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Abstract

Biomedical research has been revolutionized by high-

throughput techniques and the enormous amount of data

they are able to generate. In particular technology has the

capacity to monitor changes in RNA abundance for thou-

sands of genes simultaneously. The interest shown over

microarray analysis methods has rapidly raised. Clustering

is widely used in the analysis of microarray data to group

genes of interest targeted from microarray experiments on

the basis of similarity of expression patterns. In this work

we apply two clustering algorithms, K-means and Expecta-

tion Maximization to particular a problem and we compare

the groupings obtained on the basis of the cohesiveness of

the gene products associated to the genes in each cluster.

1. Introduction

Advances in molecular biology and new computational

techniques permit the systematical study of molecular pro-

cesses that underlie biological systems [8]. Particularly,

microarray technology has revolutionized modern biomed-

ical research by its capacity to monitor changes in RNA

abundance for thousands of genes simultaneously [3]. The

greatest challenge in microarray technology development is

the analytical process followed to successfully analyze data

acquired from microarray experiments.

Once the genes of interest from DNA microarray data

are targeted a common first step is to cluster the data on the

basis of similarity of expression patterns since genes the

same expression patterns are likely to be involved in the

same regulatory processes [14]. Though in theory there is

a big step from simple correlation analysis to gene inter-

action networks, several papers indicate that the clustering

of gene expression data does result in groups of genes that

have related functions [6]. Therefore, clustering genes of

known functions with poorly characterized genes provides

a means of gaining insights into the functions of the latter

[1]. However, the extent to which clustering reveals useful

information about the system under study depends on the

extent to which the clustering method successfully groups

intrinsically related elements. A remedy then is to integrate

known biological knowledge into the clustering procedure

itself. One of the most widely used sources of biological

knowledge is the Gene Ontology project [2], which stores

one of the most powerful characterization of genes based on

gene products.

In this work we compare the results of two different

clustering algorithms when grouping microarray data: the

K-means [7], a classic clustering algorithm based on Eu-

clidean distance which is widely used on data from micro-

array experiments [9], and the Expectation Maximization

(EM), proposed by Lauritzen in 1995 [10] as a variation the

K-means. The main novelty of this technique is to obtain

the previously unknown Probability Distribution Function

(PDF) [15] of the complete dataset. The algorithms will be

applied to an specific problem, the inflammation and host

response to injury in humans. Clusters resulting from both

algorithms are compared based on the cohesiveness of the

gene products associated to the genes in each cluster.

To obtain such gene product information we will use an

algorithm termed EMO-CC (Evolutionary Multi-Objective

Conceptual Clustering), proposed in Romero-Zaliz et al.,

[11], which retrieves meaningful substructures from net-

work databases using multi-objective and multi-modal opti-
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Figure 1. Outline of the work structure.

mization techniques. We will compare the results obtained

by application of both K-means and Expectation Maxi-

mization in their specificity and their capability to retrieve

immuno-inflammatory related terms.

This paper is structured as follows. In section 2 we des-

cribe the experiment under study. In section 3 we the algo-

rithms applied in this study and we can find in section 4 the

results obtained by application of the algorithms. Section 5

highlights the conclusion obtained from this work. An out-

line of steps followed in the preparation of this paper the

paper structure can be seen in Fig.1

2. Problem Description: Inflammation and the

Host Response to Injury

The problem under study deals with inflammation and

the host response to injury. Understanding the inflamma-

tion process is critical because the body uses inflammation

to protect itself from infection or injury (e.g., crushes, mas-

sive bleeding, or a serious burn). The host response to

trauma and burns is a collection of biological and patho-

logical processes that depends critically upon the regulation

of the human immuno-inflammatory response [4].

The data were acquired from blood samples collected

from eight human volunteers, four treated with intravenous

endotoxin (i.e., patients 1 to 4) and four with placebo (i.e.,

patients 5 to 8). Complementary RNA was generated from

circulating leukocytes at 0, 2, 4, 6, 9 and 24 hours with

GeneChips HG-U133A v2.0 from Affymetrix Inc., which

contains 22216 probe sets (a probe set codes part of a

gene), analyzing the expression level of 18400 transcripts

and variants, including 14500 well-characterized human

genes. Analysis of the set of gene expression profiles ob-

tained from this experiment is complex, given the number

of samples taken and variance due to treatment, time, and

subject phenotype. Therefore, we believe this problem is

typical and informative as a microarray case study.

