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Relaxing Constraints in Enhanced Entity-Relationship
Models Using Fuzzy Quantifiers
José Galindo, Angélica Urrutia, Ramón A. Carrasco, and Mario Piattini

Abstract—While various articles about fuzzy entity relationship
(ER) and enhanced entity relationship (EER) models have recently
been published, not all examine how the constraints expressed in
the model may be relaxed. In this paper, our aim is to relax the
constraints which can be expressed in a conceptual model using
the modeling tool, so that these constraints can be made more flex-
ible. We will also study new constraints that are not considered
in classic EER models. We use the fuzzy quantifiers which have
been widely studied in the context of fuzzy sets and fuzzy query
systems for databases. In addition, we shall examine the repre-
sentation of these constraints in an EER model and their prac-
tical repercussions. The following constraints are studied: the fuzzy
participation constraint, the fuzzy cardinality constraint, the fuzzy
completeness constraint to represent classes and subclasses, the
fuzzy cardinality constraint on overlapping specializations, fuzzy
disjoint and fuzzy overlapping constraints on specializations, fuzzy
attribute-defined specializations, fuzzy constraints in union types
or categories and fuzzy constraints in shared subclasses. We shall
also demonstrate how fuzzy (min, max) notation can substitute the
fuzzy cardinality constraint but not the fuzzy participation con-
straint. All these fuzzy constraints have a new meaning, they offer
greater expressiveness in conceptual design, and are included in
the so-called fuzzy EER model.

Index Terms—Conceptual database design, extended (or
enhanced) entity-relationship model (EER), fuzzy conceptual
modeling, fuzzy constraints, fuzzy databases, fuzzy quantifiers.

I. INTRODUCTION

CONCEPTUAL modeling or design is a fundamental phase
in the design of any database [14]. In this phase of con-

ceptual design, the aim is to obtain the so-called conceptual
schema, which is a concise description of the data required by
users including detailed descriptions of the types of entities in-
volved, the interrelationships existing between them and also
some important constraints in these relationships. The concep-
tual schema is represented using a high-level data model which
allows all this information to be expressed without including
implementation details, and in such a way that it is easy to un-
derstand even for nontechnical users. In fact, one of the great
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advantages of using conceptual schemas is that they facilitate
communication with this type of user.

The enhanced entity relationship (EER) model [9], [14], [24]
is an extension of the entity relationship (ER) model [6]. This
study is based on the EER model published in [9] and [14], which
is one of the most modern, versatile, and complete versions.

The management of uncertainty in database systems is a very
important problem [36] as the information is often vague. Fuzzy
databases [17], [34], [38] have also been widely studied, with
little attention being paid to the problem of conceptual modeling
[5]. This does not mean that there are no publications, however,
but that they are sparse and with no standard. Therefore, there
have also been advances in modeling uncertainty in database
systems [2], [8], [27], [35], [49] including object-oriented data-
base models [1], [3], [22], [23], [49].

At the same time, the extension of the ER model for the treat-
ment of fuzzy data (with vagueness) has been studied in various
publications [4], [5], [7], [8], [28], [32], [40], [45], [47], [53], but
none of these refer to the possibility of expressing constraints
flexibly by using the tools offered by fuzzy sets theory. An
overview of some of these fuzzy data models is published in [27].

Zvieli and Chen [53] allow fuzzy attributes in entities and
relationships and they introduced three levels of fuzziness in the
ER model.

1) At the first level, entity sets, relationships and attribute
sets may be fuzzy, i.e., they have a membership degree to
the model. For example, the fuzzy entity Radio may have
a 0.7 importance degree as an integrating part of a car.

2) The second level is related to the fuzzy occurrences
of entities and relationships. For example, an entity
Young Employees must be fuzzy, because its instances,
its employees, belong to the entity with different mem-
bership degrees.

3) The third level concerns the fuzzy values of attributes
of special entities and relationships. For example, the at-
tribute quality of a basketball player may be fuzzy.

Although the first level may be useful, we must eventually de-
cide whether such an entity, relationship or attribute will appear
in the implementation or not. The second level is also useful, but
it is important to consider different degree meanings (member-
ship degree, importance degree, fulfillment degree, etc.). A list
of authors using different meanings is included in [19]. The third
level is useful, but it is similar to writing the data type of some
attributes, because fuzzy values belong to fuzzy data types.

Chaudhry et al. [4], [5] propose a method for designing fuzzy
relational databases (FRDBs) following the extension of the ER
model of [53] taking special interest in converting crisp databases
into fuzzy ones. The way to do this is to define linguistic labels
as fuzzy sets over the universe of an attribute. Each tuple in the
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crisp entity is then transformed into fuzzy tuples in a new en-
tity (or values in the same tuple). Each fuzzy tuple (or value)
does not store the crisp value but a linguistic label and a grade of
membership giving the degree to which the corresponding crisp
entity belongs to the new entity. Finally, the crisp entity and the
new fuzzy entity are mapped to separate tables. Their ER model
includes fuzzy relationships as relationships with at least one at-
tribute, namely, the membership grade. They propose FERM, a
design methodology for mapping a fuzzy ER data model to a
crisp relational database in four steps (constructing a fuzzy ER
data model, transforming it into relational tables, normalization
and ensuring a correct interpretation of the fuzzy relational op-
erators). They also present the application of FERM in order
to build a prototype of a fuzzy database for a discrete control
system for a semiconductor manufacturing process.

In [7], [8], and [28], Chen and Kerre introduce the fuzzy
extension of several major EER concepts (superclass, sub-
class, generalization, specialization, category and shared
subclass) without including graphical representations. The
basic idea is that if is a superclass of and , then

, where and are the membership
functions to and , respectively. They discuss three kinds
of constraints with respect to fuzzy relationships but they do not
study fuzzy constraints. 1) The inheritance constraint means
that a subclass instance inherits all relationships instances in
which it has participated as a superclass entity. 2) The total
participation constraint for entity is defined when for any in-
stance in such that , where is one membership
degree in the fuzzy relationship. 3) The cardinality constraints
1:1, 1:N and N:M are also studied with fuzzy relationships.

In [40], Ruspini proposes an extension of the ER model with
fuzzy values in the attributes, and a truth value can be associ-
ated with each relationship instance. In addition, some special
relationships such as same-object, subset-of, member-of, are
also introduced. Vandenberghe [45] applied Zadeh’s extension
principle to calculate the truth value of propositions. For each
proposition, a possibility distribution is defined on the doubleton
true, false of the classical truth values. In this way, the concepts
such as entity, relationship and attribute as well as subclass, su-
perclass, category, generalization and specialization, have
been extended. The proposal of Vert et al. [47] is based on the
notation used by Oracle and uses the fuzzy sets theory to treat
data sets as a collection of fuzzy objects, applying the result to
the area of geospatial information systems (GISs).

Finally, Ma et al. [32] work with the three levels of Zvieli
and Chen [53] and they introduce a fuzzy extended entity-rela-
tionship (FEER) model to cope with imperfect as well as com-
plex objects in the real world at a conceptual level. However,
their definitions (of generalization, specialization, category and
aggregation) impose very restrictive conditions. They also pro-
vided an approach to mapping a FEER model to a fuzzy ob-
ject-oriented database schema.

Another line of work in fuzzy conceptual data modeling
(without using the ER model) is reported in [15], using a
graph-oriented schema for modeling a fuzzy database. Fuzzi-
ness is handled by defining various links between records of the
value database (actual data values) and the explanatory data-
base (semantic interpretation of fuzzy attributes, symmetries,

). Extensions carried out to allow modeling imprecision
in semantic data models are also described in [39], focusing
on exploring the potential of semantic data models to allow
fuzziness to be represented.

The ExIFO conceptual model presented in [50] allows im-
precision and uncertainty in database models, based on the IFO
conceptual model. They use fuzzy-valued attributes, incom-
plete-valued attributes and null-valued attributes. In the first case,
the true data may belong to a specific set or subset of values, for
example the domain of this attribute may be a set of colors {red,
orange, yellow, blue} or a subset {orange, yellow} where there
is a similarity relation between the colors. In the second case,
the true data value is not known, for example, the domain of this
attribute may be a set of years between 1990 and 1992. In the
third case, the true data value is available, but is not expressed
precisely, for example the domain of this attribute may be the
existence or not of a telephone number. For each of these attribute
types, there is a formal definition and a graphical representation.
In this study, the authors introduce a high-level primitives to
model fuzzy entity type whose semantics are related to each other
with logic operators OR, XOR, or AND. An example involving an
employee-vehicle schemeisused to illustrate theaggregationand
composition of fuzzy entity types. The main contribution of this
approach is the use of an extended NF relation (nonfirst normal
form) to transforma conceptualdesign into a logical design. Con-
sequently, the strategy is to analyze the attributes that compose
the conceptual model in order to establish an NF model.

