A Quick MST-Based Algorithm to Obtain Pathfinder

Networks (oo, n — 1)

Arnaud Quirin and Oscar Cordén

European Centre for Soft Computing, Edf. Cientifico Tecnoldgico, Mieres, Spain.

E-mail: {arnaud.quirin, oscar.cordon} @ softcomputing.es

Vicente P. Guerrero-Bote

Department of Information and Communication, University of Extremadura, Badajoz, Spain.

E-mail: guerrero @ unex.es

Benjamin Vargas-Quesada and Felix Moya-Anegon

SCIimago Group, Communication and Information Science Faculty, University of Granada, Granada, Spain.

E-mail: {benjamin, felix} @ ugr.es

Network scaling algorithms such as the Pathfinder algo-
rithm are used to prune many different kinds of networks,
including citation networks, random networks, and social
networks. However, this algorithm suffers from run time
problems for large networks and online processing due
to its O(n*) time complexity. In this article, we introduce a
new alternative, the MST-Pathfinder algorithm, which will
allow us to prune the original network to get its PFNET (oo,
n—1)injust O(n? - log n)time.The underlying idea comes
from the fact that the union (superposition) of all the Min-
imum Spanning Trees extracted from a given network is
equivalent to the PFNET resulting from the Pathfinder
algorithm parameterized by a specific set of values (r = oo
and g =n-1), those usually considered in many differ-
ent applications. Although this property is well-known in
the literature, it seems that no algorithm based on it has
been proposed, up to now, to decrease the high compu-
tational cost of the original Pathfinder algorithm. We also
present a mathematical proof of the correctness of this
new alternative and test its good efficiency in two differ-
ent case studies: one dedicated to the post-processing
of large random graphs, and the other one to a real world
case in which medium networks obtained by a cocitation
analysis of the scientific domains in different countries
are pruned.

Introduction

Network models are used in many areas of cognitive
and computer science. Among them, social network models
depict the complex tissue of relationships between individ-
uals. The most important key of social network analysis is

Received September 12, 2007; revised April 29, 2008; accepted April 29,
2008

© 2008 ASIS&T e Published online 8 July 2008 in Wiley InterScience
(www.interscience.wiley.com). DOI: 10.1002/asi.20904

that it does not focus on individual or other local properties,
but on the relationship between individuals, groups, or other
kind of social actors and at various scales, from personal
to international. For that, the field of social network anal-
ysis provides various metrics about individuals (or groups,
societies, organizations, Web sites, etc. denoted by the term
node in the following) and relationships (denoted by the term
link in the following) in order to process, map, and visualize
these entities. These metrics, such as the betweenness and
the closeness for instance, are exploited in many scientific
domains such as sociology, sociolinguistics, social psychol-
ogy, communication studies, economics, and information
science (Breiger, 2004; Martino & Spoto, 2006).

Social networks have some interesting and unusual topo-
logical properties that are often valuable to be printed graph-
ically. However, the raw networks cannot be often visualized
easily, especially when the sizes of the networks grow pro-
portionally with the number of data to be dealt with, and thus
specific algorithms for simplifying such large graphs have
been developed. Network scaling algorithms, whose goal
is to take proximity data and to obtain structures revealing
the underlying organization of those data, use similarities,
correlations, or distances to prune a graph based on the prox-
imity between a pair of nodes. One of the most known, the
Pathfinder algorithm (Dearholt & Schvaneveldt, 1990), is
used frequently due to its various mathematical properties,
including the conservation of the triangle inequalities among
a path of any number of links, the capability of modeling
asymmetrical relationships, the representation of the most
salient relationships present in the data, and the fact that
hierarchical constraints in most cluster analysis techniques
do not apply to Pathfinder Networks (PFNETs; Dearholt &
Schvaneveldt, 1990).

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY, 59(12):1912-1924, 2008

Pathfinder uses two parameters: r, which defines the
Minkowski metric used to measure distances in a path, and
g, which is a limit on the number of links allowed to vio-
late the triangle inequality. The PFNET structure becomes
sparser (has fewer links) as either r or g increases (Dearholt &
Schvaneveldt, 1990), whereas its interpretability increases.
This explains why PFNETSs (oo, n — 1), where both param-
eters were set to g=n — 1 and r =00, are used in a large
variety of applications, including author cocitation analysis
(Buzydlowski, 2002), latent knowledge visualization (Chen,
Kuljis, & Paul, 2001), scientific domain visualization (Chen,
1998a, 1998b, 2004; Moya-Anegén et al., 2007; Vargas-
Quesada & Moya-Anegén, 2007), communication networks
(Shope, DeJoode, Cooke, & Pedersen, 2004), animated visu-
alization models of toxins (Chen & Morris, 2003), and mental
models (Kudikyala & Vaughn, 2005).