3. Methods

We compare the results of two different clustering algo-

rithms when grouping microarray data: the K-means [7], a

classic clustering algorithm and the Expectation Maximiza-

tion (EM) algorithm, proposed by Lauritzen in 1995 [10]

as a variation the K-means. They are applied to the inflam-

mation and host response to injury in humans described in

Section 2. The comparison is based on the coherence of

the clusters obtained from both algorithms with the gene

products associated to the records in each cluster.To obtain

such gene product information we use an algorithm termed

EMO-CC (Evolutionary Multi-Objective Conceptual Clus-

tering), proposed in Romero-Zaliz et al., [11].

One of the main steps in microarray data analysis is to

decide the set of probe sets (a probe set codes part of a gene)

from the ones analyzed by the microarray which show a

significant behavior for the problem under study. In our

particular problem, this set is made out of probe sets which

exhibit different behavior between the treatment and control

experimental conditions, among subjects and among time

points. From the 22216 probe sets present in the GeneChips

HG-U133A v2.0 microarray, 2155 are selected as the set of

probe sets exhibiting different behavior between treatment

and control experimental conditions, among subjects and

among time points [12, 13]. Therefore, any further analysis

(clustering probe sets) will be made over this dataset only

taking into account the treatment group (subjects inoculated

with an endotoxin).

3.1. K­means Clustering Algorithm

We apply a classic clustering algorithm, K-means [7],

for identification of gene expression patterns in the inflam-

mation problem data set. The K-means clustering can be

described as a partitioning method which groups the obser-

vations in your data into non-overlapping clusters. The al-

gorithm runs an iterative process, where each record is as-

signed to the closest centroid. New centroids are calculated

for the resulting clusters and the records are reassigned to

the closest centroid. The process automatically stops once

a steady state has been reached.
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The similarity measure chosen has been the Euclidean

Distance, a classical distance measure, since distance mea-

sures have exhibited a better behavior than correlation based

measures for gene grouping [12, 13].

3.2. Expectation Maximization Clustering
Algorithm

The Expectation Maximization (EM) algorithm, pro-

posed by Lauritzen in 1995 [10], is a variation the K-means.

The main novelty of this technique is to obtain the pre-

viously unknown Probability Distribution Function (PDF)

[15] of the complete dataset.

This PDF can be approximated as a linear combination

of NC components, defined from certain parameters Θ =
∪Θj , �j = 1...NC that have to be found.

P �x) =
N��

j=�

πjp�x; Θj) (1)

N��

j=�

πj = 1 (2)

where πj are the a priori probability of each cluster, P �x)
denotes the arbitrary PDF and p�x; Θj) the PDF of each j

component. Each cluster corresponds to its data samples,

which belong to a single density that are combined. PDF

of arbitrary shapes can be estimated by using T-Student,

Bernouilli, Poisson, normal or log-normal functions. In this

research, the normal distribution has been used as shape of

the PDF.

3.3. EMO­CC

We make use of a conceptual clustering methodol-

ogy termed Evolutionary Multi-Objective Conceptual Clus-

tering �EMO-CC), [11] relying on the NSGA-II multi-

objective (MO) genetic algorithm [5], that focuses primarily

on the discovery of objects identified by their most repre-

sentative features lying in the set of all optimal solutions

of a multi-objective optimization problem. We apply this

methodology to identify conceptual models in structural

databases generated from gene ontologies. These models

can explain and predict phenotypes in the inflammation and

host response to injury problem, similar to models provided

by gene expression or other genetic markers.

We apply EMO-CC to the Gene Ontology database (i.e.,

the GO Project, [2]) EMO-CC to recover optimal substruc-

tures containing genes sharing a common set of terms,

which are defined at different levels of specificity and cor-

respond to different networks. Therefore, each cluster ob-

tained by application ofK-means or ExpectationMaximiza-

tion algorithm is used as a query for applying the EMO-

CC algorithm on the Gene Ontology database. We retrieve

substructures containing gene related terms shared by mem-

bers of the cluster and comparison of K-means and Expec-

tation Maximization is based on such substructures, both in

their specificity and in their capability to retrieve immuno-

inflammatory related terms.

