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Abstract

This paper presents an optosensor for screening of four polycyclic aromatic hydrocarbons: anthracene (ANT), benzo[a]pyrene (BaP), fluo-
ranthene (FLT), and benzo[b]fluoranthene (Bbf) using a photomultiplier device with an artificial neural network as transducer. The optosensor
is based on the on-line immobilization on a non-ionic resin (Amberlite XAD-4) solid support in a continuous flow. The determination was
performed in 15 mM H2PO4

−/HPO4
2− buffer solution at pH 7 and 25% of 1,4-dioxane. Feed forward neural networks (multiplayer perceptron)

have been trained to quantify the considered Polycyclic aromatic hydrocarbons (PAHs) in mixtures under optimal conditions. The optosensor
proposed was also applied satisfactorily to the determination of the considered PAHs in water samples in presence of the other 12 EPA–PAHs.
© 2004 Elsevier B.V. All rights reserved.

Keywords: Fluorescence optosensor; Artificial neural networks; Screening; Polycyclic aromatic hydrocarbons; Water

1. Introduction

During the last 10 years, the advantages of using optosen-
sors in analytical chemistry have been demonstrated[1,2].
Most of the optical optosensors developed so far have been
designed for monitoring only one analyte and in just one po-
sition because a conventional spectroluminometer equipped
with a photomultiplier (PMT) detector has been used as
transducer[3].

However, in many situations (to carry out a screening
method) it is required to perform the monitoring of sev-
eral analytes simultaneously. In this case, it is necessary to
use multichannel detectors such as Charge-Coupled Devices
detectors (CCD), imaging techniques, chemometric models
such as Partial Least Square (PLS), Principal Component
Regression (PCR), Multiple Linear Regression (MLR) etc.
or Artificial Neural Networks (ANN’s). The multichannel
devices or imaging techniques are more difficult to imple-
ment in a portable device and increase its price with re-
spect to the PMT detectors. The chemometric models are
easy to apply to solve mixtures of compound but it has been
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demonstrated over the last ten years than ANN’s provide
better results[4–8] and are more powerful tools for the anal-
ysis of mixtures with more than two components[9]. The
main advantage of ANN’s over the traditional non-linear re-
gression techniques is the fact that they are able to gener-
ate models without a priory knowledge about the modelling
function [10].

By coupling a PMT with ANN, it is possible to transform
a singlechannel device in a multichannel detector, obtaining
the properties of the PMTs (low cost, easy to further minia-
turization) and the properties of the CCD’s (simultaneous
determinations).

A detailed description of the theory behind ANN can be
found in the literature[11–21]. ANN’s have been used for
the processing of spectral data and, consequently, to deter-
mine simultaneously mixtures of several compounds[16].
Among the vast number of neural models proposed the most
widely used is the multilayered perceptron (MLP), that is
the type of ANN considered in this paper.

Polycyclic aromatic hydrocarbons (PAHs) are highly car-
cinogenic [22]. Identification and quantification of com-
plex mixtures of PAHs need separation techniques as HPLC
with UV-visible, fluorimetric or amperometric detection or
GC-MS or GC-FID[23–27], and most of them include a
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preconcentration step. The combination of optosensor with
ANN data processing is a good tool to solve this problem.

In this paper, a new optosensor for screening of four PAHs:
anthracene (ANT), fluoranthene (FLT), benzo[a]pyrene
(BaP) and benzo[b]fluoranthene (BbF) using a PMT as
transducer with a MLP using the QuickProp training algo-
rithm is presented. This optosensor diminishes the price of
the sophisticated instrumentation and helps to miniaturize
the system.