In another line, a set of constructs for capturing certain types
of semantic integrity constraints is presented in [10], based on
the specific types of logic propositions which exist on a collec-
tion of relationships between a given entity set and the entity to
which it is associated through these relationships. For example,
let be an entity with two relationships ( and ). Using clas-
sical logic, we can then apply the following constraint based on
the implication function: If an instance uses relation ,
then uses relation . It can be observed that these constraints
only need classical logic and that some of their cases are also
solved by the EER model.

Not all of these articles study how to relax the constraints ex-
pressed in the ER/EER model so that they can be made more
flexible, because the constraints of the traditional model are ei-
ther too restrictive or too permissive. This article presents an
extension and an improvement of [20], [21]. Furthermore, we
propose the graphic representation of these constraints in an
ER/EER model and we study their practical repercussions.

First, we will present a very brief summary of the ER/EER
model, focusing primarily on its constraints. We will then sum-
marize the basic concepts of fuzzy logic, paying particular at-
tention to fuzzy quantifiers. Next, we will study each constraint
separately and look at how it can be treated in a fuzzy way.
Finally, we outline some conclusions and suggest some future
lines of research.

II. ER/EER MODEL: CONSTRAINTS

The ER model graphically represents data as entities, rela-
tionships and attributes. Entities are objects which exist in the
real world, and are represented in the model by rectangles. Re-
lationships are concepts which relate different entities to each
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other. Relationships are represented using diamond shapes.
Both entities and relationships can have different attributes
which identify or characterize them.

The EER model allows us to extend the description of the
entities with new types (superclasses, subclasses and cate-
gories). A subclass is a specialization of a superclass, so that
each member of a subclass must be a member of the superclass.
A superclass is a generalization of one or several subclasses.
A specialization is represented with a circle to which the
superclass and all its subclasses are connected. Subclasses are
marked with the inclusion symbol in the connecting line. A
shared subclass is a subclass with various superclasses, so that
every member (or instance) of the subclass must belong to all
the superclasses. Naturally, a subclass inherits every attribute of
all its superclasses. On the other hand, a category (union type)
is similar to a shared subclass in which every member of the
subclass must belong to only one of the superclasses, inheriting
only the attributes of that superclass.

In this type of representation using the ER/EER model, con-
straints play a fundamental role: They express how the entities
are related. Basically, we have the following types of constraints
which can be represented in a schema using the ER/EER model
[9], [14].

1) The Participation constraint: The participation of an en-
tity in a relationship can be total or partial. If each in-
stance must compulsorily relate to the other instance or
instances of the relationship, then participation is said to
be total. If this relationship is not mandatory for all in-
stances belonging to this type, then participation is said to
be partial. In ER diagrams, total participation is displayed
as a double line connecting the participating entity type
to the relationship, whereas partial participation is repre-
sented by a single line. Fig. 6 shows both constraint types.
Section V studies fuzzy participation constraints.

2) The Cardinality constraint: This expresses whether the
relationship between entities is “one to one” (1:1), “one
to many” (1:N), or “many to many” (N:M). Section VI
explains how to relax this constraint.

3) The Completeness constraint on specializations: It may
be total or partial. A total specialization constraint spec-
ifies that every instance in the superclass entity must be a
member of one (or some) of the subclasses entity in the
specialization. This is shown in EER diagrams by using
a double line to connect the superclass to the circle re-
ferred to as the specialization circle, to which all the sub-
classes are joined using a single line with the inclusion
symbol. A single line is used to display a partial special-
ization, which allows an instance not to belong to any of
the subclasses. The inverse is not possible since by defini-
tion each member of a subclass must be a member of the
superclass. Section VIII includes an explanation of this
constraint in a fuzzy model.

4) Disjoint or overlapping constraints on specializations:
A disjoint specialization occurs when subclasses are dis-
joint, i.e., every member of the superclass must belong to
a maximum of one of the subclasses. Disjoint specializa-
tions are shown in EER diagrams by using a circle with the

letter “d.” An overlapping specialization permits the sub-
classes to contain common elements, i.e., each member of
the superclass may belong to various subclasses. Overlap-
ping specializations are shown in EER diagrams by using
a circle with the letter “o.” Section X studies fuzzy dis-
joint and overlapping constraints on specializations. Ad-
ditionally, Section IX examines the cardinality constraint
on overlapping specializations, a constraint which is not
studied in classic EER models.

5) Completeness constraint in union types: A category
[13], [14] can be total or partial. A category is total if
every superclass instance must be a member of the cate-
gory. This is shown in EER diagrams by using a double
line to connect the category with a circle with the union
symbol . This is a strange case since this union type
can be represented using a total disjoint specialization (the
superclass is the category and the subclasses are all super-
classes of the union type). A category is partial if every su-
perclass instance may or may not be a member of the cat-
egory. This is shown in EER diagrams by using a single
line to connect the category to the circle with the union
symbol. The classic model does not study the participa-
tion constraint of each superclass in the category. Sec-
tion XII discusses these two constraints in a fuzzy model.

In addition, the (min,max) notation allows for the expres-
sion of the participation and cardinality of an entity in a rela-
tionship. In this notation, min and max indicate, respectively,
the minimum and maximum number of entity instances which
take part in the relationship. The (min,max) notation is better
as it allows for the use of numbers other than 1 and N. It can
clearly be seen that the (min,max) notation includes participa-
tion and cardinality in classic ER models. Section VII studies
fuzzy (min,max) notation on relationships.

If a relationship of the ER model has a degree greater than
2, the constraints are also applicable to each entity participating
in such a relationship. In this case, each entity treats the rest of
the entities which participate in the relationship as if they were
a single entity.

III. FUZZY SETS: FUZZY QUANTIFIERS

In 1965, Zadeh defined the concept of fuzzy sets [52] based
on the idea that there are sets in which it is not totally clear
whether an element belongs to the set or not, or the intensity of
membership is gradual. Sometimes an element belongs to the
set to a certain degree which is called the membership degree.
For example, the set of tall people is a fuzzy set because there
is no height limit establishing the minimum height for a person
to be considered tall.

A fuzzy set is characterized by a membership function
mapping the elements of a domain, space, or universe of dis-
course to the unit interval

(1)

A fuzzy set of may therefore be represented as a set of
ordered pairs of a generic element and its membership
degree as

(2)
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Fig. 1. Function “approximately n” (n�m, where m is a margin).

Clearly, a fuzzy set is a generalization of the concept of a set
whose membership function takes on only two values .
The value describes a degree of membership of in .
The closer is to the value 1, the greater the membership
of the object is to the fuzzy set . The values of membership
vary between 0 (does not belong at all) and 1 (total belonging).

A fuzzy number is a fuzzy set, where is a numerical do-
main (normally the real numbers ). Fig. 1 shows a possible
definition of the membership function of the fuzzy number “ap-
proximately n.” The margin value m indicates the limits of the
fuzzy set. It can be clearly seen that the nearer a number is to
the value n, the greater its membership to “approximately n.”

From this simple concept a complete mathematical and com-
puting theory has been developed which facilitates the solution
of certain problems [37]. Fuzzy logic has been applied to a mul-
titude of objectives such as: control systems, modeling, simu-
lation, pattern recognition, information or knowledge systems
(databases, knowledge management systems, case-based rea-
soning systems, expert systems, ), computer vision, artificial
intelligence, artificial life, etc.

A. Fuzzy Quantifiers

Fuzzy or linguistic quantifiers [17], [19], [29], [30], [48], [51]
allow us to express fuzzy quantities or proportions in order to
provide an approximate idea of the number of elements of a
subset fulfilling a certain condition or of the proportion of this
number in relation to the total number of possible elements.

Fuzzy quantifiers can be absolute or relative.