4. Results

The two clustering algorithms compared in this paper

need the number of resulting clusters, k, as an input pa-

rameter. This number k has been estimated for the treat-

ment group in the inflammation and host response to in-

jury dataset (see Section 2) was calculated by means of the

silhouette function. Its maximum mean value (0� 47) was
reached when k = 24 after evaluating k = 1...120.
The analysis of the relation between clusters obtained

applying K-means and clusters obtained applying EM can

be seen in Table 1. We can see how some of the levels of in-

tersection between K-means and EM are very high for some

clusters: K-means �12 and EM �22 have an intersection

level of 97,06%, only one probe set out of 34 has been clas-

sified different by them. The same happens with K-means

�24 and EM �8, with an intersection level of 95,24%, with

only two probe sets out of 42 classified differently. A to-

tal of 16 clusters out of the 24 are similarly classified with

an intersection level greater than 70%. However, some of

the clusters show low levels of intersection, as it happens

with K-means �14 with 53 probe sets, which is classified

by EM in clusters �3(15 probe sets), �13(15 probe sets),

�20(4 probe sets) and �23 (19 probe sets). The same situ-

ation applies to K-means �6 with 145 probe sets, which is

classified by EM in clusters �1(49 probe sets), �5(65 probe

sets), �9(30 probe sets) and �23 (19 probe sets). In this case

partition of K-means �6 by EM has resulted in three groups

with a significant number of probe sets (33,8% 44,82% and

20,7% of the 145 respectively). It is noteworthy how the

probe sets obtained in three groups obtained from K-means

are clustered together with probe sets from other groups by

EM.

The comparison of both clustering techniques has been

made applying the EMO-CC algorithm. Each cluster ob-

tained by application ofK-means or ExpectationMaximiza-

tion algorithm is used as a query for applying the EMO-CC

algorithm on the Gene Ontology database [2]. We have re-

trieved substructures containing gene related terms shared

by members of the cluster and comparison of K-means and

Expectation Maximization is based on such substructures,

both in their specificity and in their capability to retrieve

immuno-inflammatory related terms. To perform the com-

parison we have considered two different types of cluster

classification of K-means in relation to EM. On the one

hand, clusters with a high percentage of genes classified to-

gether and only some of them are excluded from the main
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Expectation Maximization
1 2 3 4 5 6 7 8 9 10 11 12 13 14 14 16 17 18 19 20 21 22 23 24 Intersection

�
­m

ea
n
s

1 25 16 0 255 7 0 14 0 0 1 0 0 0 0 0 5 0 4 0 0 0 0 0 0 77,98%

2 0 0 0 14 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 104 75,36%

3 3 26 0 0 0 0 0 0 0 0 0 0 0 0 0 140 0 2 0 0 0 4 0 0 80,00%

4 1 0 0 2 0 0 38 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 88,37%

5 207 0 0 1 0 0 0 0 0 0 0 0 0 0 0 3 0 6 0 0 0 15 0 0 89,22%

6 49 0 0 0 65 0 0 0 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 44,83%

7 0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 30 0 0 0 6 2 0 55,56%

8 15 0 0 0 0 0 0 0 32 2 0 0 0 0 0 0 0 1 0 6 0 54 1 0 48,65%

9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 0 1 0 5 0 40 44 0 44,44%

10 0 0 0 0 46 0 0 0 2 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 86,79%

11 0 0 0 0 0 0 4 0 0 23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 85,19%

