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In this article, our interest is focused on the automatic
learning of Boolean queries in information retrieval sys-
tems (IRSs) by means of multi-objective evolutionary
algorithms considering the classic performance criteria,
precision and recall. We present a comparative study of
four well-known, general-purpose, multi-objective evo-
lutionary algorithms to learn Boolean queries in IRSs.
These evolutionary algorithms are the Nondominated
Sorting Genetic Algorithm (NSGA-II), the first version of
the Strength Pareto Evolutionary Algorithm (SPEA), the
second version of SPEA (SPEA2), and the Multi-Objective
Genetic Algorithm (MOGA).

Introduction

Information retrieval (IR) may be defined as the prob-
lem of selecting documentary information from storage in
response to searches provided by a user in the form of queries
(Baeza-Yates & Ribeiro-Neto, 1999; Salton & McGill, 1983).
Information retrieval systems (IRSs) deal with documentary
databases containing textual, pictorial, or vocal information.
They process user queries to allow the user to access relevant
information in an appropriate time interval.

The Boolean IR model (van Rijsbergen, 1979) is fre-
quently used to build queries in the IRSs; however, it presents
some limitations: A Boolean query is defined by a set of
terms joined by the logical operators AND, OR, and NOT,
but to build Boolean queries is not usually easy or very
intuitive (Baeza-Yates & Ribeiro-Neto, 1999). This prob-
lem becomes a more serious issue if the users do not have
previous experience with the model. A possible solution
to overcome this problem is to build automatic aid tools
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to assist users to express their information needs by means
of Boolean queries. Inductive Query By Example (IQBE;
Chen, Shankaranarayanan, She, & Iyer, 1998), where a query
describing the information contexts of a set of key documents
provided by the user is automatically derived or learned,
is a useful paradigm to assist users to express Boolean
queries.

The most well-known, in the context of Boolean IR,
IQBE approach is that of Smith and Smith (1997), which
is based on Genetic Programming (GP; Koza, 1992). This
approach is called Boolean IQBE-GP, and it is able to
derive Boolean queries. As is usual in the field (Cordón,
Herrera-Viedma, López-Pujalte, Luque, & Zarco, 2003), this
approach is guided by a weighted fitness function combin-
ing the classic retrieval-accuracy criteria, precision and recall
(van Rijsbergen, 1979). We will use this Boolean IQBE-GP
approach together with a Boolean IRS model in this article.

Given that the retrieval performance of an IRS is usually
measured in terms of precision and recall criteria, the opti-
mization of any of its components and, concretely, the
automatic learning of queries, is a clear example of a multi-
objective problem. Evolutionary algorithms (EAs) have been
commonly used for IQBE purposes, and their application
in the area has been based on combining both criteria in a
single scalar fitness function by means of a weighting scheme
(Chen et al., 1998). However, there is a kind of EA spe-
cially designed for multi-objective problems, multi-objective
evolutionary algorithms (MOEAs), which are able to obtain
nondominated solutions to the problem in a unique run
(Coello, Van Veldhuizen, & Lamant, 2002; Deb, 2001). This
characteristic of MOEAs, applied to IR—especially to the
context of the IQBE paradigm, denoted as IQBE MOEA—
allows one to derive a number of queries with a different
precision–recall trade-off, which improves the aid possi-
bilities to the users in the formulation of their Boolean
queries.
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In the literature, there are not many IQBE MOEAs to
derive queries in IRSs, and besides, they are based on
old-fashioned MOEAs. Three examples are:

• IQBE-MOGA-P (Cordón, Moya, & Zarco, 2004) based on
MOGA (Multi-Objective Genetic Algorithm; Fonseca &
Fleming, 1993) and GA-P (GeneticAlgorithm-Programming;
Howard & D’Angelo, 1995) to learn fuzzy queries with
numerical weights,

• IQBE-SPEA (Cordón, Herrera-Viedma, & Luque, 2006a)
based on SPEA (Strength Pareto Evolutionary Algorithm;
Zitzler & Thiele, 1999) and GP to derive Boolean queries,
and

• IQBE-SPEA-GA (Cordón, Herrera-Viedma, & Luque,
2006b) based on SPEA and GeneticAlgorithms (Michalewicz,
1996) to learn fuzzy multiweighted queries with ordinal lin-
guistic weights in a multigranular fuzzy ordinal linguistic IRS
(Herrera-Viedma, Cordón, Luque, López, & Muñoz, 2003).

Although these approaches have great performance, there
exist other, more advanced MOEAs in the specialized liter-
ature that never have been used in the IQBE context. Those
MOEAs can improve the performance of the existing IQBE
MOEAs in the context of automatic derivation of queries
(Boolean queries, numerical weighted queries, or ordinal
weighted queries) in IRSs.

In this work, an analysis of the performance of four well-
known and successful MOEAs applied to the automatic
learning of Boolean queries in the context of a Boolean
IRS model is presented. The used MOEAs are: the clas-
sic Multi-Objective Genetic Algorithm (MOGA; Fonseca &
Fleming, 1993), the Strength Pareto Evolutionary Algorithm
(SPEA; Zitzler & Thiele, 1999), the more recent Nondom-
inated Sorting Genetic Algorithm (NSGA-II; Deb, Pratap,
Agrawal, & Meyarivan, 2002) and the second version of
SPEA (SPEA2; Zitzler, Laumanns, & Thiele, 2002). All of
them are adapted to use GP components and to optimize
both precision and recall, simultaneously, extending Smith
and Smith’s (1997) Boolean IQBE-GP proposal into the
multi-objective context.

The analysis of the proposal will include the use of
the Cranfield, CACM, MEDLINE, and a subset of TREC
(TREC-WSJ1) collections (Baeza-Yates & Ribeiro-Neto,
1999; Salton, 1989), the evaluation of the pareto fronts with
C measure and hypervolume indicator, the analysis of the
number of derived queries, the comparison with the clas-
sic Boolean IQBE-GP proposal (Smith & Smith, 1997),
and the use of nonparametric statistical methods (Demsar,
2006; García & Herrera, 2008; García, Molina, Lozano, &
Herrera, in press; Sheskin, 2003) to compare and analyze the
experimental result to determine the best IQBE MOEA-GP
approach.

To do that, this article is structured as follows. First, the
IQBE paradigm and the Boolean IRS model used in this
article are drawn. We then describe the four MOEAs with GP

1TREC-WSJ is a subset of TREC, which contains 5,000 articles published
in the Wall Street Journal in 1990, 1991 and 1992.

components studied. Next, the experimental framework and
analysis are presented. Finally, some concluding remarks are
given. In theAppendix, we include tables with some statistical
tests.

Preliminaries: IQBE and Boolean IRS

In this section, we introduce the IQBE paradigm and the
foundations of the Boolean IRS model used in this article,
including their components and procedure of evaluation.

The IQBE Paradigm

The IQBE paradigm was proposed by Chen et al. (1998)
as “a process in which searchers (users) provide documents
(examples) and an algorithm induces (or learns) the key
concepts of the examples with the purpose of finding other
equally relevant documents” (p. 694). In this way, IQBE can
be seen as a technique to assist users in the query-building
process by using automatic learning methods.

