are built from a
confusion matrix (shown in Table 1) which records correctly and
incorrectly recognized examples for each class.

Traditionally, accuracy is the most commonly used measure for
empirical evaluation. However, for classification with imbalanced
data-sets, this metric may lead to erroneous conclusions since
the minority class has very little impact on accuracy as compared
to the majority class (Weiss, 2004). For example, a classifier that
obtains an accuracy of 90% in a data-set with an IR value of 9,
Fig. 3. Example of the SMOTE application.

Table 1
Confusion matrix for a two-class problem.

Positive prediction Negative prediction

Positive class True positive (TP) False negative (FN)
Negative class False positive (FP) True negative (TN)
might not be accurate if it does not cover correctly any minority
class instance

Acc ¼ TP þ TN
TP þ FN þ FP þ TN

ð1Þ

Because of this, instead of using accuracy, more correct metrics are
considered. Two common measures, sensitivity and specificity (2)
and (3), approximate the probability of the positive (negative) label
being true. In other words, they assess the effectiveness of the algo-
rithm on a single class.

sensitivity ¼ TP
TP þ FN

ð2Þ

specificity ¼ TN
FP þ TN

ð3Þ

In this paper, we consider both classes (positive and negative) to be
equivalent in importance. In this manner, both sensitivity and spec-
ificity are expected to be high simultaneously and thus, the selected
metric is the geometric mean of the true rates (Barandela et al.,
2003; Kubat et al., 1998), which measures the balanced perfor-
mance of a learning algorithm between these two classes, and can
be defined as:

GM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP
TP þ FN

� TN
FP þ TN

r
ð4Þ
3. Fuzzy rule based classification systems: linguistic rule
generation method and adaptive inference system

Any classification problem consists of m training patterns
xp ¼ ðxp1; . . . ; xpnÞ, p ¼ 1;2; . . . ;m from M classes where xpi is the
ith attribute value (i ¼ 1;2; . . . ;n) of the pth training pattern.

In this work, we use fuzzy rules of the following form for our
FRBCSs:

Rule Rj : If x1 is Aj1 and . . . and xn is Ajn then Class ¼ Cj

with RWj; ð5Þ

where Rj is the label of the jth rule, x ¼ ðx1; . . . ; xnÞ is an n-dimen-
sional pattern vector, Aji is an antecedent fuzzy set, Cj is a class label,
and RWj is the rule weight. We use triangular membership func-
tions as antecedent fuzzy sets.

In the following subsections we will first describe the rule gen-
eration procedure used in this paper and then we will introduce
the AIS and the evolutionary algorithm used to adjust the parame-
ters of the conjunction operator.

3.1. Linguistic rule generation method: Chi et al. approach

We have employed a simple learning method in order to gener-
ate the RB for the FRBCS. Specifically we have selected the method
proposed in Chi et al. (1996), that we have named the Chi et al.’s
rule generation, which is just an extension of the well known Wang
and Mendel algorithm (Wang & Mendel, 1992) to classification
problems.

To generate the fuzzy RB this FRBCSs design method determines
the relationship between the variables of the problem and estab-
lishes an association between the space of the features and the
space of the classes by means of the following steps:

(1) Establishment of the linguistic partitions. Once the domain of
variation of each feature Ai is determined, the fuzzy parti-
tions are computed.

(2) Generation of a fuzzy rule for each example xp ¼ ðxp1; . . . ; xpn;

CpÞ. To do this is necessary:



Table 2
Adaptive t-norms.

Name Expression Domain

t-norm
Dubois TDuboisðx; y;aÞ ¼ x�y

maxðx;y;aÞ ð0 6 a 6 1Þ
Dombi TDombiðx; y;aÞ ¼ 1

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�x

x Þ
aþð1�y

y Þ
aa

p ða > 0Þ

Frank TFrankðx; y;aÞ ¼ loga ½1þ
ðax�1Þ�ðay�1Þ

a�1 � ða > 0Þ, ða – 1Þ
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(2.1) To compute the matching degree lðxpÞ of the example
to the different fuzzy regions using a conjunction
operator (usually modeled with a minimum or prod-
uct t-norm).

(2.2) To assign the example xp to the fuzzy region with the
greatest membership degree.

(2.3) To generate a rule for the example, whose antecedent
is determined by the selected fuzzy region and whose
consequent is the label of class of the example.

(2.4) To compute the rule weight.
We must remark that rules with the same antecedent can be
generated during the learning process. If they have the same class
in the consequent we just remove one of the duplicated rules, but if
they have a different class only the rule with the highest weight is
kept in the RB.