12 0 0 0 0 0 0 0 0 73 2 3 0 0 0 25 0 0 0 0 11 0 0 0 0 64,04%

13 0 0 0 0 0 0 0 0 0 0 0 0 10 0 5 0 0 0 0 71 0 0 2 0 80,68%

14 0 0 15 0 0 0 0 0 0 0 0 0 15 0 0 0 0 0 0 4 0 0 19 0 35,85%

15 0 0 0 0 0 0 0 0 0 0 66 0 0 0 4 0 0 0 4 0 0 0 0 0 89,19%

16 0 0 1 0 0 0 0 0 0 0 0 0 26 1 59 0 0 0 0 1 2 0 0 0 65,56%

17 0 0 17 0 0 0 0 0 0 0 0 0 0 0 0 0 1 5 0 0 0 0 0 0 73,91%

18 0 0 0 0 0 0 0 0 0 3 0 0 0 0 14 0 0 0 0 0 2 0 0 0 73,68%

19 0 0 1 0 0 0 0 0 0 0 0 0 10 32 0 0 9 0 0 0 0 0 0 0 61,54%

20 0 0 0 0 0 0 0 0 0 0 7 4 0 0 0 0 0 0 54 0 5 0 0 0 77,14%

21 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 43 0 0 0 84,31%

22 0 0 0 0 0 0 0 1 0 0 0 33 0 0 0 0 0 0 0 0 0 0 0 0 97,06%

23 0 0 0 0 0 34 0 0 0 0 0 0 0 3 0 0 4 0 0 0 0 0 0 0 82,93%

24 0 0 0 0 0 2 0 40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 95,24%

Table 1. Relation of the clusters obtained by application of K-means and Expectation Maximization.

group, as it the case ofK-means �5 and EM �1 andK-means

�17 and EM �3, where 89,22% and 73,91% of the probe sets

are grouped together respectively. We are also interested in

clusters obtained by application of EM grouping probe sets

from differentK-means clusters, as it is the case ofK-means

�12 and �16 and EM �14.

For each of the clusters compared we now show tables

containing the common substructures obtained by each of

the clusters including the gene product terms classified in

Biological Process, Molecular Function and Cellular com-

ponent with their relatives specificity values (specificity as

a P-value measured between 0 and 1, with acceptable when
smaller than 0� 05 and with better values when closer to 0).

Comparison of clusters K-means �5 and EM �1 has been

summarized in Table 2. We can see how for common

substructures (substructures containing the same or almost

the same gene products), the specificity values obtained by

clusters grouped by EM are better (closer to 0) than the
ones obtained by clusters grouped by K-means. For in-

stance, the substructure associated to protein metabolism

and regulation of biological process has an specificity value

of 8� 02E−07 for the EM and a value of 0� 01602896 for the
K-means. However, the majority of substructures retrieved

by EM are also retrieved by K-means.

We can see the results of comparing K-means �17 and

EM �3 in Table 3

The situation is very similar to the comparison of K-

means �5 and EM �1. All substructures retrieved by EM

are also retrieved by K-means but the first obtains better re-

sults regarding the specificity values. We can see how the

majority of substructures retrieved by K-means have worst

(higher) specificity values than substructures retrieved by

EM. However, there are some cases where K-means clus-

ters have better specificity values than K-means. That is

the case of the substructure related to signal transduction,

with a specificity value of 1� 20E − 05 K-means �12 and

4� 16E − 06 for K-means �16 and a value of 0� 001010838
for EM �15. It is also remarkable the fact that there are some

interesting substructures which are retrieved by EM and not

by K-means clusters, as it is the case of the substructure

associated to ion transport, regulation of biological process

and immune response or the ones associated to regulation

of transcription.

The last comparison to show, K-means �12-�16 and EM

�14, is summarized in Table 4.

5. Conclusions

In this work we have compared the results of two differ-

ent clustering algorithms when grouping microarray data:

theK-means [7], a classic clustering algorithm based on Eu-

clidean distance which is widely used on data from micro-

array experiments [9] and the Expectation Maximization al-

gorithm (EM), proposed by Lauritzen in 1995 [10] as a vari-

ation the K-means. They have been applied to the inflam-

mation and host response to injury in humans (see Section

2). The comparison has been based on the of the clusters

obtained from both algorithms with the gene products asso-

ciated to the records in each cluster. To obtain such gene

product information we have applied the EMO-CC (Evolu-

tionary Multi-Objective Conceptual Clustering), proposed

in Romero-Zaliz et al., [11], which retrieves meaningful

substructures from network databases using multi-objective

and multi-modal optimization techniques.

Clusters have been obtained for the treatment group of

the experiment under study by application of both algo-

rithms, resulting the optimal number of cluster k = 24 cal-
culated by means of the silhouette function. In Table 1 we

can see the relation between the two clusterings performed.