• Absolute quantifiers express quantities over the total
number of elements of a particular set, stating whether this
number is, for example, “much more than 10,” “close to
100,” “a great number of,” Generalizing this concept,
we can consider fuzzy numbers as absolute fuzzy quan-
tifiers, in order to use expressions like “approximately
between 5 and 10,” “approximately 8,” Note that the
expressed value may be positive or negative.

In this case, we can see that the truth of the quantifier
depends on a single quantity. For this reason, the definition
of absolute fuzzy quantifiers is, as we will see, very similar
to that of fuzzy numbers.

• Relative quantifiers express measurements over the total
number of elements which fulfil a certain condition de-
pending on the total number of possible elements (the pro-
portion of elements). Consequently, the truth of the quan-
tifier depends on two quantities. This type of quantifier is
used in expressions such as “the majority” or “most,” “the
minority,” “little of,” “about half of,”

In this case, in order to evaluate the truth of the quan-
tifier we need to find the total number of elements which
fulfil the condition and consider this value with respect
to the total number of elements which could fulfil it (in-
cluding those which fulfil it and those which do not fulfil
it).

Some quantifiers such as “many” and “few” can be used in
either sense, depending on the context [29].

In [51], absolute fuzzy quantifiers are defined as fuzzy sets in
the interval (positive real numbers) and relative quantifiers
as fuzzy sets in the interval [0, 1]. We have extended the def-
inition of absolute fuzzy quantifiers to . That is to say that a
quantifier is represented as a function whose domain de-
pends on whether it is absolute or relative

(3)

where the domain of is [0, 1] because the division
, where is the number of elements fulfilling a certain con-

dition and is the total number of existing elements.
In order to know the fulfillment degree of the quantifier over

the elements which fulfil a certain condition, we apply the func-
tion of the quantifier to the value of quantification

if is absolute
if is relative

(4)

Thus, the fulfillment degree is . If the function of the
quantifier (absolute or relative) , has the value 1, this in-
dicates that this quantifier is completely satisfied. The value 0
indicates, on the other hand, that the quantifier is not fulfilled at
all. Any intermediate value indicates an intermediate fulfillment
degree for the quantifier.

Example 1: “Approximately 8” is an absolute fuzzy quan-
tifier, defined as shown in Fig. 1, with n , and the margin
m , for example. “Almost all” is a relative fuzzy quantifier,
defined as shown in Fig. 2.

IV. THRESHOLDS AND FUZZY QUANTIFIERS FOR

RELAXING CONSTRAINTS

Applied in the context of databases, the usefulness of fuzzy
quantifiers is shown by the flexibility they offer when carrying
out queries which involve these quantifiers, as for example in
the division operation of relational algebra in fuzzy or clas-
sical databases [19]. Applied in the context of conceptual data
models, fuzzy quantifiers allow expressions about the number
of instances which satisfy a given condition, or the proportion
with respect to the total. We will study this in subsequent sec-
tions. Of course, the quantifier must be previously defined in
the model’s data dictionary (metadata).

In this context, we need a threshold indicating
the minimum fulfillment degree that must be satisfied. This
threshold will be written in square brackets: . For example,
we may use “almost all ” indicating that this fuzzy quanti-
fier must be satisfied at a minimum degree of 0.2. Consequently,
the underlining constraint requires that

(5)
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Fig. 2. Relative fuzzy quantifier “almost all”: Q(�) = 0 $ � <
0:4; Q(�) = 1$ � > 0:9 and Q(�) = 2(�� 0:4)$ � 2 [0:4;0:9].

Every time the database is modified, the DBMS computes
and checks whether (5) is satisfied. The meaning of will be
defined in subsequent sections because it depends on where the
fuzzy quantifier is used. In order to simplify the expression, we
can set a default value for at 0.5, for example. We consider 0.5
to be a good default value since it is in the middle of the interval
[0, 1], but it may be changed.

If is an increasing function, then we can simplify (5) be-
cause

(6)

Similarly, if is a decreasing function, then

(7)

The last two equations may be useful because and are
constants, whereas is a varying value. Value may change
with every DML sentence INSERT, DELETE, or UPDATE. In
this way, we can store , avoiding the use of with those
DML sentences.

In addition, another optional value can be established,
which is greater than the threshold , in the following way:

such that . The value is more restrictive than
and it establishes that, when the constraint is unfulfilled with
this higher value, the DBMS will inform the user, but it will
permit the modification of the database which is under way.
Thus, if the quantifier is unfulfilled with a value between and
, then the DBMS must warn the user (or only the database

administrator). Both values would be close, in order to avoid
too many warnings from the DBMS. Therefore, the warning
message is generated when (5) is satisfied and the following
Equation is not satisfied:

(8)

In other words, the warning area is defined with

(9)

Finally, if (5) is false, then it defines the not allowed area and
an error message must be generated.

Example 2: Fig. 3 depicts a fuzzy quantifier with the thresh-
olds and . We want to evaluate to what extent value sat-
isfies the quantifier. This evaluation is carried out by . It
should be noted that these thresholds divide the domain of
into three areas: the allowed area, the not allowed area and the
warning area. The warning area is included in the allowed area.
Note that the not allowed area is defined when (5) is false.

Fig. 3. Thresholds  and � in a fuzzy quantifier “approximately between a and
b,” and its generated areas.

Therefore, a fuzzy quantifier can be written in three ways.

1) Quantifier without a threshold : Default threshold is
. For example, approx 2.

2) Quantifier with a threshold : For example,
approx 8[0.25].

3) Quantifier with two thresholds and , with : For
example, approx 3[0.25,0.75].

V. FUZZY PARTICIPATION CONSTRAINT ON RELATIONSHIPS

In classic ER models, the participation of an entity in a rela-
tionship can be total or partial (Section II). Furthermore, in the
fuzzy model that we propose here, the participation of an entity
in a relationship can be fuzzy using a relative fuzzy quantifier
(principally).

Definition 1: Let and be two entities and a relation-
ship between them. A fuzzy participation constraint of in

is represented using a zigzag line (or broken line) joining
and , indicating on this line which quantifier has been used,
followed optionally by one or two thresholds, or , with
the meaning and default value having the one explained pre-
viously. We propose another representation using a single line
crossed with an arc labeled with .

This constraint asserts (5), with defined by (4), where is
now the number of instances related to , and is the total
number of instances in .

If is used with two thresholds, then it defines a warning area
(see Section IV). A warning message must, therefore, be gener-
ated when the condition is satisfied with and it is not satisfied
with . It should be noted that the warning area is included in the
allowed area. Therefore, the warning area is defined when (5) is
satisfied and (8) is not satisfied. In other words, the warning area
is defined with (9). Finally, if (5) is false then it defines the not
allowed area.

This fuzzy constraint implies that every DML sentence may
generate an error or a warning when the fuzzy quantifier is not
satisfied. This message forces the user to maintain a “good”
database or warns the user when the database is not “good
enough.”

Example 3: Suppose we have an Employee entity and a
Project entity linked by the relationship Works for. The partic-
ipation of Employee in this relationship can be represented by
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Fig. 4. Example 3: Fuzzy participation constraint in an ER model, using the fuzzy quantifier almost all.

a relative fuzzy quantifier like “almost all” (Fig. 2), indicating
that “almost all employees work for some project.” Fig. 4
represents these two entities, the relationship between them and
the fuzzy constraint.

The threshold in “almost all ” indicates the min-
imum degree with which this quantifier must be fulfilled in the
database. Thus, if we divide the number of workers who work
for a project (value ) by the total number of employees in the
database (value ), the result should be, in accordance with
(6), a value greater than or equal to , because
this is the value (on the axis) for which the quantifier “al-
most all” attains a degree . From value 0.5
of this quantifier obtains a degree greater than or equal to 0.2,
which was the constraint imposed by the threshold in the ini-
tial quantifier. The constraint then establishes that must
be satisfied.

In this example, the value 0.5 obtained by the expression
indicates the constraint that, in our database, a min-

imum of 50% of the employees must work for some project.

In general, if is a relative fuzzy quantifier with an in-
creasing function, then (6) states that the constraint must
be satisfied in the database in a minimum percentage of

. In this case, it is also possible to express this
percentage instead with the quantifier and the threshold .
Although this may appear easier, it must be noted that the intu-
itive and natural expressiveness of the quantifier is lost, that this
is not valid with absolute fuzzy quantifiers and the method must
be adapted for decreasing fuzzy quantifiers. Fuzzy quantifiers
are therefore easy and general as well as very expressive and
intuitive.