3.2. Adaptive inference system

In this section, we first analyze the AIS and we justify the use of
the Dubois parametric t-norm as conjunction operator. Then we
present the evolutionary algorithm used to adapt the parameters
of the conjunction operator.

3.2.1. Adaptive components in the inference system
Considering a new pattern xp ¼ ðxp1; . . . ; xpnÞ and an RB com-

posed of L fuzzy rules, the steps of the inference system are the fol-
lowing (Cordón, del Jesus, & Herrera, 1999):

(1) Matching degree. To calculate the strength of activation of the
if-part for all rules in the RB with the pattern xp, using a con-
junction operator (usually a t-norm)
lAj
ðxpÞ ¼ TðlAj1

ðxp1Þ; . . . ;lAjn
ðxpnÞÞ; j ¼ 1; . . . ; L ð6Þ
(2) Association degree. To compute the association degree of the
pattern xp with the M classes according to each rule in the
RB. When using rules with the form of (5) this association
degree only refers to the consequent class of the rule (i.e.
k ¼ Cj)
bk
j ¼ hðlAj

ðxpÞ;RWk
j Þ; k ¼ 1; . . . ;M; j ¼ 1; . . . ; L ð7Þ

We model function h as the product t-norm in all cases.

(3) Pattern classification soundness degree for all classes. We use

an aggregation function that combines the positive degrees
of association calculated in the previous step
Yk ¼ f ðbk
j ; j ¼ 1; . . . ; L and bk

j > 0Þ; k ¼ 1; . . . ;M: ð8Þ
(4) Classification. We apply a decision function F over the sound-
ness degree of the system for the pattern classification for all
classes. This function will determine the class label l corre-
sponding to the maximum value
FðY1; . . . ;YMÞ ¼ l such that Yl ¼ fmaxðYkÞ; k ¼ 1; . . . ;Mg
ð9Þ
Fig. 4. Graphical representation of the antecedent linguistic modification produced
by different values of Dombi t-norm.
The conjunction operator (function T in Step 1) is suitable to be
parameterized in order to adapt the inference system. In fact, the
model based on the tuning of the inference system has shown a
considerable improvement in the accuracy of linguistic fuzzy sys-
tems (Alcalá-Fdez et al., 2007; Márquez et al., 2007). Table 2 exem-
plifies three classical parametric t-norms (Mizumoto, 1989) that
can be used to model the adaptive conjunction operator.

The effect of the parameter in the adaptive conjunction is some-
times equivalent to one of the well-known mechanisms to modify
the linguistic meaning of the rule structure, the use of linguistic
modifiers (Liu, Chen, & Tsao, 2001), as shown in Fig. 4. We must
point out that the effect of the adaptive t-norm playing the role
of conjunction operator does not modify the shape of the inferred
fuzzy set, maintaining the original interpretability of the fuzzy
labels.

Two models of AIS can be considered depending on the amount
of parameters they use:

� A single parameter a to tune globally the behavior of the AIS.
� Individual parameters ai for every rule of the KB, having a local

tuning mechanism of the behavior of the inference system for
every rule.

The model used in this paper is based on the results obtained in
Alcalá-Fdez et al. (2007), Márquez et al. (2007), where the authors
learn the conjunctive connector for every rule separately and ob-
tains the highest accuracy because of its high degree of freedom.
Furthermore, we will use Dubois t-norm, not only because it is
more efficiently computed, but also because it has obtained a bet-
ter behaviour than other parametric t-norms (Alcalá-Fdez et al.,
2007).

We must note that Dubois t-norm achieves like a minimum
when a ¼ 0 and like algebraic product a ¼ 1. When 0 < a < 1, it
continues performing like minimum excepting when every match
with antecedents are below a, that takes values between minimum
and product, being similar to a concentration effect. Thus, Dubois t-
norm connects with minimum in those cases when the matches
with antecedents are more significant, while the rest are connected
with a value between minimum and product.

3.2.2. Evolutionary adaptive inference system
GAs has been widely used to derive fuzzy systems (Cordón, Go-

mide, Herrera, Hoffmann, & Magdalena, 2004; Herrera, 2008). In
this work, we will consider the use of a specific GA to design the
proposed learning method, the CHC algorithm (Eshelman, 1991).
The CHC algorithm is a GA that presents a good trade-off between
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diversity and convergence, being a good choice in problems with
complex search spaces.