Assuming a set of relevant documents (or alternatively,
nonrelevant documents) which represents user information
needs (which can be obtained from a preliminary query or
from a browsing process through the documentary database),
the IQBE technique consists of developing an automatic
learning process to generate a query that describes the user
information needs (see Figure 1). The learned query can be
executed again in the same IRS or in other IRSs to obtain new
relevant documents. In this way, it is not necessary for the user
to interact with the IR process, which is mandatory in other
techniques for query refinement as the relevance feedback
(Salton, 1989).

Several IQBE EAs for different IR models have been pro-
posed and revised in Cordón et al. (2003). The most used
IQBE models are based on GP components, with queries
being represented by expression syntax trees and where the
algorithms are articulated on the basis of the classic operators:
cross, mutation, and selection.

Information
needs Relevant and

non-relevant
documents

USER

Information
Retrieval
System

IQBE technique

New
documents
retrieved Learned

query
Learned

query

FIG. 1. Inductive Query By Example (IQBE) process.
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Boolean IR Systems

In the following subsections, we briefly present the compo-
nents of the Boolean IRS model: the documentary database,
the query subsystem, the matching subsystem and the evalu-
ation model.

The documentary database. This component stores the doc-
uments and the representation of their contents. Textual
documents representation is typically based on index terms
(that can be either single terms or sequences), which work
as content identifiers for the documents. We assume that the
database is built like those in usual IRSs (Baeza-Yates &
Ribeiro-Neto, 1999; Salton & McGill, 1983). Therefore,
IRS–user interaction is unnecessary because it is built auto-
matically. The database stores a finite set of documents
D = {d1, . . ., dm}, a finite set of index terms T = {t1, . . ., tl},
and the representation Rdj

of each document dj character-
ized by a numeric indexing function F : D × T → {0, 1}.
F(dj, ti) = 0 implies that the document dj contents do not
deal at all with the concept(s) represented by the index term
ti, and F(dj, ti) = 1 implies that the document dj is perfectly
represented by the concept(s) indicated by tj .

The query subsystem. This subsystem allows users to for-
mulate their information needs (i.e., queries) and presents the
relevant documents retrieved by the system. To do this, each
query is expressed as a combination of index terms which
are connected by the Boolean operators AND (∧), OR (∨),
and NOT (¬). We define a Boolean query as any legitimate
Boolean expression defined by the following syntactic rules:

1. ∀q = ti ∈ T → q ∈ Q.

2. ∀q, p ∈Q → q ∧ p ∈ Q.

3. ∀q, p ∈Q → q ∨ p ∈ Q.

4. ∀q ∈Q → ¬q ∈ Q.

5. All legitimate queries q ∈ Q are only those obtained by
applying Rules 1 to 4, inclusive.

The matching subsystem. This system evaluates the degrees
(i.e., the retrieval status value) to which the document rep-
resentation satisfies the requirements expressed in the query
and retrieves the documents that are judged to be relevant.
The evaluation subsystem is implemented by the match-
ing or evaluation function ε, which assesses the relationship
between Q and D. Therefore, the goal of ε consists of evaluat-
ing documents in terms of their relevance to a Boolean query.
ε is defined by means of a constructive bottom-up evaluation
process that acts in two steps:

1. The documents are evaluated according to their relevance
only to the terms of the query. In this step, a partial rel-
evance degree is assigned to each document with respect
to every term in the query.

2. The documents are evaluated according to their relevance
to the Boolean combination of the terms (their partial rele-
vance degree), and so on, working in a bottom-up fashion
until the whole query is processed. In this step, documents
are finally classified as relevant or nonrelevant.

Evaluation of IRSs. There are several ways to measure
the quality of an IRS, such as the system efficiency and
effectiveness, and several subjective aspects related to user
satisfaction (Baeza-Yates & Ribeiro-Neto, 1999). Tradition-
ally, the retrieval effectiveness is based on the document
relevance with respect to the user’s needs. There are different
criteria to measure this aspect, but precision (P) and recall
(R) (van Rijsbergen, 1979) are the most used. Precision is
the ratio between the relevant documents retrieved by the
IRS in response to a query and the total number of docu-
ments retrieved while recall is the ratio between the number
of relevant documents retrieved and the total number of rele-
vant documents for the query that exists in the database (van
Rijsbergen, 1979). The mathematical expression of each of
them is:

P = Drr

Dtr

; R = Drr

Drt

(1)

where Drr is the number of relevant documents retrieved, Dtr

is the total number of documents retrieved, and Drt is the total
number of relevant documents for the query which exists in
the database. P and R are defined in [0,1], 1 being the optimal
value.

Note that the only way to know all the relevant documents
existing for a query in the database (value used in the R mea-
sure) is to evaluate all documents. Due to this fact and taking
into account that relevance is subjective, there are some clas-
sic documentary databases (TREC-WSJ, CACM, Cranfield,
MEDLINE, ADI, CISI, etc.) available, each one with a set
of queries for which the relevance judgments are known,
so that they can be used to verify the new proposals in the
field of the IR (Baeza-Yates & Ribeiro-Neto, 1999; Salton,
1989). In this contribution, we use the Cranfield, CACM,
MEDLINE, and TREC-WSJ2 collections.

Structure of the MOEAs With GP components

For the purposes of this research, four well-known and
widely used MOEAs have been selected for performance
evaluation: NSGA-II (Deb et al., 2002), SPEA (Zitzler &
Thiele, 1999), SPEA2 (Zitzler et al., 2002), and MOGA
(Fonseca & Fleming, 1993).

Objectives and Evaluation of MOEAs

In multi-objective optimization problems, the definition
of the quality concept is substantially more complex than in
single-objective ones since the optimization processes imply
several different objectives.

The key concepts to evaluate MOEAs are the dominance
relation and the Pareto sets.

The algorithms presented in this article assume the two
classic criteria to evaluate IRSs, precision and recall (van
Rijsbergen, 1979), whose expressions were introduced ear-
lier. The studied IQBE MOEA approaches assume that all

2The results correspond to Test Query 1 of the Cranfield collection.
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FIG. 2. Concept of dominance.
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FIG. 3. Concept of pareto set.

objectives have to be maximized. The solutions are repre-
sented by objective vectors, which are compared according to
the dominance relation defined next and displayed in Figure 2.

Definition 1. (Dominance relation). Let f, g ∈ Rm. Then f is
said to dominate g, denoted as f � g, iff

1. ∀i ∈ {1, . . ., m} : fi ≥ gi,
2. ∃j ∈ {1, . . ., m} : fj > gj .

Based on the concept of dominance, the Pareto set can be
defined as follows.

Definition 2. (Pareto set). Let F ⊆ Rm be a set of vectors.
Then the Pareto set (see Figure 3) F* of F is defined as fol-
lows: F* contains all vectors g ∈ F which are not dominated
by any vector f ∈ F ; that is,

F∗ := {g ∈ F |�f ∈ F : f � g}.
Several quantitative measures based on the pareto set con-

cept have been proposed in the specialized literature (Coello
et al., 2002; Deb, 2001; Knowles, Thiele, & Zitzler, 2006; Zit-
zler, Deb, & Thiele, 2000). Two of them are the C measure
and the hypervolume indicator.