On the practical level, this will be implemented as a trigger
that, in each operation of the type UPDATE, DELETE, or IN-
SERT, checks the value and if (5) is false, then the DBMS
must produce an error message indicating the nonfulfillment of
this fuzzy constraint and the operation is aborted. On the other
hand, if (9) is true, then a warning message must be generated
but the operation is allowed. Finally, in any other case the oper-
ation is normally allowed.

It should be noted that fuzzy quantifiers expressed in this type
of constraint can also be absolute, although, due to the signifi-
cance of a participation constraint, this will generally be relative
since the number of entity instances would vary too much. In the
case of an absolute fuzzy quantifier, for example “many” or “ap-
proximately between 100 and 200,” this quantifier will restrict
the quantity of entity instances related to the other entity. In our
example, the fuzzy quantifier would restrict the number of em-
ployees who are assigned to work on any project.

In some models it might even be useful to establish several
fuzzy quantifiers as a constraint on fuzzy participation. In this

case, all fuzzy quantifiers in the same constraint must be co-
herent, as two quantifiers can be contradictory.

A fuzzy participation constraint is not as restrictive as a total
participation constraint, nor as permissive as the partial partici-
pation constraint, so that the fuzzy participation constraints ex-
tend the ER model, allowing a new expressiveness which would
have been impossible in the traditional model.

VI. FUZZY CARDINALITY CONSTRAINT ON RELATIONSHIPS

Fuzzy participation constraints establish a condition globally
on the entity instances. On the other hand, fuzzy cardinality con-
straints establish fuzzy conditions on each instance in a partic-
ular and individual way. In classical modeling, the cardinality
constraint states whether the relationship between entities is
“one to one” , “one to many” , or “many to many”

. The model we propose allows us to express cardinality
as a fuzzy value using an absolute fuzzy quantifier (principally).

Definition 2: Let and be two entities and be a rela-
tionship between them. We suppose that with
are the instances of , and with are the in-
stances of . A fuzzy cardinality constraint is defined with
two quantifiers, separated by the notation “:” , just below
the diamond which represents the relationship between both en-
tities. The quantifier on the left of the separator “:” will corre-
spond to the entity on the left (or above) and the quantifier on
the right will correspond to the other entity ( and respec-
tively). This constraint establishes two conditions.

1) Condition of :

(10)

where is the threshold for is the total number of
instances in and with is defined
by

if is absolute
if is relative

(11)

with being the number of instances related with the
instance , and is the total number of instances
in .

2) Condition of

(12)

where is the threshold for and with
is defined by

if is absolute
if is relative (13)

with being the number of instances related to the
instance .
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Fig. 5. Example 4: Fuzzy cardinality constraint in an ER model.

The warning area is similarly defined using and ,
respectively.

This fuzzy constraint has an effect on each instance and must
be satisfied by each one. Generalizing, quantifier must be
satisfied for all quantification values with ,
i.e., must be in the allowed area of with its threshold

. On the other hand, quantifier must be satisfied for all
quantification values with , i.e., must
be in the allowed area of with its threshold .

Example 4: Following the previous example, if we suppose
that the entity Employee is on the left of the relationship
Works for and the entity Project is on the right, a fuzzy cardi-
nality constraint is shown in Fig. 5.

These constraints express the condition that each employee
will work for a maximum of approximately three projects and
each project will have approximately eight employees, requiring
both constraints to be satisfied with the minimum fulfillment
degrees indicated in square brackets.

It should be noted that the fuzzy quantifier of this type of
constraint can also be relative, although due to the meaning of
a cardinality constraint, this will generally be absolute. In the
case of a relative fuzzy quantifier, this quantifier will indicate
the number of instances of the other entity to which each entity
is related, with respect to the total number of instances of the
other entity. Thus, if in Example 4 we use the quantifier “almost
all” on the left, this means that “each employee must work for
almost all the existing projects.”

In some models it might even be useful to establish various
fuzzy quantifiers on one or in both sides of a fuzzy cardinality
constraint. Of course, in this case all the fuzzy quantifiers in the
same constraint must be coherent.

If a relationship joins three or more entities (a relationship
with degree greater than two) we can put the fuzzy cardinality
quantifier associated with each entity at the side of the arc which
joins this entity with the relationship. If there is already a quanti-
fier for the fuzzy participation constraint, then in order to avoid
ambiguity we must put the text “Card:” in front of the cardi-
nality quantifier.

VII. FUZZY (min,max) NOTATION ON RELATIONSHIPS

Nonfuzzy participation and cardinality of an entity in a rela-
tionship can be expressed using this notation. This notation is
more expressive both in classical and fuzzy modeling. In fuzzy
modeling both min and max can have values which are fuzzy
quantifiers in a similar way to the one explained previously.

Definition 3: Let and be two entities and be a re-
lationship between them. We denote the instances of as
with , and the instances of as with

. A fuzzy (min,max) notation of on is repre-
sented using two fuzzy quantifiers in parenthesis
beside the line joining and . This constraint establishes that

(14)

where is the total number of instances in and

if is absolute
if is relative

(15)

if is absolute
if is relative

(16)

with being the number of instances related with the in-
stance , and is the total number of instances in .
Furthermore

(17)

(18)

where and are the minimum thresholds for
and , respectively. Thus, the allowed area is the interval

. The warning area is defined when the thresholds
and are used for and , respectively. The

warning message must be shown when (14) is satisfied and the
following equation is not satisfied:

(19)

where

(20)

(21)

Hence, the warning area is the union of two intervals:
. We know that and

, because and , respec-
tively, and the quantifiers are defined with convex functions.
Note that (20) and (21) are similar to (17) and (18) replacing

and by and , respectively.
In other words, (19) may be changed to obtain an Equation

that must be satisfied. Applying De Morgan’s law, the warning
area is defined when the following equation is satisfied:

(22)

It should be noted that if a constraint exists on using
(min,max) notation, then this constraint has an effect on each
instance and must be satisfied by each one. These two quanti-
fiers indicate, respectively, the minimum and maximum number
of instances related with each instance.
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Fig. 6. Example 5: Fuzzy (min,max) notation in an ER model.

Some observations follow.

• If , then we cannot use . In
this case, we must use 0 instead of : .

• If , where is the maximum value
in the underlying domain of (if is relative,

), then we cannot use . In this case,
we must use the letter “N” instead of , expressing a
cardinality constraint “to many”: N .

• If and are of the same type (absolute or rela-
tive), then .

• In conclusion, we must use fuzzy quantifiers which ex-
press a good constraint. An example of a bad constraint
is: [approx 3 or less, almost all].

Example 5: In the context of the previous examples, we can
use the following constraints using the fuzzy (min, max) nota-
tion. These constraints are represented in Fig. 6. On the employee
side, the (min, max) constraint indicates that an employee may
work for no projects (0 as minimum) and as a maximum can work
for approximately three projects. The two values after the quanti-
fier indicate that if this is fulfilled to a degree greater than or equal
to 0.75 the operation will normally be permitted; if it is fulfilled
to a degree between 0.25 and 0.75, then the user will be informed
but the operation will be allowed; and if the constraint is fulfilled
to a degree of less than 0.25, this means that the constraint is
not being fulfilled because it reaches an intolerable degree and
therefore the operation under way must not be permitted.

On the Project side in the same figure, we can find a con-
straint indicating that each project must have a minimum of ap-
proximately 2 employees working for it (with a degree of 0.5 as
a minimum). If the quantifier approx 2 is defined as a triangle
as in Fig. 1 with and margin , then the value 0.5 is
achieved with the minimum value 1, so that this quantifier with
the minimum degree 0.5 guarantees the total participation of the
entity Project in the relationship Works for. This possibility is
also indicated by the double line which connects the entity to
the relationship. It should be noted that we are using two quan-
tifiers for the min value but both are coherent.

At the same time, the number of employees in each project is
restricted to a maximum of approximately 8 (with a minimum
degree of 0.25).

In the classical ER model, the (min,max) notation substitutes
the other two notations for the participation and cardinality con-
straints, since if we are dealing with a partial partici-
pation and if we are dealing with a total participation.
On the other hand, if the relationship will be 1:1 or
1:N (on the side of 1) and if (or ) we are
dealing with a relationship N:M or 1:N (on the side of N).