2. Experimental

2.1. Chemicals and materials

Analytical reagent grade chemicals were used for the
preparation of all the solutions. Sodium di-hydrogen phos-
phate 1-hydrate was bought from Sigma (Spain) and used
as received. A solution of 0.1 M H2PO4

−/HPO4
2− buffer at

pH 7.0 was prepared.
Fifty microgram per milliliter solutions of PAHs (Sigma)

were prepared in 1,4-dioxane and kept at 4◦C. The PAHs
were handled with extreme caution; nitrile gloves were worn
when working with the solutions and a low-maintenance
respirator with the appropriate filters and disposable spatulas
and weighing dishes when handling them in solid form.
The wastes were collected in suitable residue containers for
processing according to international norms.

The non-ionic resins Amberlite XAD 4 (Sigma) were
sieved and used at 80–120�m size.

Water was distilled twice with a Mili-Q System (Milli-
pore, Bedford, MA, USA).

2.2. Optosensing manifold

A 25�l Hellma 176.052-QS flow-through cell was
packed with Amberlite XAD 4 and placed in the conven-
tional sample compartment of the detector in a single-line

Fig. 1. Flow manifold used for fluorescence optosensor. (A) sample valve, and (B) regenerative solution valve.

flow-injection system (Fig. 1). Two rotary valves (A and
B) (Supelco 5020) were used to introduce the sample and
regenerate the active surface. PTFE tubing (0.8 mm i.d.)
and fittings were used to connect the flow-through cell. A
Gilson Minipuls-3 peristaltic pump was used to generate
the flow stream.

The fluorescence measurements were carried out with an
Aminco Bowman Series 2 luminescence spectrometer fit-
ted with a 150 W continuous high-power xenon lamp, two
monochromators with a resolution of 0.2 nm and a high per-
formance R928 PMT detector.

2.3. Data analysis procedure

The data was obtained by using a luminiscence spectome-
ter. This instrument rendered the measured spectra in an
ASCII file. This file was automatically transformed into a
spreadhseet. To make easier the learning task of the ANN’s
some preliminary transformations were applied to the data.

To begin with, data were scaled down from their original
domain to the unit interval [0, 1]. Then a feature selection
was applied. Not all the data gathered by the experimental
equipment is relevant for the identification task. Experts’
advice suggested to use only the spectra registered at a small
set of wavelengths, namely, seven. The data for the learning
of ANN consisted of only seven inputs and four outputs.
The inputs are the fluorescence intensities and the outputs
correspond to the percentage of concentration of each PAH,
which are also scaled to [0, 1].

2.4. General Procedure

Samples were prepared by adding to the sample up to
25% (v/v) 1,4-dioxane and 15 mM H2PO4

−/HPO4
2− buffer

solution at pH 7. 0.5 ml of the sample was injected through
valve A into a channel of 15 mM H2PO4

−/HPO4
2− buffer

solution at pH 7. The PAHs were kept in the flow cell in this
medium at a 2.0 ml min−1 flow-rate on Amberlite XAD 4.
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Emission spectra between 370–550 nm, at scan rate of
3 nm s−1 and step size of 2 nm, were carried out with an
excitation wavelength of 355 nm, detector voltage of 600 V
and bandwidth slits of 4 nm, saved as ASCII format file and
processed following the Data Analysis Procedure.

Two hundred and fifty microliter of regenerative solution
(acetone) was injected through valve B to strip the retained
analyte from the reagent phase before proceeding with the
next sample.

3. Results and discussion

3.1. Chemical parameters

Our research group have developed an optosensor for
screening of four PAHs (ANT, BaP, FLT, and BbF) using a
photomultiplier as transducer[28], so the optimal chemical
parameters have been optimized.Table 1shows a summary
of the optimal chemical parameters for this optosensor,
which are the same for the optosensor proposed in this
paper.

3.2. Input entrances

Seven emission wavelengths were chosen as input val-
ues: the four maxima emission wavelengths of the four
PAHs and the wavelengths used in the optosensor with
a PMT transducer previously developed by[28] (see
Fig. 2).