Definition 3. (Coverage of two sets; Zitzler & Thiele, 1998).
Let A, B be two sets of objective vectors. The function C maps
the ordered pair (A,B) to the interval [0,1]:

C(A, B) = |{a ∈ A; ∃b ∈ B : b � a}|
|A|

A

Precision

R
ec

al
l

1

1

0,0

Objective space dominated by A

Reference point

FIG. 4. The hypervolume indicator.

measures the ratio of individuals of the Pareto A that is dom-
inated by individuals of the Pareto B. A value of 1 indicates
that all individuals of the Pareto A are dominated by individ-
uals of the Pareto B; a value of 0 indicates that none of the
individuals of A are dominated by individuals of B. Note that
both directions always have to be considered since C(A,B) is
not necessarily equal to 1 − C(B,A).

Definition 4. (Hypervolume; Zitzler & Thiele, 1999). This
indicator measures the hypervolume of that portion of the
objective space that is dominated by an approximation set
A, and is to be maximized (see Figure 4). To measure this
quantity, the objective space must be bounded. If it is not,
a bounding reference point that is dominated by all points
should be used, as shown in the Figure 4. In our case, the
reference point is (0,0).

We will use both C and hypervolume in this study.

MOGA-GP

In MOGA (Fonseca & Fleming, 1993), the rank of a certain
individual corresponds to the number of chromosomes in the
current population by which it is dominated. Consider, for
example, an individual xi at generation t which is dominated
by pi

t individuals in the current generation. The rank of an
individual is given by: rank(xi, t) = 1 + pi

t.

All nondominated individuals are assigned rank 1 while
dominated ones are penalized according to the population
density of the corresponding region of the trade-off surface.

Fitness assignment is performed in the following way:

1. Sort population according to rank.
2. Assign fitness to individuals by interpolating from the best

(rank 1) to the worst (rank n ≤ M, where M is the total
population size) in the way proposed by Goldberg (1989),
according to some function, usually, but not necessarily
linear.
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FIG. 5. The Strength Pareto Evolutionary Algorithm (SPEA) procedure.

3. Average the fitness of individuals with the same rank so
that all of them are sampled at the same rate. This pro-
cedure keeps the global population fitness constant while
maintaining appropriate selective pressure, as defined by
the function used.

The general expression used is: fitness(xi, t) = 1/

rank(xi, t).

In this article, MOGA will be adapted to use GP compo-
nents. It will be denoted as IQBE-MOGA-GP.

SPEA-GP

SPEA (Zitzler & Thiele, 1999) uses an archive contain-
ing nondominated solutions previously found (the so-called
external nondominated set). At each generation, nondomi-
nated individuals are copied to the external nondominated
set. For each individual in this external set, a strength value
is computed. This strength is similar to the ranking value
of MOGA since it is proportional to the number of solu-
tions to which a certain individual dominates. Clearly, the
external nondominated set is in this case the adopted elitist
mechanism.

In SPEA, the fitness of each member of the current popu-
lation is computed according to the strengths of all external
nondominated solutions that dominate it.Additionally, a clus-
tering technique called “average linkage method” (Morse,
1980) is used to keep diversity. The main loop of SPEA is
outlined as follows and drawn in Figure 5.

Input:

• N (population size)
• N (maximum size of external set)
• T (maximum number of generations)
• pc (crossover probability)
• pm (mutation rate)

Output: A (nondominated set)

1. Initialization: Generate an initial population P0 and create
the empty external set P0 = ∅. Set t = 0.

2. Update of external set: Set the temporary external set
P

′ = Pt .
(a) Copy individuals whose decision vectors are non-

dominated regarding Pt to P ′.
(b) Remove individuals from P ′ whose corresponding

decision vectors are dominated regarding P ′.
(c) Reduce the number of individuals externally stored

in P ′ by means of clustering and assign the resulting
reduced set to Pt+1.

3. Fitness assignment: Calculate fitness values of individ-
uals in Pt and Pt . Each individual i ∈ Pt is assigned a
real value S(i) ∈ [0, 1), called strength, S(i) is proportional
to the number of population members j ∈ Pt for which i
dominates j:

S(i) = |{j|j ∈ Pt ∧ idominatesj}|
N + 1

The fitness of i is equal to its strength: Fitness(i) = S(i).
The fitness of an individual j ∈ Pt is calculated by sum-

ming the strengths of all externally stored individuals i ∈ Pt

whose decision vectors dominate j. We add 1 to the total
to guarantee that members of Pt have better fitness than do
members of Pt (Note that fitness is to be minimized here;
i.e., small fitness values correspond to high reproduction
probabilities.)

4. Selection: P ′ = ∅. For i = 1, . . . , N, do
(a) Select two individuals i, j ∈ Pt + Pt at random.
(b) If fitness(i) > fitness(j), then P ′ = P ′ + i else

P ′ = P ′ + j (Note that fitness is to be minimized
here.)

5. Crossover (discussed later).
6. Mutation (discussed later).
7. Termination.

In this article, SPEA will be adapted to use GP compo-
nents. It will be denoted as IQBE-SPEA-GP.
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SPEA2-GP

SPEA2 (Zitzler et al., 2002) introduces elitism by explic-
itly maintaining an external population. This population
stores a fixed number of the nondominated solutions found
from the beginning of the experiment.

In each generation, the new nondominated solutions are
compared with the existing external population, and the
resulting nondominated solutions are preserved. In addition,
SPEA2 uses these elite solutions in the genetic operations
with the current population to guide the population towards
good regions in the search space.

The algorithm begins with a randomly created population
P0 of size M and an external population P0 (initially empty)
which has a maximum capacity M. In each generation t, the
best nondominated solutions (belonging to the best nondom-
inated front) of the populations Pt and Pt are copied in the
external population Pt+1. If the size of Pt+1 exceeds M, then
Pt+1 is reduced by means of a truncate operator; on the other
hand, Pt+1 is filled up with dominated solutions from Pt and
Pt . This truncate operator is used to maintain the diversity of
the solutions.

From Pt+1, a pool of individuals is obtained applying
a binary tournament selection operator with replacement.
These individuals are crossed and mutated to obtain the new
generation Pt+1.

In this article, SPEA2 will be adapted to use GP compo-
nents. It will be denoted as IQBE-SPEA2-GP.

NSGA-II-GP

NSGA-II (Deb et al., 2002) is a MOEA that incorpo-
rates a preservation strategy of an elite population and uses
an explicit mechanism (crowded comparison operator) to
preserve diversity.

NSGA-II works with an offspring population Qt , which
is created using the predecessor population Pt . Both popula-
tions (Qt and Pt) are combined to form a unique population
Rt , with a size 2·M, that is examined to extract the front of the
pareto. Then, an arrangement on the nondominated individu-
als is done to classify the Rt population.Although this implies
a greater effort compared with the arrangement of the set Qt ,
it allows a global verification of the nondominated solutions
that belong as well as to the population of offspring or to the
one of the predecessors.

Once the arrangement of the nondominated individuals
finishes, the new generation (population) Pt+1 is formed with
solutions of the different nondominated fronts (F1, . . . , Fm),
taking them alternatively from each of the fronts. It begins
with the best front of nondominated individuals and contin-
ues with the solutions of the second one, and so on.

Since the Rt size is 2·M, it is possible that some of the front
solutions have to be eliminated to form the new population.

In the last states of the execution, it is usual that the major-
ity of the solutions is in the best front of nondominated
solutions. It also is probable that the size of the best front
of the combined population Rt is larger than M. It is then

Pt

Qt

Rt

F1

F2

F3

Fm

...