This genetic model makes use of a mechanism of ‘‘selection of
populations”. M parents and their corresponding offspring are
put together to select the best M individuals to take part of the next
population (with M being the population size). Furthermore, no
mutation is applied during the recombination phase, Instead, when
the population converges or the search stops making progress, the
population is re-initialized.

The components needed to design this process are explained
below. They are: coding scheme, initial gene pool, chromosome
evaluation, crossover operator (together with an incest prevention)
and restarting approach.

(1) Coding scheme: Since we are using one parameter for every
fuzzy rule, each chromosome will be composed by R genes,
being R the number of rules in the RB. Also, we are using a
real-coding version of the CHC, so each gene will take a value
between 0 and 1, that is, the domain for the a value in the
Dubois t-norm.

(2) Chromosome evaluation: The fitness function must be in
accordance with the framework of imbalanced data-sets.
Thus, we will use, as presented in Section 2.3, the geometric
mean of the true rates, defined in (4) as:
GM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP
TP þ FN

� TN
FP þ TN

r

(3) Initial gene pool: Remember from the previous section that
Dubois parametric t-norm behaves like minimum or product
t-norm when a ¼ 0 and a ¼ 1, respectively. For this reason,
we will initialize one chromosome with all its genes at 0
to model the minimum t-norm and another chromosome
with all genes at 1 to model the product t-norm. The remain-
ing individuals of the population will be generated at ran-
dom in the interval [0,1].

(4) Crossover operator: The BLX-a crossover ða ¼ 0:5Þ is
employed in order to recombine the parent’s genes. The
incest prevention mechanism works as follows: two parents
are crossed if their Hamming distance divided by 2 is above
a predetermined threshold, L.The Hamming distance is com-
puted by translating the real-coded genes into strings and by
taking into account whether each character is different or
not. For that purpose we will use a Gray Code with a fixed
number of bits per gene (BITSGENE), that is determined by
the system expert. The initial threshold is set to
L ¼ ð#Genes � BITSGENEÞ=4:0 where L is the length of the
string and #Genes stands for the total length of the chromo-
some. When no offspring is inserted into the new popula-
tion, the threshold is reduced by 1 (BITSGENE in this case).

(5) Restarting approach: Since no mutation is performed, to get
away from local optima a restarting mechanism is consid-
ered (Eshelman, 1991) when the threshold value L is lower
than zero. In this case, all the chromosomes are generated
at random within the interval [0,1]. Furthermore, the best
global solution found is included in the population to
increase the convergence of the algorithm.
4. Experimental study

In this section, we will show empirically the good behaviour
achieved by FRBCSs when using the parametric conjunction oper-
ator, using a large amount of imbalanced data-sets to support
our analysis.

We will employ all data-sets to perform a global study disre-
gard the degree of imbalance, but we will also section the study
by using the IR to distinguish among three classes of imbalanced
data-sets to contrast the performance in each imbalance scenario.

Specifically, we distinguish among data-sets with a low imbal-
ance when the instances of the positive class are between 25%
and 40% of the total instances (IR between 1.5 and 3), data-sets
with a medium imbalance when the number of the positive in-
stances is between 10% and 25% of the total instances (IR between
3 and 9), and data-sets with a high imbalance where there are no
more than 10% of positive instances in the whole data-set com-
pared to the negative ones (IR higher than 9).

We have selected 33 data-sets with different IR from UCI repos-
itory. The data is summarized in Table 3, showing the number of
examples (#Ex.), number of attributes (#Atts.), class name of each
class (minority and majority), class attribute distribution and IR.
This table is ordered by the IR, from data-sets with low imbalance
to highly imbalanced data-sets.

In the remaining of this section, we will first present the exper-
imental framework and all the parameters employed in this study.
Then, we will perform a comparative analysis between the base
FRBCS and the use of the AIS model (parametric conjunction oper-
ator), in order to show the improvement obtained with this model.
4.1. Experimental set-up

To develop the different experiments we consider a 5-folder
cross-validation model, i.e., 5 random partitions of data with a
20%, and the combination of 4 of them (80%) as training and the
remaining one as test. For each data-set we consider the average
results of the five partitions.

We must emphasize that, in order to reduce the effect of imbal-
ance, we have employed the SMOTE preprocessing method (Cha-
wla et al., 2002) for all our experiments, considering only the 1-
nearest neighbour to generate the synthetic samples, and balanc-
ing both classes to the 50% distribution.