Table 1
Optimized chemical and FIA parameters

Parameters Optima value

Solid support (80–120�m) Amberlite XAD 4
Regenerative solution Acetone
Organic solvent in the sample 25% of 1,4-dioxane
Organic solvent in the carrier solution None
pH 7.0
Buffer solution and concentration (15 mM) H2PO4

−/HPO4
2−

Flow rate (ml min−1 ) 2.0
Injection volume (�l) 500
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Fig. 2. Emission wavelength set as input values. ANT (----), FLT (·····),
BbF ( ), and BaP (—).

Table 2
Optimized parameters used for construction of ANN models

Parameters Optima value

Input nodes 7
Hidden nodes 8
Number of iterations >3000
Output nodes 4
Learning rate 0.0005
Weight maximum growth 1
Weight decay term 0.0001

3.3. Artificial neural networks optimization

There are two important issues to optimize when using
ANN’s: the architecture and the learning algorithm.

The architecture includes the topology and the kind of
nodes. For our purposes we choose an MLP with a single
hidden layer, in addition to input and output layers. So the
ANN has an input layer with seven nodes (382, 396, 398,
406, 446, 464 and 540 nm), an output layer with four nodes
(one for each PAH) and a hidden layer. Nodes in the hidden
layer will have sigmoid activation function and nodes in the
output layer will have linear activation function.

The number of nodes in the hidden layer is an impor-
tant parameter to optimize. Different architectures of ANN’s
with a number of the nodes in the hidden layer varying be-
tween two and 20 were tested. To compare the different
models, the Root of the Mean Square Error (RMSE) was
calculated:

RMSE=
√√√√ 1

4n

∑
p∈example

∑
j∈output

(cpj − opj)2

wherecpj and opj are the predicted and the real concen-
tration for compoundp in samplej, respectively,n is the
number of examples and four is the number of outputs.

Among the extense number of learning algorithms we
decided to use QuickProp, because it represents a compro-
mise chosen between the simplicity of vanilla Backproga-
tion and the computational burden of higher methods (e.g.
Levenberg–Marquardt). QuickProp usually renders good re-
sults (both in terms of convergence rate and learning levels)
with a ligther computational complexity. After a number of
preliminary experiments we checked that the optimality of
the solutions obtained through QuickProp was good enough
for our ends. These experiments let us also select the pa-
rameteres to used with QuickProp. The selected values are
shown onTable 2.

To get robust result a cross-validation procedure has been
applied. We used 10-fold cross validation over the 96 sample
data set. This means the data set was randomly partitioned
into 10 pieces according to a uniform distribution. This way,
10 different partitions of data into training and test set are
available: each of the ten parts was used as a test set and the
union of the other parts composed the training set. A given



186 J.F. Fernández-Sánchez et al. / Analytica Chimica Acta 510 (2004) 183–187

0.0

0.1

0.2

0.3

0.4

2 4 6 8 10 12 14 16 18 20

Number of neurons in hidden layer

R
M

SD

Fig. 3. Plots of RMSE as a function of the number of nodes in hidden
layer for (�) train standards, and (�) evaluate standards.

neural net was trained (and evaluated) 10 times on every
partition, each one with a different set of initial weights. The
final error was taken as the average of the 10 independent
executions.

Fig. 3shows that the lowest RMSE values were obtained
employing an eight-node hidden layer. We selected the ar-
chitecture 7-8-4 because it yielded the best results and it is
not very complex. A common principle in Machine Learn-
ing is the ‘Occam razor’[29], which implies that one should
select the simplest system which achieves a desired perfor-
mance. While networks with more complex architecture dis-
play better training performances, they tend to over-fit. This
means that they will pay ‘too much’ attention to specific
data of the training set instead of seeking the general trends
which would let them give proper answers to previously un-
seen data.

So the optimal architecture of the neural network used to
process the data obtained with the optosensor is 7-8-4 ANN.