Pt�1

Crowding distance
sorting

Nondominated
sorting

Rejected

FIG. 6. The Nondominated Sorting Genetic Algorithm (NSGA-II) proce-
dure.

when the previous algorithm assures the selection of a diverse
set of solutions of this front by means of the crowded compar-
ison operator (The NSGA-II procedure is shown in Figure 6.)
When the whole population converges to the pareto-optimal
frontier, the algorithm continues so that the best distribution
between the solutions is assured.

In this article, NSGA-II will be adapted to use GP
components. It will be denoted as IQBE-NSGA-II-GP.

GP Components for MOEAs

The four MOEAs-GP studied in this article share the
following components:

• Codification scheme: Boolean queries are encoded in expres-
sion syntax trees, whose terminal nodes are terms and whose
inner nodes are the Boolean operators AND, OR, and NOT.
Hence, the natural representation is to encode the query within
a tree and to work with a GP algorithm (Koza, 1992) to evolve
it, as done by previous approaches devoted to the derivation of
Boolean queries (Cordón et al., 2006a; Smith & Smith, 1997).
Figure 7 shows a graphical example of this kind of query.

• Crossover operator: Subtrees are randomly selected and
crossed-over in two randomly selected queries, as drawn in
Figure 8.

• Mutation operator: A randomly selected term or operator is
changed in a randomly selected tree. An example is shown in
Figure 9.

AND

AND OR

t1 NOTt4 t9

t7

FIG. 7. An example of a Boolean query.
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FIG. 8. An example of crossover on two queries.

AND

AND
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t1
OR

NOT

AND

AND
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NOT

AND

t9

t4

t5

t6

t1

t9

t4

t3

t5

FIG. 9. An example of mutation.

• Initial population: All individuals of the first generation are
generated in a random way. The population is created includ-
ing all the terms from the relevant documents provided by
the user. Those that appear in more relevant documents will
have greater probability (0.8) of being selected. This is done
as shown in Figure 10.

Experimental Study

This section is divided into three parts according to the
following contents. The first subsection introduces the exper-
imental framework. The next subsection briefly describes the
nonparametric statistical test used for statistical analysis in
this article. The last subsection presents four different studies
for each used performance measure (C measure, hypervol-
ume indicator, the number of derived queries, and spent time),
and a summary analysis.

Experimental Framework

The experimental study has been developed using well-
known test collections: Cranfield, CACM, MEDLINE, and

TREC-WSJ (Baeza-Yates & Ribeiro-Neto, 1999; Salton,
1989):

• Crandfield is composed of 1,398 documents about
aeronautics.

• CACM contains 3,204 documents published in the journal
Communications of the ACM between 1958 and 1979.

• MEDLINE contains 1,033 documents about medicine.
• TREC-WSJ is a subset of TREC, which contains 5,000 arti-

cles published in the Wall Street Journal in 1990, 1991, and
1992.

In these collections, the textual documents have been auto-
matically indexed in the usual way by using Salton’s (1997)
classic SMART retrieval system: First, extracting the nonstop
words and performing a stemming process, thus obtaining a
total number of 3,857; 7,562; 7,170; and 28,904 different
indexing terms, respectively. Then, a binary weighing has
been used to generate the term weights ({0, 1}) in the docu-
ment representations, using the “bxx” weighting scheme as
described in Salton and Buckley (1988).

The used test collections have a number of associated pre-
defined test queries (225 in the Cranfield collection, 64 in the
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int dangling_limbs � 1; /* number of members per operator */

 for (int i�0; (dangling_limbs�0) && (i��tam_max); i��)
 {

if (Rand()� (float)(dangling_limbs*dangling_limbs�1)/(float)(tam_max�i))
{

if (Rand() �0.5)
Query[i].node_type � AND;

else
Query[i].node_type � OR;

dangling_limbs��; /* all operators have two members */
}
else
{

Query[i].node_type � TERM;

if (Rand() �0.8)
/* ramdom term from relevant document */
Query[i].term � Random_Relevant_Term();

else
/*random term from non-relevant document */
Query[i].term � Random_Non_Relevant_Term();

dangling_limbs��;
}

 }

if (dangling_limbs!�0) {
/* ERROR */
abort();

}

FIG. 10. Procedure to build an initial query.3

CACM collection, 30 in the MEDLINE collection, and 67 in
the TREC-WSJ collection).

The experimental study (see Figure 11) has been devel-
oped as in (Abdelmgeid, 2007; Cordón, Herrera-Viedma, &
Luque, 2002a, 2002b; Cordón et al., 2003; Cordón,
Moya, & Zarco, 2000; Kraft, Petry, Buckles, & Sadasivan,
1997; Smith & Smith, 1997), where the role of the user
providing relevant documents is played by the sets of rel-
evant documents grouped or given by the test queries from
the Cranfield, CACM, MEDLINE, and TREC-WSJ. In our
problem, each test query defines a different set of rel-
evant documents. For us, each test query generates an
experiment, and our goal is to automatically derive a set of
queries that describes the information contents of the set
of documents associated with it, and then to use that query
on the full collection to retrieve yet more relevant docu-
ments. In this sense, test queries are used only to group
documents.

The evaluation procedure to analyze the IQBE MOEAs-
GP performance is based on demonstrating that the learning
system is able to learn the best queries to represent user infor-
mation needs provided in the system by means of relevant
document(s) (given by test queries). Therefore, our way to
approach the evaluation of these IQBE MOEAs-GP is dif-
ferent than the usual evaluation in IRSs. The basic idea of
this article is to perform comparisons among four differ-
ent IQBE MOEA-GP approaches. We are not interested in
comparing IQBE MOEA-GP versus IRS or versus test query
relevance judgements. We are just focused on analyzing the

performance of four IQBE MOEA-GP approaches. We use
test queries just for grouping documents in predefined lists
of relevant documents. So, an IQBE MOEA-GP A will be
better than other IQBE MOEA-GP B if the lists of docu-
ments retrieved by A are closer to those predefined lists than
those retrieved by B.

Instead of working with the complete test query set, we
have selected a representative sample that allows observing
the behavior of the studied IQBE MOEA-GP approaches.
In this way, for example, if there are 29 relevant documents
for Test Query 1 in the Cranfield collection, this test query
will mimic a situation in which the user provides 29 rel-
evant documents related to his or her information needs.
The remaining 1,369 documents (1398 − 29) will be con-
sidered as nonrelevant documents for the IQBE process (see
Figure 11).

The studied IQBE MOEA-GP approaches generate a set of
queries from the sets of relevant and nonrelevant documents.
To do so, it is necessary to consider a sufficiently represen-
tative number of positive examples (relevant documents), so
test queries with more relevant documents associated have
been selected:

• Among the 225 test queries associated with the Cranfield
collection, those test queries presenting 20 or more relevant
documents have been taken into account. The seven resulting
test queries (Queries 1, 2, 23, 73, 157, 220, and 225) have 29,

3Where tam_max is the maximun number of nodes per query (see Table 1).
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FIG. 11. Experimental framework.

TABLE 1. Common parameters.

Parameter Value

Cross probability 0.8
Mutation probability 0.2
Maximum nodes per query 19
Population size (M) 800
Elite population 200

25, 33, 21, 40, 20, and 25, respectively, associated relevant
documents.

• On the other hand, CACM provides 64 test queries, of which
those that have 30 or more relevant documents have been
selected. The eight resulting test queries (Queries 10, 14, 25,
26, 43, 58, 59, and 61) have 35, 44, 51, 30, 41, 30, 43, and
31, respectively, associated relevant documents.