Some of the levels of intersection betweenK-means and EM

resulted very high for some of the clusters, and therefore

the substructures retrieved by them from the gene product
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Biological Process Molecular Function Cellular Component Specificity Cluster
immune response binding cellular component 0,01286757 EM �1

antioxidant activity

immune response binding cellular component 0,04208912 Km �5

antioxidant activity

protein metabolism nucleotide binding cellular component 8,02E-07 EM �1

regulation of biological process protein binding

protein metabolism nucleotide binding cellular component 0,01602896 Km �5

regulation of biological process

protein binding

protein targeting enzyme regulator activity intracellular 1,18E-05 EM �1

protein binding

protein targeting enzyme regulator activity intracellular 0,000101943 Km �5

protein binding

protein targeting molecular function integral to membrane 3,97E-05 EM �1

regulation of transcription

DNA-dependent cell fraction

immune response

protein targeting molecular function integral to membrane 0,006271776 Km �5

regulation of transcription

DNA-dependent cell fraction

immune response

Table 2. Comparison of cluster K-means (�5) and Expectation Maximization (�1).

Biological Process Molecular Function Cellular Component Specificity Cluster
protein metabolism translation regulator activity cellular component 2,22E-07 EM �3

cellular process

protein metabolism translation regulator activity cellular component 0,007641355 Km �17

cellular process

protein targeting enzyme regulator activity intracellular 1,18E-05 EM �3

protein binding

protein targeting catalytic activity cellular component 0,04743564 Km �17

protein binding

zinc ion binding

protein transport catalytic activity; cytoplasm 0,000976312 EM �3

nucleotide binding

protein transport catalytic activity cytoplasm 0,009011493 Km �17

nucleotide binding

regulation of biological process transporter activity cellular component 3,16E-05 EM �3

transition metal ion binding

catalytic activity

regulation of biological process transporter activity cellular component 0,04729886 Km �17

transition metal ion binding

catalytic activity

signal transduction catalytic activity cellular component 1,05E-06 EM �3

protein targeting nucleotide binding

regulation of biological process protein binding

signal transduction catalytic activity cellular component 0,000795458 Km �17

protein targeting nucleotide binding

regulation of biological process protein binding

Table 3. Comparison of cluster K-means (�17) and Expectation Maximization (�3).

Biological Process Molecular Function Cellular Component Specificity Cluster
immune response antioxidant activity cellular component 0,0174212 EM �15

protein binding

immune response signal transducer activity extracellular region 0,0374719 Km �16

protein binding

protein metabolism molecular function cellular component 5,53E-05 EM �15

protein metabolism molecular function cellular component 3,30E-06 Km �12

immune response

protein metabolism molecular function cellular component 8,96E-08 Km �16

immune response

protein folding nucleotide binding cellular component 0,04578355 EM �15

catalytic activity

RNA binding

cell communication catalytic activity cellular component 0,02786016 EM �15

nucleotide binding

transition metal ion binding

signal transduction binding; integral to membrane 0,001010838 EM �15

catalytic activity

protein transport catalytic activity cytoplasm 0,004275726 EM �15

nucleotide binding

Table 4. Comparison of cluster K-means (�12 and �16) and Expectation Maximization (�15).
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database are almost the same. A total of 16 clusters out of

the 24 were similarly classified with an intersection level

greater than 70%. However, some of the clusters showed

low levels of intersection.

In order to compare the clusters we considered two dif-

ferent types of cluster classification of K-means in relation

to EM. On the one hand, clusters with a high percentage of

genes classified together and only some of them excluded

from the main group, as it the case of K-means �5 and EM

�1 and K-means �17 and EM �3. We can see in Table 2

and Table 3 respectively how the substructures retrieved by

both of them are very similar and the specificity levels ob-

tained by EM clusters are higher than the ones obtained by

K-means. Therefore EM is removing probe sets which are

not related to the other records in the cluster. On the other

hand we are interested in clusters obtained by application of

EM grouping probe sets from different K-means clusters, as

it is the case of K-means �12 and �16 and EM �14. We can

see how in general the substructures retrieved by EM have

better specificity values and furthermore, new substructures

are retrieved by EM with good levels of specificty (less than

0� 05). Therefore we can conclude that EM is breaking up
clusters created by K-means with successful results in the

gene product related information.

Finally, we can conclude that the Expectation Maximiza-

tion algorithm performs better than the K-means algorithm

for the analysis of microarray data as seen in the compari-

son related to gene product information.
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