3.4. Effects caused by foreign ions or species

We made a systematic study of the effects of foreign
ions and other PAHs upon the determination of the four

Table 3
Analytical application results in water samples

Water sample Added value (ng ml−1) Found value (ng ml−1) Recovery percentage (%)

ANT BaP FLT BbF ANT BaP FLT BbF ANT BaP FLT BbF

Granada city – 100 – – −5.4 102.3 −4.5 −0.3 – 102.3 – –
R.S.D. (%). 14.5 5.9 16.7 5.6 – 5.9 – –

Atarfe village 75 75 75 – 71.5 76.4 73.2 4.7 95.3 101.8 97.6 –
R.S.D. (%). 5.7 5.0 6.1 6.9 7.5 6.7 8.1 –

Gojar village 50 50 100 50 55.5 53.8 98.4 47.0 111.1 107.7 98.4 94.1
R.S.D. (%). 5.6 6.1 6.0 2.4 11.2 12.3 6.0 4.8

Lanjaron 75 75 – – 76.6 73.2 −4.5 −0.3 102.1 97.6 – –
R.S.D. (%). 6.2 4.7 16.7 5.6 8.3 6.2 – –

Zambra – 75 100 75 −5.6 70.4 101.4 73.0 – 93.9 101.4 97.4
R.S.D. (%). 9.7 5.4 3.8 4.1 – 7.2 3.8 5.5

Fontbella 100 25 75 75 105.5 26.0 71.8 70.3 105.5 104.1 95.7 93.8
R.S.D. (%). 5.6 2.9 8.2 5.0 5.6 11.7 11.0 6.6

PAHs at 100 ng ml−1. Bicarbonate was tested at a concen-
tration of 1500 mg l−1 and other potentially interfering ions
at 150 mg l−1 (five times higher than their usual value in
water) [30]. The presence of the usual ions to be found in
drinking water caused no interference at the concentrations
tested.

The other PAHs, which do not interact with the solid sup-
port, were tested at a maximum concentration of 600 ng ml−1

(a ratio of 1:6 compared to the other four PAHs) and caused
no interference.

3.5. Applications of the optosensor

To test the predictive ability of the present optosensor,
drinking water from the city of Granada and two surround-
ing villages (Atarfe and Gojar) and three-commercial min-
eral waters (Lanjaron, Zambra, and Fontbella) were spiked
with the four PAHs at different levels in the presence of
100 ng ml−1 of each one of the other 12 EPA–PAHs. The
waters underwent no previous treatment.

The samples were prepared by adding PAHs combina-
tion levels indicated in theTable 3, 1 ml of a solution of
25× 103 ng ml−1 of each one of the other 12 EPA–PAHs,
25% (v/v) 1,4-dioxane and 15 mM H2PO4

−/HPO4
2− buffer

solution at pH 7. 0.5 ml of sample were injected through
valve A and into a channel of 15 mM H2PO4

−/HPO4
2−

buffer solution at pH 7. Fluorescence emission spectra were
reordered at optimal instrumental conditions. The emission
spectra were processed to extract the input values and pro-
cessed by the 7-8-4 ANN trained previously. The results are
set out inTable 3.

Table 3shows that the optosensor proposed can able to
detect the presence of ANT, FLT, BaP and/or BbF and quan-
tify the quantity of these PAHs in presence of the other
12 EPA–PAHs in real water samples (tap and mineral wa-
ter) with adequate relative standard deviations (the European
Union and World Health Organization have laid down that
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in assessing the quality of water for human consumption a
relative standard deviation of 25%[31]).

4. Conclusions

An optosensor has been developed for determining and
quantifying ANT, BaP, FLT, and BbF in water samples in
presence of the other 12 EPA–PAHs and without the inter-
ference of high-level of ions habitually present in consump-
tion water samples. This optosensor use a photomultiplier
coupled with a multilayer perceptron using the QuickProp
algorithm for training.

The proposed optosensor is able to measure the four PAHs
simultaneously and spending a very short time, for this rea-
son it shows better characteristics than the electrophoretic
and/or chromatographic determinations described in the
literature. It also displays good characteristics regarding
portability, low cost and sensibility, so it presents better
conditions than expensive multichannel CCD systems. In
conclusion, the optosensor designed is a good tool for using
in a real-world environmental.
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