• MEDLINE provides 30 test queries, of which those that
have 30 or more relevant documents have been selected. The
five resulting test queries (Queries 1, 20, 23, 28, and 29)
have 37, 39, 39, 39, and 37, respectively, associated relevant
documents.

• TREC-WSJ provides 67 test queries. Six queries with 130 or
more relevant documents have been selected. The resulting
test queries (Queries 2, 3, 8, 11, 21, and 22) have 226,
147, 138, 131, 138, and 141, respectively, associated relevant
documents.

In this way, a wide range of simulated user’s information
needs have been developed, from Test Query 220 in Cranfield
with 20 relevant documents to Test Query 2 in TREC-WSJ
with 226 relevant documents.

The studied IQBE MOEAs-GP in this contribution have
been run 30 times for each test query and collection (a total of
3,120 runs) with different initializations for each selected test
query. The number of chromosome evaluations is 50,000 per
run. We use a 2.0 GHz Pentium Core 2 Duo computer with
1 GB of RAM. The common parameter values considered are
shown in Table 1.

Nonparametric Statistical Tests for Statistical Analysis

Nonparametric tests can be used for comparing the results
of different EAs (García & Herrera, 2008; García et al.,

in press). Given that the nonparametric tests do not require
explicit conditions for being conducted, it is recommended
that the sample of results is obtained following the same cri-
terion; that is, to compute the same aggregation (average,
mode, etc.) over the same number of runs for each algorithm
and problem.

In particular, we have considered two alternative meth-
ods based on nonparametric tests to analyze the experimental
results:

1. Application of the Friedman’s test and Holm’s method as
post hoc procedures (Demsar, 2006; García & Herrera,
2008; García et al., in press; Sheskin, 2003). The first test
may be used to see whether there are significant statistical
differences among the IQBE MOEAs-GP using the hyper-
volume measure. If differences are detected, then Holm’s
method is employed to compare the best IQBE MOEA-GP
(control algorithm) against the remaining ones.

2. Use of the Wilcoxon matched-pairs signed-ranks test
(for more detail, see Demsar, 2006; García et al.,
in press; Sheskin, 2003). With this test, the results of two
IQBE MOEAs-GP, using the measure C, may be directly
compared.

Experimental Results and Analysis

From each run, a pareto set is obtained, and a later filtration
process is performed in the decision space to remove those
queries that are identical. The two filtered pareto sets obtained
by each run and test query are compared with the performance
C measure and the hypervolume indicator. The number of dif-
ferent queries in the decision space also are analyzed. Finally,
the time consumption analysis is presented.

C measure. In Table 2, we present the average results for
the 30 runs of the C measure for each pair of IQBE MOEAs-
GP and test query for the Cranfield, CACM, MEDLINE, and
TREC-WSJ collections.

By analyzing Table 2, note that the best average results are
offered by IQBE-NSGA-II-GP (see values in boldface).

We want to check if these results are statistically signif-
icant. The C measure is a performance measure which is
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TABLE 2. Average results of the C measure for each test query in each pair of studied IQBE MOEAs-GP on the Cranfield, CACM, MEDLINE, and
TREC-WSJ collections. X = IQBE-NSGA-II-GP, Y = IQBE-MOGA-GP, Z = IQBE-SPEA2-GP, and W = IQBE-SPEA-GP.

Query no. (collection) C(X,Y)/C(Y,X) C(X,Z)/C(Z,X) C(X,W)/C(X,W) C(Z,Y)/C(Y,Z) C(Z,W)/C(W,Z) C(W,Y)/C(Y,W)

1 (Cranfield) 0.130/0.786 0.305/0.915 0.174/0.919 0.537/0.714 0.153/0.680 0.593/0.594
2 (Cranfield) 0.061/0.859 0.277/0.963 0.235/0.967 0.553/0.671 0.160/0.701 0.674/0.594
23 (Cranfield) 0.022/0.878 0.135/0.918 0.065/0.910 0.364/0.711 0.196/0.671 0.457/0.591
73 (Cranfield) 0.034/0.875 0.196/0.932 0.186/0.936 0.447/0.662 0.195/0.727 0.568/0.616
157 (Cranfield) 0.030/0.868 0.097/0.910 0.060/0.923 0.453/0.694 0.162/0.715 0.517/0.608
220 (Cranfield) 0.077/0.795 0.367/0.913 0.278/0.932 0.512/0.687 0.170/0.640 0.557/0.611
225 (Cranfield) 0.075/0.871 0.273/0.950 0.199/0.971 0.473/0.688 0.145/0.701 0.638/0.603

10 (CACM) 0.050/0.838 0.315/0.913 0.132/0.939 0.653/0.759 0.166/0.709 0.836/0.656
14 (CACM) 0.053/0.770 0.305/0.918 0.260/0.958 0.492/0.751 0.136/0.710 0.725/0.702
25 (CACM) 0.103/0.825 0.265/0.850 0.130/0.855 0.709/0.751 0.120/0.728 0.729/0.666
26 (CACM) 0.112/0.825 0.272/0.933 0.120/0.941 0.531/0.760 0.107/0.727 0.739/0.648
43 (CACM) 0.106/0.812 0.339/0.896 0.162/0.958 0.625/0.814 0.125/0.778 0.683/0.751
58 (CACM) 0.114/0.764 0.461/0.887 0.300/0.894 0.636/0.760 0.158/0.653 0.769/0.659
59 (CACM) 0.078/0.831 0.317/0.923 0.115/0.936 0.542/0.799 0.145/0.663 0.664/0.716
61 (CACM) 0.106/0.831 0.305/0.922 0.128/0.935 0.564/0.773 0.155/0.729 0.674/0.648

1 (MEDLINE) 0.208/0.604 0.246/0.903 0.229/0.899 0.721/0.414 0.240/0.729 0.807/0.364
20 (MEDLINE) 0.078/0.744 0.091/0.815 0.134/0.879 0.477/0.595 0.300/0.740 0.684/0.579
23 (MEDLINE) 0.211/0.654 0.151/0.917 0.120/0.877 0.638/0.439 0.322/0.735 0.763/0.401
28 (MEDLINE) 0.151/0.713 0.102/0.925 0.100/0.923 0.542/0.561 0.182/0.756 0.691/0.541
29 (MEDLINE) 0.171/0.769 0.070/0.912 0.053/0.924 0.573/0.583 0.217/0.781 0.764/0.557

2 (TREC-WSJ) 0.059/0.859 0.138/0.862 0.061/0.907 0.457/0.789 0.138/0.862 0.568/0.640
3 (TREC-WSJ) 0.076/0.861 0.143/0.913 0.094/0.927 0.502/0.753 0.143/0.913 0.496/0.661
8 (TREC-WSJ) 0.056/0.887 0.129/0.879 0.049/0.909 0.517/0.776 0.129/0.879 0.566/0.693
11 (TREC-WSJ) 0.080/0.870 0.086/0.946 0.020/0.939 0.486/0.771 0.086/0.946 0.568/0.627
21 (TREC-WSJ) 0.041/0.839 0.124/0.842 0.083/0.869 0.499/0.753 0.124/0.842 0.519/0.667
22 (TREC-WSJ) 0.069/0.811 0.229/0.906 0.117/0.934 0.438/0.755 0.229/0.906 0.563/0.647

defined to compare two algorithms using the dominance con-
cept between two paretos. To statistically compare the results
between two IQBE MOEAs-GP and to determine which one
is the best, we can perform the Wilcoxon signed-rank test for
detecting differences in both means.