Statistical analysis needs to be carried out in order to find sig-
nificant differences among the results obtained by the studied
methods. We consider the use of non-parametric tests, according
to the recommendations made in Demšar (2006), García et al. (in
press), where it is presented a set of simple, safe and robust non-
parametric tests for statistical comparisons of classifiers. For
pair-wise comparisons we will use Wilcoxon’s Signed-Ranks Test
(Sheskin, 2006; Wilcoxon, 1945) and in all cases the level of confi-
dence (a) will be set at 0.05 (95% of confidence).

We will employ the following configuration for the FRBCS
approach:

� Number of fuzzy labels: 3 and 5 labels.
� Conjunction operator to compute the compatibility degree of the

example with the antecedent of the rule: product t-norm.
� Rule weight: penalized certainty factor (Ishibuchi & Yamamoto,

2005).
� Conjunction operator between the compatibility degree and the

rule weight: Product t-norm.
� Fuzzy reasoning method: winning rule.

We have selected this FRBCS model as it achieved a good perfor-
mance in our former studies on imbalanced data-sets (Fernández,
García, del Jesus, & Herrera, 2007; Fernández et al., 2008). We will
use both 3 and 5 labels per variable because it is not clear what le-
vel of granularity must be employed for the FRBCS.

Finally, we indicate the values that have been considered for the
parameters of the CHC algorithm:

� Population Size: 50 individuals.
� Number of evaluations: 5000 � number of variables.



Table 3
Summary description for imbalanced data-sets.

Data-set #Ex. #Atts. Class (min.,maj.) % Class (min.,maj.) IR

Data-sets with low imbalance (1.5–3 IR)
Glass2 214 9 (build-window-non_float-proc, remainder) (35.51,64.49) 1.82
EcoliCP-IM 220 7 (im,cp) (35.00,65.00) 1.86
Wisconsin 683 9 (malignant,benign) (35.00,65.00) 1.86
Pima 768 8 (tested-positive, tested-negative) (34.84,66.16) 1.90
Iris1 150 4 (Iris-Setosa, remainder) (33.33,66.67) 2.00
Glass1 214 9 (build-window-float-proc,remainder) (32.71,67.29) 2.06
Yeast2 1484 8 (NUC,remainder) (28.91,71.09) 2.46
Vehicle2 846 18 (Saab,remainder) (28.37,71.63) 2.52
Vehicle3 846 18 (bus, remainder) (28.37,71.63) 2.52
Vehicle4 846 18 (Opel, remainder) (28.37,71.63) 2.52
Haberman 306 3 (Die,survive) (27.42,73.58) 2.68

Data-sets with medium imbalance (3–9 IR)
GlassNW 214 9 (non-window glass, remainder) (23.83,76.17) 3.19
Vehicle1 846 18 (van,remainder) (23.64,76.36) 3.23
Ecoli2 336 7 (im,remainder) (22.92,77.08) 3.36
New-thyroid3 215 5 (hypo,remainder) (16.89,83.11) 4.92
New-thyroid2 215 5 (hyper, remainder) (16.28,83.72) 5.14
Ecoli3 336 7 (pp,remainder) (15.48,84.52) 5.46
Segment1 2308 19 (brickface,remainder) (14.26,85.74) 6.01
Glass7 214 9 (headlamps,remainder) (13.55,86.45) 6.38
Yeast4 1484 8 (ME3,remainder) (10.98, 89.02) 8.11
Ecoli4 336 7 (iMU,remainder) (10.88, 89.12) 8.19
Page-blocks 5472 10 (remainder, text) (10.23, 89.77) 8.77

Data-sets with high imbalance (higher than 9 IR)
Vowel0 988 13 (hid,remainder) (9.01,90.99) 10.10
Glass3 214 9 (Ve-win-float-proc, remainder) (8.78,91.22) 10.39
Ecoli5 336 7 (om,remainder) (6.74,93.26) 13.84
Glass5 214 9 (containers, remainder) (6.07,93.93) 15.47
Abalone9-18 731 8 (18,9) (5.65,94.25) 16.68
Glass6 214 9 (tableware,remainder) (4.20,95.80) 22.81
YeastCYT-POX 482 8 (POX,CYT) (4.15,95.85) 23.10
Yeast5 1484 8 (ME2,remainder) (3.43,96.57) 28.41
Yeast6 1484 8 (ME1,remainder) (2.96,97.04) 32.78
Yeast7 1484 8 (EXC,remainder) (2.49,97.51) 39.16
Abalone19 4174 8 (19,remainder) (0.77,99.23) 128.87

Table 6
Average results table for the Chi FRBCS with 3 labels per variable, basic approach and
with AIS (parametric conjunction operator), for the different degrees of imbalance.