However, in the ER model with fuzzy constraints, the fuzzy
(min, max) notation adds expressiveness to the conceptual
model, but it can only substitute fuzzy cardinality constraints,
as we will see later.

A. Fuzzy (min, max) Notation and Fuzzy Cardinality
Constraints

With regard to cardinality constraints (Section VI), it is clear
that the semantic of both notions is different. It should be noted
that in Example 4, the quantifier “approx 8” indicates that a
Project must have approximately eight employees, whilst in Ex-
ample 5, the same quantifier indicates that a Project must have
a maximum of approximately eight employees.

In general, a fuzzy cardinality constraint with any type of
quantifier can be represented using the fuzzy (min,max) nota-
tion so that both values, min and max, have the value of this
fuzzy quantifier. The fuzzy cardinality constraint expressed in
Example 4 can be expressed in fuzzy (min,max) notation so that
the minimum value is equal to the maximum and both have the
value of “approx 8.”

Expressiveness is also equivalent on the other side with one
exception depending on the types of both quantifiers.

• If the (min,max) notation uses two quantifiers of the
same type (absolute or relative), then this constraint can
be expressed by means of a fuzzy cardinality constraint
using a quantifier which embraces both. For example,
the constraint in Example 5 can be expressed with the
fuzzy cardinality notation using a wider quantifier, instead
of the quantifiers “approx 2” and “approx 8,” such as
“approx between 2 and 8” (similar to the trapezoidal
membership function in Fig. 3 with and ).
It can be observed that the resulting wider quantifier may
be automatically generated starting from the other two
quantifiers (min and max).

• If the (min,max) notation uses two quantifiers of dif-
ferent types (one absolute and one relative), then this re-
striction cannot be expressed with a single fuzzy cardi-
nality quantifier. This is because different types of quanti-
fiers have different domains and they cannot be joined in
another quantifier which embraces both.

It is important to note that this second kind of (min,max)
notation should be uncommon because perhaps it is not intuitive
to check that the two fuzzy quantifiers are not contradictory.
They can also be contradictory after a DML sentence. For
example, if we use approx half instead of approx 2 in Example
5 (Fig. 6), both quantifiers in (min,max) notation (approx half
and approx 8) are not contradictory when the number of
employees is six, for example, because the constraint is
(approx 3,approx 8). However, if the number of employees is
200, for example, both quantifiers are contradictory, because
approx 100 is clearly greater than approx 8.

As in fuzzy cardinality constraints, because of their mean-
ings, the (min,max) notation will preferably use two absolute
quantifiers, although two relative quantifiers are also accepted
here.
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Fig. 7. Example 6: Fuzzy participation constraint with another constraint using fuzzy (min,max) notation in an ER model.

B. Fuzzy (min, max) Notation and Fuzzy Participation
Constraints

On the other hand, the (min,max) notation and a fuzzy partic-
ipation constraint (Section V) are not exclusive. While a fuzzy
participation constraint establishes a condition on all entity in-
stances globally, the (min,max) notation restricts the relation-
ship of each instance (individually) with the other participating
entity.

Example 6: If we merge Examples 3 and 5 we obtain the
model in Fig. 7. It can be seen that both constraints are dif-
ferent and coherent. It is also important to note the different
meanings even though we use the following (min,max) nota-
tion: (almost all,almost all).

For these reasons, the most useful notations are the fuzzy
(min,max) notation (mainly with absolute fuzzy quantifiers) and
the notation for fuzzy participation constraints (mainly with rel-
ative fuzzy quantifiers). The notation for fuzzy cardinality re-
striction can be eliminated because this can be expressed using
the fuzzy (min,max) notation.

In a new expression for fuzzy participation constraints, we
can use fuzzy (min,max) notation instead of the quantifier
in Definition 1. These minimum and maximum values restrict
the quantity of entity instances related to the other entity. We
must distinguish this notation for fuzzy participation and the
usual fuzzy (min,max) notation. This new notation refers to
the number of instances (in the constrained entity) related to
the other entity. Usual fuzzy (min,max) notation refers to the
number of instances in the other entity related to each instance
in the constrained entity. This extension is not very useful but
the formal definition for it is easy using Definitions 1 and 3.

VIII. FUZZY COMPLETENESS CONSTRAINT

ON SPECIALIZATIONS

In EER models, the relationship between a class and all its
subclasses can be total or partial (Section II). In our fuzzy
model, this constraint can be fuzzy mainly utilizing a relative
fuzzy quantifier, although, as indicated in the case of participa-
tion constraints, they can also be absolute fuzzy quantifiers.

Definition 4: Let be a superclass and the
set of its subclasses. A fuzzy completeness constraint is rep-
resented by a zigzag line, labeled with a quantifier and its re-
quired thresholds. This constraint asserts the (5), with defined
by (4), where is the number of instances which belong to
“any” subclass or subclasses, and is the total number of in-
stances in .

The warning area is defined when (9) is satisfied.
Example 7: Let us consider the model in Fig. 8 depicting

an entity Employee which is a superclass with two subclasses
defined by the attribute Contract Type: Permanent and Tempo-
rary. The zig-zag line with the relative fuzzy quantifier “almost

Fig. 8. Example 7: Fuzzy completeness constraint on an attribute-defined
specialization with the defining attribute Contract Type.

Fig. 9. Examples 8 and 9: Fuzzy completeness constraint and fuzzy cardinality
constraint on an overlapping specialization.

all” (Fig. 2) indicates that “Almost all employees must have a
Permanent or Temporary contract, but other minority contract
types may exist (work experience, grants ).” These other con-
tract types are not included in the model for various reasons (un-
known types, types without own attributes ).

In the previous example, the specialization is disjoint (with a
“d” in the circle) since there cannot be an employee with var-
ious types of contracts. However, fuzzy constraints can also be
applied to overlapping specializations (with an “o” in the circle)
as shown in the following example.

Example 8: Let us consider an entity Employee which is a
superclass with various subclasses defining the abilities of the
employees: Management Programmer, Systems Programmer,
Internet Programmer, Analyst, Graphic Designer, Accountant

just like Fig. 9. A relative fuzzy quantifier like “almost all”
(Fig. 2) indicates that “Almost all employees must have one or
some of the abilities expressed in the subclasses.”

In a new expression for fuzzy completeness constraints, we
can use fuzzy (min,max) notation instead of the quantifier in
Definition 4. These minimum and maximum values restrict the
quantity of superclass instances which belong to “any” subclass.
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This extension is not very useful but the formal definition for it
is easy using Definitions 3 and 4.

IX. FUZZY CARDINALITY CONSTRAINT ON

OVERLAPPING SPECIALIZATIONS

In an overlapping specialization, we can also establish the
minimum and maximum number of subclasses to which each
member of the superclass can belong in a flexible manner. This
can easily be expressed using the fuzzy (min,max) notation.

Definition 5: Let be a superclass and the
set of subclasses of an overlapping specialization. In addition,
we suppose that with are the instances
of . A fuzzy cardinality constraint on this overlapping
specialization is represented with a fuzzy (min,max) notation,

, next to the circle containing the letter “o”
(overlapping). This constraint establishes that

(23)

where

if is absolute
if is relative

(24)

if is absolute
if is relative

(25)

with being the number of subclasses to which instance
belongs. Furthermore, and are defined in the same
way as in (17) and (18).

The warning area is defined when the thresholds and
are used for and , respectively. The warning

message must be shown when (23) is satisfied and the following
equation is not satisfied:

(26)

where and are defined in (20) and (21). We can also
apply De Morgan’s law here.

This fuzzy constraint has an effect on each superclass instance
and must be satisfied by each one. In general, both min and max
should be absolute quantifiers, although relative quantifiers will
also be accepted (with regards to the total number of subclasses,
value ).

Example 9: Continuing with Example 8, we can establish a
fuzzy cardinality constraint on the overlapping specialization,
such as: (approx 2, approx half).

This establishes the constraint whereby each employee must
appear in a minimum of “approximately 2” skills and in a max-
imum of “approximately half” of the existing skills (or sub-
classes).

This schema is also depicted in Fig. 9. It should be noted
that the fuzzy quantifier almost all is a fuzzy completeness con-
straint (zig-zag line) and the (min,max) notation is used for a
fuzzy cardinality constraint.

Finally, it is important to note that the quantifiers can be of
any type (absolute or relative). In this case each quantifier can
also be followed, optionally of course, by one or two fulfillment
degrees in square brackets , with the same meaning and
default value as explained previously (Section IV).