Table 3 summarizes the results of this procedure. The
structure of the table presents Nalg × (Nalg + 2) cells to
compare all the IQBE MOEAs-GP in it, with Nalg being
the number of IQBE MOEAs-GP studied. In each of the
Nalg × Nalg cells, three symbols can appear: +, −, or =.
They show that the IQBE MOEA-GP situated in that row is
better (−), worse (+), or equal (=) in behavior (using the C
measure) to the IQBE MOEA-GP that appears in the column.
The penultimate column (≥) represents the number of IQBE
MOEAs-GP with worse or equal behavior to the one that
appears in the row (without considering the IQBE MOEA-
GP itself), and the last column (>) represents the number
of IQBE MOEAs-GP with worse behavior than the one that
appears in the row.

For more detail, in the Appendix, six Wilcoxon test tables
are shown. In these tables, R+, R−, and the critical value for
N = 26 are presented for each pair of IQBE MOEAs-GP. The
lowest values, which correspond with the best results, are in
boldface.

From Table 3 and the tables in theAppendix, we clearly see
that IQBE-NSGA-II-GP obtains better results than do other
IQBE MOEAs-GP (i.e., the R− values are lower than the
R+ ones). In addition, the statistical test indicates that these

TABLE 3. Wilcoxon tests table for IQBE MOEAs-GP consid-
ering the C measure. X = IQBE-NSGA-II-GP, W = IQBE-SPEA-GP,
Z = IQBE-SPEA2-GP, Y = IQBE-MOGA-GP.

Y Z W X ≥ >

X − − − 0 0
W = + + 3 2
Z + − + 2 2
Y − = + 2 1

results are statistically significant considering the C measure
(because these R− values are lower than the critical values)
with a significance level of α = 0.05.

Hypervolume indicator. In Table 4, we present the average
results for the 30 runs of the hypervolume indicator for each of
IQBE MOEAs-GP and test query for the Cranfield, CACM,
MEDLINE, and TREC-WSJ collections.

Results in Table 4 show that the best average results, using
the hypervolume indicator, are offered by IQBE-NSGA-
II-GP (see boldface values).

We want to check if these results are statistically sig-
nificant. To compare these results, we will use a multiple
comparison test to find the best IQBE MOEA-GP. In a mul-
tiple comparison test, first it is necessary to check (using
a test such as Friedman’s) whether all the results obtained
by the algorithms present any inequality. In the case of find-
ing inequality, then we can know, by using a post hoc test
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TABLE 4. Average results of the hypervolume indicator for each test query and the four studied IQBE MOEAs-GP on the Cranfield, CACM, MEDLINE,
and TREC-WSJ collections.

Query no. (collection) IQBE-NSGA-II-GP IQBE-SPEA2-GP IQBE-SPEA-GP IQBE-MOGA-GP

1 (Cranfield) 0, 329 0, 102 0, 080 0, 228
2 (Cranfield) 0, 419 0, 116 0, 084 0, 279
23 (Cranfield) 0, 378 0, 120 0, 087 0, 178
73 (Cranfield) 0, 484 0, 138 0, 094 0, 267
157 (Cranfield) 0, 307 0, 098 0, 074 0, 184
220 (Cranfield) 0, 456 0, 115 0, 094 0, 248
225 (Cranfield) 0, 407 0, 108 0, 084 0, 236

10 (CACM) 0, 304 0, 082 0, 059 0, 249
14 (CACM) 0, 295 0, 085 0, 057 0, 221
25 (CACM) 0, 233 0, 082 0, 058 0, 189
26 (CACM) 0, 360 0, 098 0, 065 0, 285
43 (CACM) 0, 276 0, 079 0, 057 0, 238
58 (CACM) 0, 289 0, 080 0, 066 0, 246
59 (CACM) 0, 248 0, 075 0, 056 0, 220
61 (CACM) 0, 334 0, 089 0, 064 0, 243

1 (MEDLINE) 0, 691 0, 361 0, 155 0, 643
20 (MEDLINE) 0, 676 0, 320 0, 209 0, 411
23 (MEDLINE) 0, 756 0, 398 0, 197 0, 656
28 (MEDLINE) 0, 792 0, 333 0, 189 0, 571
29 (MEDLINE) 0, 642 0, 244 0, 124 0, 463

2 (TREC-WSJ) 0, 113 0, 065 0, 057 0, 089
3 (TREC-WSJ) 0, 112 0, 049 0, 044 0, 080
8 (TREC-WSJ) 0, 122 0, 049 0, 041 0, 081
11 (TREC-WSJ) 0, 122 0, 046 0, 040 0, 085
21 (TREC-WSJ) 0, 112 0, 050 0, 043 0, 084
22 (TREC-WSJ) 0, 114 0, 048 0, 042 0, 083
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FIG. 12. Friedman rankings for the studied IQBE MOEAs-GP.

(e.g., Holm’s), which algorithm partners’ average results are
dissimilar. Next, we describe the procedure used.

Friedman’s test [with Friedman value: 78.00, χ2(7.81),
p < .0001] was applied to the data in Table 4 to see if there
were differences in the results (using the hypervolume indi-
cator). A χ2 distribution with 3 df for Nds = 26 was used.
We emphasize in boldface the highest value between the two
values being compared, and as the smallest in both cases cor-
responds to the value given by the statistic, it informs us of the
rejection of the null hypothesis; in this manner, Friedman’s
test shows the existence of significant differences among the
observed results in all test queries. Given that the p value of
Friedman’s test is lower than the level of significance con-
sidered α = 0.05, there are significant differences among the

observed results. Attending to these results, a post hoc statis-
tical analysis could help to detect specific differences among
algorithms.

In Figure 12, the values of the average rankings using
Friedman’s test are drawn. Each column represents the aver-
age ranking obtained by an IQBE MOEA-GP approach;
that is, if a certain IQBE MOEA-GP achieves rankings
1, 3, 1, 4, and 2 on five datasets, the average ranking is
1+3+1+4+2

5 = 11
5 . The height of each column is proportional

to the ranking; the higher a column, the better its associated
algorithm.

We now apply Holm’s test to compare the best ranking
IQBE MOEA-GP with the remaining IQBE MOEAs-GP. In
order to show the results of this test, we will present the table
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TABLE 5. Holm’s table for IQBE-NSGA-II-GP as control IQBE MOEA-GP.

I IQBE MOEA-GP Z p α/i Hypothesis

3 IQBE-SPEA-GP 8,378544 0,000000 0,016667 R for IQBE-NSGA-II-GP
2 IQBE-SPEA2-GP 5,585696 0,000001 0,025000 R for IQBE-NSGA-II-GP
1 IQBE-MOGA-GP 2,792848 0,005225 0,050000 R for IQBE-NSGA-II-GP

TABLE 6. Average number of different queries (in the decision space) for each test query and the four studied IQBE MOEAs-GP on the Cranfield, CACM,
MEDLINE, and TREC-WSJ collections.