Chi3 Chi3+AIS

GMTr GMTst GMTr GMTst

All data-sets 84:95� 1:48 80:48� 6:24 90:22� 1:19 82:06� 6:48
Low imbalance 80:22� 1:14 75:38� 4:09 85:89� 1:00 77:71� 4:01
Medium imbalance 90:78� 1:42 87:21� 5:72 95:30� 0:75 89:50� 4:93
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� Bits per gene for the Gray codification (for incest prevention): 30
bits.

4.2. Empirical analysis

The first part of this study will be oriented to determine the
granularity level of the fuzzy partitions, between 3 and 5 labels.
In this manner, Table 4 presents the results with all imbalanced
data-sets for the Chi FRBCS and in Table 5 we show the statistical
analysis performed with a Wilcoxon’s test.

There are no significant differences between both models, but
since we obtain a higher ranking when using 3 labels per variable,
we will employ this configuration in the study of the AIS. This anal-
Table 4
Average results table for the Chi FRBCS with 3 and 5 labels per variable.

Algorithm GMTr GMTst

Chi3 84:95� 1:48 80:48� 6:24
Chi5 90:24� 0:94 79:57� 6:00

Table 5
Wilcoxon’s test to compare Chi with 3 labels per variable (Rþ) against Chi with 5
labels per variable (R�) in all imbalanced data-sets.

Comparison Rþ R� Hypothesis (a ¼ 0:05) p-Value

Chi3 vs. Chi5 352 209 Not Rejected 0.201
ysis is shown in Table 6, where we include the results for all data-
sets and for the three types of imbalanced data-sets proposed in
the beginning of the experimental study.
High imbalance 83:85� 1:88 78:85� 8:90 89:46� 1:81 78:96� 10:49

Table 7
Wilcoxon’s test to compare the basic Chi method (Rþ) against the Chi approach with
AIS (parametric conjunction operator) (R�) in imbalanced data-sets.

Comparison Rþ R� Hypothesis (a ¼ 0:05) p-Value

All data-sets
Chi3 vs. Chi3+AIS 107.5 453.5 Rejected for Chi3+AIS 0.002

Data-sets with low imbalance
Chi3 vs. Chi3+AIS 6.0 60.0 Rejected for Chi3+AIS 0.016

Data-sets with medium imbalance
Chi3 vs. Chi3+AIS 5.5 60.5 Rejected for Chi3+AIS 0.017

Data-sets with high imbalance
Chi3 vs. Chi3+AIS 28 38 Not Rejected 0.657



Table 8
Detailed results table for the Chi FRBCS with 3 labels per variable, basic approach and with AIS (parametric conjunction operator).

Dataset Chi3 Chi3 + AIS

GMTr GMTst GMTr GMTst

Data-sets with low imbalance
EcoliCP-IM 95:49� 1:82 92:27� 5:93 98:52� 0:70 96:54� 5:04
Haberman 66:21� 2:86 58:91� 6:03 71:03� 2:29 58:33� 5:93
Iris1 100:00� 0:00 100:00� 0:00 100:00� 0:00 100:00� 0:00
Pima 72:31� 1:32 66:80� 5:93 82:37� 1:11 68:34� 5:84
Vehicle3 88:10� 1:22 85:54� 3:36 97:44� 0:49 91:32� 3:19
Wisconsin 98:07� 0:18 88:91� 2:13 98:86� 0:12 89:04� 1:68
Yeast2 68:33� 0:68 67:69� 1:91 76:13� 0:65 71:76� 1:70
Glass1 66:57� 1:08 64:06� 3:51 69:31� 2:09 64:14� 3:44
Glass2 75:37� 1:49 64:90� 6:91 85:52� 1:80 72:70� 5:72
Vehicle2 76:47� 1:00 70:92� 4:34 82:32� 0:94 71:04� 5:06
Vehicle4 75:52� 0:92 69:22� 4:89 83:28� 0:84 71:60� 6:56