X. FUZZY DISJOINT AND FUZZY OVERLAPPING CONSTRAINTS

ON SPECIALIZATIONS

In specializations, the disjoint constraint specifies that the
subclasses of the specialization must be disjoint. This means that
an entity can be a member of at most one of the subclasses (zero
or one). If the subclasses are not obliged to be disjoint, this is
an overlapping specialization. Thus, it can be interesting to in-
clude to what extent the superclass instance belongs to each of
the subclasses using linguistic labels (“a lot,” “a little,” ) or,
more simply, the membership degrees in the interval [0, 1].

It should be noted that it is to consider each subclass as a fuzzy
subset of the superclass. As with all fuzzy sets, its elements are
not clearly defined, since each element can belong to the fuzzy
set with a certain degree. Therefore, we can define the concept
of fuzzy entity in the following way.

Definition 6: Let be an entity with instances,
. Entity is a fuzzy entity if the membership function

of all its instances to is fuzzy. In other words, a fuzzy entity
must define a membership function , where is
the membership degree of to with .

Fuzzy entities are represented using rectangles with dashed
lines.

This definition allows for two new definitions according to
the specialization type.

Definition 7: Let be a superclass with subclasses,
, in a disjoint specialization. This specialization

is a fuzzy disjoint specialization when at least one of the
subclasses is a fuzzy entity, and for any instance , there
is zero or one subclass with such that

(27)

where is the membership degree of to . Thus, as with
any disjoint specialization: .

This constraint will be represented by the letter “f” (fuzzy)
before the letter “d” in the circle, i.e., “fd.”

Of course, if is a nonfuzzy subclass, then if
belongs to and if does not belong to .

Definition 8: Let be a superclass with subclasses,
, in an overlapping specialization. This special-

ization is a fuzzy overlapping specialization when at least one
of the subclasses is a fuzzy entity, and for any instance ,
there are zero or more subclasses with
such that , where is the membership degree of

to .
This constraint will be represented by the letter “f” (fuzzy)

before the letter “o” in the circle, i.e., “fo.”
Note that these definitions do not force all the subclasses to

be fuzzy entities. Definition 8 is more flexible than Definition
7, since an instance may belong to some subclasses with
different membership degrees.

These definitions have two points of view.

1) From the point of view of subclasses: Subclasses are
fuzzy sets and their underlying domain is all the super-
class instances, i.e., each superclass instance has a mem-
bership degree to each subclass (including the value zero).
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TABLE I
REPRESENTING FUZZY SETS ON A SPECIALIZATION WITH n SUBCLASSES AND

m SUPERCLASS INSTANCES

Let be a subclass of . Then the fuzzy set of is rep-
resented by (using the format of (2)):

(28)

where , with , are all the instances of
superclass , and is the membership degree of
to subclass .

2) From the point of view of superclass instances: Each
superclass instance may belong to some subclasses. This
membership is measured with a fuzzy set. The underlying
domain of this fuzzy set is the set of all subclass names.
Let , with , be the subclasses of .
Then the fuzzy set of instance is:

(29)

where , with , is the membership
degree of to subclass . It is important to note that
in disjoint specializations the number of subclasses for a
superclass instance is one.

Both points of view work with fuzzy sets with a different
discrete underlying domain. Thus, it may be represented with
the format of Table I, where the first point of view is represented
by the fuzzy sets given by the columns and the second point of
view is given by the rows.

Example 10: Fig. 10 indicates that our conceptual schema is
also concerned with storing the extent to which each employee
belongs to each of the subclasses. Thus, the set of system pro-
grammers is a fuzzy set (an employee can belong to this set with
a certain membership degree), whereas we suppose that the set
of accountants is not a fuzzy set (an employee can or cannot be-
long to this set). This is the first point of view.

The second point of view starts with a particular employee:
an employee who is an expert at programming manage-
ment applications, although he/she may also be skilled in
other types of applications and less skilled as an analyst,
could be represented in the database by the following fuzzy
set: 1/Management Programmer, 0.8/Systems Programmer,
0.3/Analyst . It should be noted that the underlying domain is
the set of all the subclass names.

Fig. 10. Example 10: Fuzzy overlapping specialization.

This database model will allow us to make selections of the
type: “Find the name of the best management applications pro-
grammer amongst those who are not assigned to many projects
and who is at least a regular analyst.”

This constraint does not prevent the use of other fuzzy
constraints (completeness or cardinality). These cases must be
studied in order to define the method with which the DBMS
ensures the fulfillment of these constraints:

1) If a fuzzy completeness constraint exists, then the
DBMS must compute whether each superclass instance
belongs to some subclass, for example, in order to decide
if “almost all” superclass instances belong to some sub-
class. The problem is that membership is now fuzzy. The
membership degree of an instance to the subclasses may
be computed in various ways: 1) by using the greatest
membership degree of this instance to any subclass, i.e.,
the height (function Hgt) [37] of the second point of
view fuzzy set; or 2) by using the fuzzy set cardinality
(function Card) [37] of the second point of view fuzzy set
(adding all the membership degrees) or by using general-
ized measures, such as the fuzzy set energy [31]. We can
certainly set a minimum threshold in order to decide
whether a superclass instance belongs to some subclass.

Then, in order to compute the value of in Definition
4 we must count how many instances of have a fuzzy
membership degree to “any” subclass or subclasses. The
fuzzy membership degree is solved with the two previous
options. The problem is then to count these elements. We
propose the following four options, where is the total
number of instances in , and is computed by:

(30)

The definition of gives the following four options.
a) Option 1:

if
in any other case

(31)

where is the fuzzy set for instance from the
point of view of superclass instances. Value is the limit
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or minimum threshold to reject instances with a very small
membership degree.

b) Option 2:

Card if Card
in any other case

(32)

c) Option 3:

if
in any other case

(33)

d) Option 4:

if Card
in any other case

(34)

These four options are sufficiently efficient and allow
the system to be very flexible. With a fixed , we can
sort the four options according to the results of the count
operation:

Option Option Option Option (35)

Options 2 and 3 cannot be sorted, because even though
, Option 3 adds 1 (if the height is

greater than or equal to ), whereas Option 2 adds a value
less than or equal to 1 (if the cardinality is greater than or
equal to ).

2) If a fuzzy cardinality constraint exists (only on overlap-
ping specializations), then the DBMS must compute the
number of subclasses to which each superclass instance
belongs. For example, in order to decide if the number of
subclasses of a superclass instance is between “approxi-
mately 2” and “approximately half” of the existing sub-
classes (using fuzzy (min,max) notation). However, this
number is not simple as membership is now fuzzy. This
problem may be solved in two ways: 1) by using the fuzzy
set cardinality [37] of the second point of view fuzzy set or
by using generalized measures, such as the fuzzy set en-
ergy [31]; or 2) by counting the number of subclasses with
a membership degree greater than a minimum value (usu-
ally zero). Once the DBMS has computed this number,
the system must check if this number satisfies the fuzzy
cardinality constraint.

The cardinality of a fuzzy set can be a complex problem and
it has been studied by various authors, especially Dubois and
Prade [12] and Delgado et al. [11]. Nevertheless, in this applica-
tion efficiency is very important (especially in large databases),
but other methods can also be used.

This definition complements the definition of fuzzy types
given in [33].

XI. FUZZY ATTRIBUTE-DEFINED SPECIALIZATIONS

There are certain kinds of fuzzy attributes, summarized in [19].
Some models [34] and applications [16], [17] use the following
ones. The so-called fuzzy attributes Type 1 are totally crisp (tra-

ditional), but they have some linguistic trapezoidal labels defined
on them, which allow us to make the query conditions for these
attributes more flexible (cold, warm, ). With these attributes,
we can use fuzzy queries in classic databases. Fuzzy attributes
Type 2 admit crisp or fuzzy data over an ordered underlying do-
main. Fuzzy attributes Type 3 do not have an ordered underlying
domain, for instance, the hair color. On these attributes some la-
bels are defined (fair, brown, red-haired, ) and on these labels
a similarity relation has yet to be defined. Thus, each two labels
are equal (or similar) with a similarity degree in [0, 1]. Moreover,
fuzzy attributes Type 3 admit fuzzy sets (or possibility distribu-
tions) on theirs underlying domains. An example of these fuzzy
sets is 1/brown, 0.5/red haired, 0.2/fair .