Query no. (collection) IQBE-NSGA-II-GP IQBE-SPEA2-GP IQBE-SPEA-GP IQBE-MOGA-GP

1 (Cranfield) 302, 33 20, 77 14, 40 106,10
2 (Cranfield) 299, 37 19, 53 16, 33 97,90
23 (Cranfield) 236, 80 20, 20 14, 47 85,70
73 (Cranfield) 270, 03 14, 57 13, 30 173,57
157 (Cranfield) 255, 57 17, 03 15, 97 113,50
220 (Cranfield) 242, 33 17, 90 12, 90 151,13
225 (Cranfield) 258, 53 19, 00 15, 97 83,63

10 (CACM) 335, 33 20, 93 14, 13 46, 03
14 (CACM) 397, 50 20, 20 18, 60 26, 47
25 (CACM) 370, 93 22, 87 16, 60 27, 73
26 (CACM) 282, 10 19, 53 14, 43 51, 37
43 (CACM) 344, 57 23, 37 14, 57 27, 97
58 (CACM) 311, 20 21, 10 12, 47 75, 20
59 (CACM) 330, 33 22, 57 17, 43 24, 60
61 (CACM) 280, 17 22, 37 14, 27 81, 13

1 (MEDLINE) 377, 57 10, 03 17, 20 133, 57
20 (MEDLINE) 328, 97 9, 47 13, 63 38, 33
23 (MEDLINE) 349, 80 12, 37 14, 47 32, 87
28 (MEDLINE) 275, 70 10, 53 14, 87 26, 90
29 (MEDLINE) 237, 97 12, 07 16, 10 31, 77

2 (TREC-WSJ) 308, 37 25, 63 20, 00 25, 20
3 (TREC-WSJ) 288, 70 27, 07 19, 37 33, 37
8 (TREC-WSJ) 306, 87 23, 77 19, 00 36, 03
11 (TREC-WSJ) 263, 17 21, 63 17, 47 60, 17
21 (TREC-WSJ) 292, 10 24, 60 18, 37 27, 97
22 (TREC-WSJ) 343, 83 27, 23 19, 70 34, 03

associated with Holm’s procedure, in which all the computa-
tions are shown. In this table (Table 5) the IQBE MOEAs-GP
are ordered with respect to the z value obtained. Thus, by
using the normal distribution, we can obtain the correspond-
ing p-value associated with it and this can be compared
with the associated α/i in the same row of the table to
show whether the associated hypothesis of equal behavior
is rejected in favor of the best ranking IQBE MOEA-GP
(marked with an R) or not (marked with an A).

The tests reject the hypothesis of equality of means for
the tree IQBE MOEAs-GP. Holm’s method allow us to point
out that IQBE-NSGA-II-GP is better (using the hypervol-
ume indicator) than IQBE-SPEA2-GP, IQBE-SPEA-GP and
IQBE-MOGA-GP with α = 0.05.

Number of queries. In Table 6, we present the average num-
ber of different queries (in the decision space) for the 30 runs
for each of IQBE MOEAs-GP and test query for the Cranfield,
CACM, MEDLINE, and TREC-WSJ collections.

Results in Table 6 show that IQBE-NSGA-II-GP is the
IQBE MOEA-GP approach that learns a larger number of

different queries, in the decision space, than did the other
IQBE MOEAs-GP (see boldface values).

As in the previous subsection, we want to check if these
results are statistically significant. To compare these results,
we will use the Friedman’s test to check whether all the
results obtained by the algorithms present any inequality.
In the case of finding it, we will use Holm’s test to know
which algorithms partners average results are dissimilar. In
the following, we describe the used procedure.

Friedman’s test (with Friedman value: 71.769, χ2(7.81,
p < .0000) was applied to the data in Table 6 to see if there are
differences in the results (using the hypervolume indicator).
A χ2 distribution with 3 df for Nds = 26 was used.We empha-
size in boldface the highest value between the two values that
are being compared, and as the smallest in both cases corre-
sponds to the value given by the statistic, it informs us of the
rejection of the null hypothesis; in this manner, Friedman’s
test shows the existence of significant differences among the
observed results in all test queries. Given that the p value of
Friedman’s test is lower than the level of significance con-
sidered α = 0.05, there are significant differences among the
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FIG. 13. Friedman rankings for the studied IQBE MOEAs-GP (considering the number of different queries).

TABLE 7. Holm’s table for IQBE-NSGA-II-GP as control IQBE MOEA-GP.

I IQBE MOEA-GP Z p α/i Hypothesis

3 IQBE-SPEA-GP 6.736097 0.000000 0.016667 R for IQBE-NSGA-II-GP
2 IQBE-SPEA2-GP 5.511352 0.000000 0.025000 R for IQBE-NSGA-II-GP
1 IQBE-MOGA-GP 2.449490 0.014306 0.050000 R for IQBE-NSGA-II-GP

observed results. Attending to these results, a post hoc sta-
tistical analysis could help detect specific differences among
algorithms.

In Figure 13, the values of the average rankings using
Friedman’s test are drawn.

We now apply Holm’s method to compare the best ranking
IQBE MOEA-GP with the remaining IQBE MOEAs-GP. To
show the results of this test, we will present the table asso-
ciated with Holm’s procedure, in which all the computations
are shown. In this table (Table 7), the IQBE MOEAs-GP are
ordered with respect to the z value obtained. Thus, by using
the normal distribution, we can obtain the corresponding p
value associated with it, which can be compared with the
associated α/i in the same row of the table to show whether
the associated hypothesis of equal behavior is rejected in
favor of the best-ranking IQBE MOEA-GP (marked with an
R) or not (marked with an A).

The tests reject the hypothesis of equality of means for the
tree IQBE MOEAs-GP. Holm’s method allows us to show
that IQBE-NSGA-II-GP is the IQBE MOEA-GP that learns
more different queries in the decision space, compared to
IQBE-SPEA2-GP, IQBE-SPEA-GP, and IQBE-MOGA-GP
with α = 0.05.

Time-consumption analysis. In Table 8, the spent time
average for each IQBE-MOEA-GP on each test query is
presented.

Results suggest that IQBE-NSGA-II-GP is the fastest
IQBE-MOEA-GP on small and big collections (Cranfield
and TREC-WSJ with 3,857 and 28,904 index terms, respec-
tively); on medium test collections (CACM and MEDLINE
with 7,562 and 7,170 index terms, respectively), IQBE-
NSGA-II-GP has a very good performance (i.e., low time
consumption), with IQBE-MOGA-GP the fastest on MED-
LINE and IQBE-SPEA-GP faster on CACM.

Summary analysis. The experimental results show that
IQBE-NSGA-II-GP is the IQBE MOEA-GP approach
that achieves the best performance; that is, it achieves better
nondominated solutions sets, using the C measure, the hyper-
volume indicator, and time consumption (see boldface values
in Tables 2, 4, and 8), in the process of learning Boolean
queries than other studied IQBE MOEAs-GP.

Results also show that IQBE-NSGA-II-GP is the IQBE
MOEA-GP approach that achieves more different queries, in
both the decision and the objective space for a unique run,
compared to the other studied IQBE MOEAs-GP.

All these results also were statistically supported using
nonparametric statistical tests.