Mean 80:22� 1:14 75:38� 4:09 85:89� 1:00 77:71� 4:01

Data-sets with medium imbalance
Ecoli2 87:92� 2:30 85:28� 9:77 94:05� 0:40 83:04� 12:46
GlassNW 94:05� 1:69 85:83� 3:04 95:65� 1:43 88:33� 3:37
New-thyroid2 92:32� 3:35 87:44� 8:11 99:79� 0:19 93:40� 6:22
New-thyroid3 94:70� 1:43 89:81� 10:77 99:07� 0:97 96:49� 4:23
Page-blocks 80:60� 0:92 79:91� 4:29 84:29� 0:73 82:38� 4:16
Segment1 95:45� 0:28 94:99� 0:45 98:73� 0:19 97:21� 0:88
Vehicle1 88:23� 0:51 86:41� 3:06 96:36� 0:76 88:54� 2:83
Ecoli3 89:66� 1:24 88:01� 5:45 92:44� 0:84 89:42� 4:56
Yeast4 91:37� 0:80 90:13� 4:09 95:00� 0:37 90:29� 2:21
Ecoli4 89:24� 1:03 87:58� 4:08 95:42� 1:32 91:09� 3:96
Glass7 95:04� 2:04 83:87� 9:82 97:53� 1:02 84:30� 9:33

Mean 90:78� 1:42 87:21� 5:72 95:30� 0:75 89:50� 4:93

Data-sets with high imbalance
Abalone9-18 69:80� 2:25 63:93� 11:00 77:88� 4:81 59:18� 15:57
Abalone19 70:39� 1:46 62:96� 8:27 75:91� 3:19 55:15� 12:56
Ecoli5 94:04� 1:47 91:27� 7:43 98:61� 0:43 91:90� 7:69
Glass3 58:00� 4:89 47:67� 10:16 75:65� 4:96 56:37� 18:01
Yeast5 83:44� 0:93 82:99� 3:10 89:60� 1:28 83:71� 4:32
Vowel0 98:56� 0:18 98:37� 0:61 99:86� 0:18 98:26� 1:58
YeastCYT-POX 75:66� 3:47 72:75� 14:99 79:70� 1:74 72:66� 14:88
Glass5 95:15� 0:96 84:96� 13:80 97:80� 0:75 86:09� 13:24
Glass6 94:15� 1:31 81:56� 12:65 98:21� 0:60 84:57� 14:33
Yeast6 94:67� 1:28 93:41� 5:35 98:14� 0:15 93:16� 4:77
Yeast7 88:43� 2:47 87:50� 10:55 92:71� 1:80 87:50� 8:38

Mean 83:85� 1:88 78:85� 8:90 89:46� 1:81 78:96� 10:49

All data-sets
Mean 84:95� 1:48 80:48� 6:24 90:22� 1:19 82:06� 6:48
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Our results clearly show that the use of the parametric conjunc-
tion operator implies a higher performance for the FRBCS in imbal-
anced data-sets. The null hypothesis for the Wilcoxon’s test in all
imbalanced data-sets (Table 7) has been rejected with a very small
p-value, which supports our conclusion with a high degree of
confidence.

Our interest is now focused on the behaviour of the parametric
conjunction operator in the different imbalanced scenarios. In or-
der to perform a detailed comparative study, Table 8 shows the re-
sults for the Chi basic approach and with parametric conjunction
operator for every single data-set, to contrast the performance
and robustness achieved for each model.

(1) Data-sets with low imbalance: The Chi method with the
parametric conjunction operator approach obtains very good
results in this case. In every single case the parametric con-
junction operator improves the results of the basic Chi algo-
rithm, except in the Haberman data-set, in which there is a
very small difference, and in the Iris1, where there is a tie.

(2) Data-sets with medium imbalance: The same conclusion is
extracted in this case, in which the parametric conjunction
operator outperforms in all data-sets not including Ecoli2.
(3) Data-sets with high imbalance: Now the null hypothesis
of Wilcoxon’s test is not rejected, although the use of the
parametric conjunction connector implies a higher rank-
ing when comparing with the basic Chi approach. Regarding
the results in each data-set, there are high differences in the
Abalone9-18 and Abalone19 data-sets, which diminish the
ranking of the AIS approach. Nevertheless, we can see
that we obtain better results in most of the cases, follow-
ing the same behaviour as in the previous imbalanced
scenarios.

5. Conclusions

Our objective in this paper was to analyze the behaviour of
FRBCSs in the framework of imbalanced data-sets, using an AIS
whose parameters are learnt by GAs.

Our empirical results have shown the goodness of this
approach. This conclusion has been supported with a high
degree of confidence for all types imbalanced data-sets, which al-
lows us to emphasize the robustness of this methodology, disre-
gard the IR.
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