In some contexts, a fuzzy attribute Type 3 does not have a
similarity relation defined in its domain. We call these attributes
fuzzy attributes Type 4.

Definition 9: A fuzzy attribute-defined specialization is
exactly the same as an attribute defined specialization in EER
models [14] where this attribute is a fuzzy attribute. It is repre-
sented with an angled line joining the superclass with the circle.
This line will be labeled with the name of fuzzy attribute Type ,
preceded by the text “T :.”

This constraint establishes that every subclass instance has a
valid value (in a certain fuzzy range) for that attribute and ac-
cording to the subclass. In general, each subclass corresponds
with one of the linguistic labels defined on this attribute. Thus,
each subclass would be a fuzzy entity, but this is not mandatory.
For example, in Fig. 10 the attribute Abilities would be consid-
ered as a fuzzy attribute Type 3. It should be noted that this makes
it necessary to define a similarity relation on all the subclasses.

This definition is independent of all constraints like fuzzy or
crisp disjoint or overlapping specializations. The classification
of each instance of superclass is then an automatic process,
according to the characteristics of the specialization.

• Fuzzy disjoint (fd): Instance is assigned to one subclass
. Subclass is the subclass with a greater value of

(membership degree of to ). This membership degree
is only stored if is a fuzzy entity.

• Fuzzy overlapping (fo): Instance is assigned to all sub-
classes , such that . These membership de-
grees are stored only in the subclasses which are fuzzy
entities.

• Nonfuzzy disjoint (d): Instance is assigned to one sub-
class . Subclass is the subclass with a greater value of

, but this membership degree is not stored and it is
considered as 1.

• Nonfuzzy overlapping (o): Instance is assigned to all
subclasses , such that , but these membership
degrees are not stored and they are considered as 1.

These four cases may be used with the four fuzzy attribute
types. Then, 16 different possibilities are produced.

The following example shows two fuzzy attribute-defined
specializations (disjoint and overlapping). In one specialization,
each pair of subclasses has a fuzzy similarity degree between
them (Type 3). This property is useful for comparing them and
for searching the more important instances in some queries. In
the other specialization there is no similarity relation (Type 4).
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Fig. 11. Example 11: Fuzzy attribute-defined disjoint specialization with total
participation constraint.

Example 11: The conceptual model represented in Fig. 11
states that in a real estate agency, every landed property belongs
to one subclass, which has its own attributes. Thus, this is a total
disjoint specialization (a double line and a “d” inside the circle).
The attribute Kind is a fuzzy attribute Type 3, because if one
person is looking for a chalet, for example, then this customer is
possibly interested in semi-detached houses because these two
types are similar. Thus, this is taken into account in order to
show all the relevant properties to our customer. In this sense,
fuzzy queries are studied in [16]–[18]. It should be noted that
the subclasses are not fuzzy, because every landed property only
belongs to one subclass.

Every landed property has an owner, who is a customer. An-
other kind of customer is a claimant who is looking for a landed
property. The overlapping specialization results in the fact that
one customer may be an owner and a claimant at the same
time. The fuzzy attribute Type 4, Kind, allows to store pos-
sibility distributions over the subclasses, in order to express
any fuzzy concept. In this example we are interested in mea-
suring the urgency of the customer. Thus, a customer with the
value Owner Claimant is a customer who is urgently
looking for a landed property and who is offering some property
without urgency. It can be seen that the subclasses are not fuzzy,
because a customer is or is not an owner and/or a claimant.

Example 12: Fig. 13 includes another three examples of
fuzzy attribute-defined specializations using two fuzzy over-
lapping specializations and one disjoint specialization. The
first one is a specialization with a total participation constraint
(double line) and it establishes that all employees must belong
to one or more categories. In addition, Category is a fuzzy
attribute Type 3.

The second one is a specialization with a fuzzy participa-
tion constraint with the fuzzy quantifier almost all in the labeled
arc: Almost all researchers must belong to one or more research
lines. In addition, Research Line is a fuzzy attribute Type 3. We
use a labeled arc instead of a zig-zag line in the fuzzy participa-
tion constraint because in this case it is clearer.

The third one is a disjoint specialization with a total par-
ticipation constraint and it establishes that all temporary em-
ployees are beginners or seniors, according to their seniority (or
antiquity). Subclasses are not fuzzy because we do not want
to store the membership degree. In addition, a temporary em-
ployee cannot belong to both subclasses. The antiquity is a crisp

Fig. 12. Example 13: Fuzzy constraints on a Union Type or Category.

and known value but we can make flexible queries using this at-
tribute, i.e., it is a fuzzy attribute Type 1.

XII. FUZZY CONSTRAINTS IN UNION TYPES OR CATEGORIES:
PARTICIPATION AND COMPLETENESS

In the EER model, we can also find the union types or cate-
gories [13], [14]. This represents the case when some different
superclasses may be members of a special subclass (called cate-
gory) or not. By definition, each member of the subclass or cate-
gory must be a member of at least one of the superclasses. Union
types are represented with the union symbol inside a circle. Su-
perclasses are joined to that circle by a line. The subclass or
category is joined to that circle using a single line with the in-
clusion symbol. Furthermore, in partial categories it is possible
that superclass instances do not belong to the category, because
the category is a subset of the union of all superclasses.

It should be noted that the total categories (double line) indi-
cate that all the superclass instances belong to the category. In
this case, the category may be represented using a generaliza-
tion in which the category is transformed into a superclass with
total participation constraint.

In this type of specialization, it is possible to apply fuzzy
constraints in two ways.

Definition 10: Let be a category (or subclass) of a union
type, with superclasses: with . A fuzzy
participation constraint in one or more superclasses is rep-
resented by an arc crossing the lines which join the selected su-
perclasses with the circle. The arc must be labeled with its fuzzy
quantifier or with the fuzzy (min,max) notation.

The selected superclasses are those superclasses which
are constrained. They are denoted by with

. The union of the selected superclasses is
denoted by

(36)

1) If the arc is labeled with the quantifier , this constraint
establishes (5), with defined by (4), where is the
number of instances in which belong to , and is
the total number of instances in .

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on January 21, 2010 at 07:01 from IEEE Xplore.  Restrictions apply. 



GALINDO et al.: RELAXING CONSTRAINTS IN ENHANCED ENTITY-RELATIONSHIP MODELS 793

Fig. 13. Examples 12 and 14: Three fuzzy attribute-defined specializations and fuzzy constraints in a shared subclass.

2) If the arc is labeled with the fuzzy (min,max) notation
this constraint establishes that:

(37)

where

(38)

(39)

where and are the minimum thresholds for
and , respectively, and

(40)

(41)

with and being the same values defined in previous
case.

The warning area is similarly defined using and
respectively.

This constraint restricts the number of instances (in the union
of any group of superclasses), which belong to the category.

The fuzzy quantifier will normally be relative. For example,
with the quantifier “almost all” on one superclass the constraint
states that: “almost all the superclass elements belong to the cat-
egory.” Another option is to join two or more superclasses with
an arc indicating that the union of instances of these superclasses
are constrained in participation. This constraint allows the use of
the (min,max) notation indicating the minimum and maximum
number of instances in which belong to the category (using
absolute or relative fuzzy quantifiers), and in this case we must

perform the observations appearing in Section VII in order to
express a good constraint.

Definition 11: A fuzzy completeness constraint in the cat-
egory (on the union of all superclasses) is represented by an arc
crossing the line which joins the category with the circle. The arc
is labeled with one fuzzy quantifier, or with the fuzzy (min,max)
notation. This constraint is a fuzzy participation constraint (Def-
inition 10) embracing all superclasses: .

This constraint restricts the number of instances, of all su-
perclasses (the union), which belong to the category. This fuzzy
quantifier will normally be relative. For example, with the quan-
tifier “almost all” on the category, the constraint states that: “al-
most all elements of all superclasses belong to the category.”
This constraint also allows the use of the fuzzy (min,max) nota-
tion, indicating the minimum and maximum number of all su-
perclass instances which belong to the category. It should be
noted that this second way always refers to all the superclasses
instances, i.e., to the union of all the superclasses. Consequently,
relative fuzzy quantifiers are preferable in this constraint.