Finally, we compared the best IQBE MOEA-GP approach,
IQBE-NSGA-II-GP, with the other IQBE MOEAs-GP and
with the classic Boolean IQBE-GP approach. In Fig-
ure 14, we graphically presented the queries achieved4

in a unique run, by IQBE-NSGA-II-GP, IQBE-MOGA-
GP, IQBE-SPEA-GP, IQBE-SPEA2-GP, and the Smith and
Smith (1997) Boolean IQBE-GP proposal. In Figure 14,
one can see that IQBE-NSGA-II-GP gets the best set of
solutions, with a good precision–recall trade-off. IQBE-
NSGA-II-GP is the IQBE MOEA-GP that covers more
objective space. It also improves the performance of the
Smith and Smith Boolean IQBE-GP proposal, whose unique
learned query is overcome (in both precision and recall
performance criteria) by all queries learned by the IQBE-
NSGA-II-GP.

From all these results, we can conclude that IQBE-NSGA-
II-GP is the best IQBE-GP approach for learning Boolean
queries.

4The results correspond to Test Query 1 of the Cranfield collection.
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TABLE 8. Average time consumption (in seconds) for each IQBE-MOEA-GP on each test query.

Query no. (collection) IQBE-NSGA-II-GP IQBE-SPEA2-GP IQBE-SPEA-GP IQBE-MOGA-GP

1 (Cranfield) 14, 93 288, 57 20, 80 16, 30
2 (Cranfield) 16, 10 330, 43 28, 83 16, 90
23 (Cranfield) 14, 77 287, 93 26, 37 16, 17
73 (Cranfield) 14, 77 288, 07 20, 23 15, 43
157 (Cranfield) 14, 80 287, 33 25, 67 16, 00
220 (Cranfield) 14, 17 287, 93 24, 93 15, 73
225 (Cranfield) 14, 23 289, 53 20, 33 15, 57

10 (CACM) 134, 33 416, 00 101, 53 132, 57
14 (CACM) 144, 63 415, 63 108, 30 141, 30
25 (CACM) 134, 33 415, 43 101, 43 131, 77
26 (CACM) 134, 97 414, 90 102, 27 131, 87
43 (CACM) 134, 23 416, 10 101, 43 131, 47
58 (CACM) 132, 27 417, 73 103, 73 130, 90
59 (CACM) 134, 03 419, 20 102, 80 131, 63
61 (CACM) 133, 13 419, 70 103, 97 131, 03

1 (MEDLINE) 13, 47 283, 00 19, 60 12, 27
20 (MEDLINE) 13, 70 283, 00 19, 33 13, 23
23 (MEDLINE) 13, 27 282, 50 19, 67 13, 13
28 (MEDLINE) 13, 87 283, 17 19, 07 13, 07
29 (MEDLINE) 11, 60 282, 70 19, 43 13, 23

2 (TREC-WSJ) 305, 30 558, 77 306 ,70 306, 70
3 (TREC-WSJ) 304, 17 562, 03 305 ,87 305, 87
8 (TREC-WSJ) 304, 77 606, 87 307 ,13 307, 13
11 (TREC-WSJ) 306, 30 560, 07 305, 93 305, 93
21 (TREC-WSJ) 305, 13 560, 83 305, 77 305, 77
22 (TREC-WSJ) 304, 67 560, 87 305, 73 305, 73
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FIG. 14. Pareto sets achieved by IQBE-NSGA-II-GP, IQBE-MOGA-GP, IQBE-SPEA-GP, IQBE-SPEA2-GP, and Smith and Smith’s (1997) Boolean
IQBE-GP for the Test Query 1 on the Cranfield collection.

In addition, we can say that the use of MOEAs improves
the IQBE process by providing more queries in a unique run.
Several queries with different precision–recall trade-offs can
be given to user. This fact is graphically shown in Figure 14,
where:

• The two best IQBE MOEAs-GP, IQBE-NSGA-II-GP
and IQBE-MOGA-GP, always get queries with better

performance, in both criteria, than the one learned by the
classic non-multi-objective Boolean IQBE-GP approach; and

• the two “worst” IQBE MOEAs-GP, IQBE-SPEA-GP and
IQBE-SPEA2-GP, learn several queries. Some of these
queries have a worse performance (in both criteria) than
did the unique query learned by the classic Boolean IQBE-
GP approach, but other queries get good results in
recall. Therefore, we cannot say that IQBE-SPEA-GP and
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IQBE-SPEA2-GP are worse than the classic Boolean IQBE-
GP approach, which only gets a unique query with “good”
precision and poor recall.

Conclusions

In this contribution, an analysis of performance in the
Boolean IRSs context of four of the most currently used
MOEAs in the specialized literature was performed. The
studied MOEAs were applied on the automatic learning
of Boolean queries adapted to use GP components. All of
them extend the Smith and Smith (1997) Boolean IQBE-GP
proposal to work in the multi-objective context.

The experimental results and the statistical analysis
showed that NSGA-II, with GP (IQBE-NSGA-II-GP), is the
best IQBE MOEA-GP approach, considering the C measure,
the hypervolume indicator, and time consumption. That is,
IQBE-NSGA-II-GP obtained the best set of solutions with a
good precision–recall trade-off for each test query.

IQBE-NSGA-II-GP is also the IQBE MOEA-GP that
achieved a larger set of different queries in both the decision
and the objective space. It also improved the performance
of the Smith and Smith (1997) Boolean IQBE-GP proposal
learning more than one query in a unique run.

Finally, with this study, the benefits of using MOEAs in
the IQBE process also were proven.
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Appendix

Wilcoxon’s Test Tables 9–14.

TABLE 9. IQBE-NSGA-II-GP versus IQBE-MOGA-GP using Wilcoxon’s tests (ps = .05 and .1).

R+ R− Critical value Significant differences?
IQBE-MOGA-GP IQBE-NSGA-II-GP (p = .05/p = .1) (p = .05/p = .1)

351 0 98/110 Yes/Yes

TABLE 10. IQBE-NSGA-II-GP versus IQBE-SPEA2-GP using Wilcoxon’s tests (ps = .05 and .1).

R+ R− Critical value Significant differences?
IQBE-SPEA2-GP IQBE-NSGA-II-GP (p = .05/p = .1) (p = .05/p = .1)

351 0 98/110 Yes/Yes

TABLE 11. IQBE-NSGA-II-GP versus IQBE-SPEA-GP using Wilcoxon’s tests (ps = .05 and .1).

R+ R− Critical value Significant differences?
IQBE-SPEA-GP IQBE-NSGA-II-GP (p = .05/p = .1) (p = .05/p = .1)

351 0 98/110 Yes/Yes

TABLE 12. IQBE-SPEA2-GP versus IQBE-MOGA-GP using Wilcoxon’s tests (ps = .05 and .1).

R+ R− Critical value Significant differences?
IQBE-SPEA2-GP IQBE-MOGA-GP (p = .05/p = .1) (p = .05/p = .1)

317 34 98/110 Yes/Yes

TABLE 13. IQBE-SPEA2-GP versus IQBE-SPEA-GP using Wilcoxon’s tests (ps = .05 and .1).

R+ R− Critical value Significant differences?
IQBE-SPEA-GP IQBE-SPEA2-GP (p = .05/p = .1) (p = .05/p = .1)

351 0 98/110 Yes/Yes

TABLE 14. IQBE-SPEA-GP versus IQBE-MOGA-GP using Wilcoxon’s tests (ps = .05 and .1).

R+ R− Critical value Significant differences?
IQBE-SPEA-GP IQBE-MOGA-GP (p = .05/p = .1) (p = .05/p = .1)

154, 5 196, 5 98/110 No/No
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