Example 13: Let us consider four entity types for vehicles:
Car, Truck, Motorbike, and Bicycle. Some vehicles may belong
to the Registered Vehicle entity. Fig. 12 depicts this model with
some participation constraints: Almost all the cars must be reg-
istered vehicles. All the trucks must also be registered. More-
over, the model allows a maximum of approximately five bi-
cycles to be registered vehicles. The arc labeled with the fuzzy
quantifier “most” indicates that most motorbikes or bicycles (its
union) must be registered.

For the sake of simplicity, we introduce a fuzzy completeness
constraint in the same specialization. This constraint establishes
that approximately half of the existing vehicles must be regis-
tered vehicles.

In real models, fuzzy constraints in the same specialization
must be mixed with care.
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XIII. FUZZY CONSTRAINTS IN SHARED SUBCLASSES:
PARTICIPATION AND COMPLETENESS

A shared subclass (or intersection type) is a subclass with
several superclasses [14]. Each member of the subclass must
be a member of all the superclasses, i.e., the subclass is a subset
of the intersection of all of the superclasses. A shared subclass
is represented joining it with all of its superclasses by a single
line with the inclusion symbol. Another representation utilizes
the intersection symbol inside a circle: Superclasses are joined
to that circle by a line and the subclass is joined to that circle
using a single line with the inclusion symbol.

As with union types, in this type of specialization it is possible
to apply fuzzy constraints in two ways:

Definition 12: Let be a shared subclass (of an intersection
type), with superclasses: with . A fuzzy
participation constraint in one or more superclasses is rep-
resented by an arc crossing the lines which join the selected su-
perclasses with the circle. The arc must be labeled with its fuzzy
quantifier or with the fuzzy (min,max) notation.

The selected superclasses are those superclasses which
are constrained. They are denoted by with

. The intersection of the selected super-
classes is denoted by

(42)

1) If the arc is labeled with the quantifier , this constraint
establishes (5), with defined by (4), where is the
number of instances in which belong to , and is the
total number of instances in .

2) If the arc is labeled with the fuzzy (min,max) notation
this constraint establishes the constraint

expressed in (37) with and computed using
the values and defined in the previous case of this def-
inition.

The warning area is similarly defined using and ,
respectively.

This constraint restricts the number of instances, in the inter-
section of any group of superclasses , which belong to the
shared subclass. This fuzzy quantifier should be relative. For
example, with the quantifier “almost all” on one superclass the
constraint expresses that: “almost all the superclass elements be-
long to the shared subclass.” Another option is to join two or
more superclasses with the arc indicating that the intersection of
instances of those superclasses are constrained in participation.
This constraint allows the use of the fuzzy (min,max) notation
indicating the minimum and maximum number of instances in

which belong to the shared subclass (using absolute or rel-
ative fuzzy quantifiers). Generally speaking, the participation
constraint is not useful as one constraint on one superclass (or
on several superclasses) depends on the membership of its in-
stances to the other superclasses (it should be remembered that
the subclass is a subset of the intersection).

Definition 13: A fuzzy completeness constraint in a
shared subclass (on the intersection of all superclasses) is
represented by an arc crossing the line which joins the shared

subclass with the circle. The arc is labeled with one fuzzy quan-
tifier, or with the fuzzy (min,max) notation. This constraint is
a fuzzy participation constraint (Definition 12) embracing all
superclasses: .

This constraint restricts the number of instances, in the inter-
section of all the superclasses which belong to the shared sub-
class. This fuzzy quantifier will normally be relative. For ex-
ample, with the quantifier “almost all” on the shared subclass the
constraint states that: “almost all the elements of the intersection
of all the superclasses belong to the shared subclass.” This con-
straint also allows the fuzzy (min,max) notation to be used, in-
dicating the minimum and maximum number of instances in the
intersection (of all the superclasses) which belong to the shared
subclass.

Example 14: Let us consider an entity for Special Employees
with its own attributes (extra payment, number of awards, mo-
tive, ). A member of this shared subclass must be an engineer,
a chief (boss) and a permanent employee. Fig. 13 depicts this
model with the following participation constraint: Almost all the
chiefs and permanent employees must be special employees. It
is interesting to note how this constraint means that almost all
the chiefs and permanent employees must also be engineers (be-
cause all special employees belong to the engineer superclass).

On the other hand, the fuzzy completeness constraint es-
tablishes that approximately half of the employees who are
engineers, chiefs and permanent employees must be special
employees.

XIV. CONCLUSION AND FURTHER RESEARCH

Fuzzy logic allows us to bring the operation of information
systems closer to the working methods of humans. People
frequently deal with fuzzy concepts (terms like “almost all,”
“the majority,” “approximately 8,” etc.) which include a certain
vagueness or uncertainty and which traditional information
systems do not understand and therefore cannot use.

Fuzzy databases [17], [34], [38] have also been widely
studied with the following main objectives: firstly, to allow
imprecise or fuzzy data to be stored, and secondly, to allow the
possibility of imprecise or fuzzy queries, using existing data
(whether imprecise or not). Traditionally, the application of
fuzzy logic to databases has paid little attention to the problem
of conceptual modeling [5].

The extension of the ER model for dealing with fuzzy data has
been studied in various publications [4], [5], [7], [8], [28], [32],
[40], [45], [47], [53], but none of these refers to the possibility
of extending constraints by using the tools offered by fuzzy sets
theory. Another research line is to achieve notational constructs
to allow a greater selection of other fuzzy integrity constraints.
For example, relaxing the constraints proposed in [10].

In this paper, we have presented a system for expressing
flexible constraints which can be used in a conceptual model
utilizing the EER modeling tool [9], [14]. These restrictions
can therefore be represented using fuzzy quantifiers [17], [19],
[29], [30], [48], [51]. The constraints studied are: the fuzzy
participation constraint, the fuzzy cardinality constraint, the
fuzzy completeness constraint on specializations, the fuzzy
cardinality constraint on overlapping specializations, fuzzy
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disjoint and fuzzy overlapping constraints on specializations,
fuzzy attribute-defined specializations, fuzzy participation and
completeness constraints in union types or categories and fuzzy
participation and completeness constraints in shared subclasses.

In addition, we have studied the fuzzy (min,max) notation
and shown how this notation can substitute fuzzy cardinality
constraints and that a fuzzy cardinality constraint can only
substitute the (min,max) notation if both quantifiers are of the
same type (absolute or relative). Despite this equivalence in the
majority of cases, we consider that it is preferable to use the
(min,max) notation for greater clarity.

The studied constraints on specializations include and im-
prove the types of constraints proposed in [46] which are not
considered in other models [14]. Our proposal improves on
these, since it uses the power and flexibility offered by fuzzy
sets theory.

The fuzzy constraints have a novel meaning and offer great
expressiveness to the conceptual model. Furthermore, the con-
ceptual model continues to be an easy-to-understand system of
expression even for nontechnical users, something which is fun-
damental in conceptual modeling.

This work is integrated with [41], [21], [43], and [44] in a
complete fuzzy EER model, the fuzzy EER model. We must
also study possible problems and improvements in the resulting
model.

An interesting study to facilitate the task of using fuzzy quan-
tifiers on the part of designers would be to classify the quanti-
fiers which can be used in natural language, and study the rela-
tionship between them. As previously indicated, one constraint
can be established with various fuzzy quantifiers and, in this
case, the use of certain quantifiers conditions and limits the pos-
sibility of using others in the same constraint.

Other important future lines of works are: 1) to study the
repercussions of a fuzzy relationship between two entities with
fuzzy constraints; 2) to study the repercussions of the inheri-
tance characteristic with fuzzy entities and constraints; and 3) to
relax the universal quantifier which refers to all instances of any
entity [for example, in (10), (12), (14), (19), (23), and (26)].

The next step will be to define of the transformation of this
fuzzy conceptual model into a fuzzy DBMS. Two main exten-
sions to this fuzzy DBMS must be carried out in order to pre-
serve the semantics of the fuzzy conceptual model: create the
necessary elements (e.g., triggers, assertions) in order to assure
the fulfilment of the fuzzy constraints and the study of exten-
sion to the fuzzy SQL (FSQL) in order to query the stored data
in compliance with these fuzzy constraints. FSQL is an exten-
sion of the popular SQL which allows for dealing with imprecise
data [16], [17].

We are currently working on modeling a real application for
a real estate agency, using all these ideas and several new ones,
for example the contribution of fuzzy logic in the knowledge
management [25], [26]. We started with the definition presented
in [18] and one first approach is in [42], [44].
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