Although this method is very powerful and has been
successfully applied to many different tasks, it has a main
drawback: its large run time consumption, which makes it
difficult to apply it for the processing of large networks when
time is a practical concern, as a consequence of its high order
polynomial time complexity (O(n*)). This slowness disal-
lows the online pruning of networks and cannot provide a
real time response when a strong interaction with a user is
needed.

A couple of proposals have been made to solve this
problem. Guerrero-Bote et al. (2006) proposed the Binary
Pathfinder algorithm, which reduced both the time and the
space complexity of the original Pathfinder to O(n> - logn)
and 4 squared matrices, respectively (Pathfinder requires
the use of 2 - (n — 1) squared matrices). In Quirin, Cordén,
Santamaria, Vargas-Quesada, & Moya-Anegén (2007), we
considered the similarity of the latter with shortest path algo-
rithms to design an even quicker variant by fixing the value
of parameter g to n — 1, reducing its run time to O(n>) and
its space complexity to 2 squared matrices. In spite of its
speed, this Fast Pathfinder variant is still too slow for the
real time pruning of large networks, as the run time was only
accelerated by a factor of n.

In this article, we introduce a new alternative, MST-
Pathfinder, that drastically decreases the run time by a
factor of n?-log=!(n) (ie., from On*) to O(n?-logn))
and saves an amount of memory corresponding to 2-n — 5
squared matrices, compared to the original Pathfinder.
MST-Pathfinder space complexity is just a little bit larger
than Fast Pathfinder and smaller than Binary Pathfinder. To
obtain this result, we had to fix r and ¢, the two main parame-
ters of Pathfinder, to some specific values, respectively co and
n — 1. So, even if this algorithm cannot be used in the general
case, this specific parameter setting is the most extended one
for PENET applications.

Two case studies are considered to test the efficiency of
the new proposal. In the first one, we study large and fully
connected random matrices and compare the run time of all
the algorithms applied on them. In a second case study, we
have selected the generation of visual science maps (or sci-
entograms) for the representation of vast scientific domains,

based on cocitation information. The efficiency of our new
algorithm is critical for this real case in which the saving in
time and memory is important for online visualization.

The structure of the current contribution is as follows. In
the second section, we review the existing improvements of
Pathfinder, designed for reducing its time and space com-
plexity. In the third section, we present our new proposal,
MST-Pathfinder. Last, in the fourth section, we experimen-
tally check the validity of our new MST-Pathfinder proposal
in comparison with the previous Pathfinder variants with
respect to run time in the two case studies. Finally, some
concluding remarks are pointed out in the last section.

Previous Approaches to Speed up the
Pathfinder Run Time

In this section, we first review the basis of the original
Pathfinder algorithm. Then, we describe the current state-
of-the-art of the previous existing proposals to design new,
quicker versions of it following the aim of speeding up its
processing.

Pathfinder

Pathfinder was introduced by Dearholt & Schvaneveldt
(1990) as a technique to choose the shortest links in a net-
work in the field of social networks analysis. The result of
the Pathfinder procedure is a pruned network called PFENET,
which keeps only those links that do not violate the trian-
gle inequality, stating that the direct distance between two
nodes must be less than or equal to the distance between
them passing through any group of intermediate nodes. As
said by its creators, PFNETSs provide unique representations
of the underlying structure for domains in which objective
measures of distance are available (Schvaneveldt, 1990).

The Pathfinder algorithm is based on the following two
main parameters.

1. re[l, oo], which defines the adaptive metric, the
Minkowski r-metric, is considered to measure the distance
between two network nodes not directly connected:

o= (s)

When r takes value 1, the Minkowski metric results in the
sum of the link weights; when it takes value 2, it becomes
the usual Euclidean metric, and when r tends to oo, the
path weight is the same as the maximum weight associated
with any link along the path.

2. g €[2,n — 1] (with n being the number of nodes in the net-
work), which limits the number of links in the paths for
which the triangle inequality is ensured in the final PENET.
Hence, every path connecting two nodes that violate the
triangle inequality, having an associated Minkowski dis-
tance greater than any other path between the same two
nodes composed of up to g links, will be removed.

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—October 2008 1913

DOI: 10.1002/asi

1. Compute W Htl=woOW!,, as follows: w;;fl =

MIN((W)"+ (Wi)HYVT, for 1 <m <n.
2. Compute D', as follows: d}k = MIN(w}k, -
. Iterate until W4 and DY are computed.
4. Compare W' and D7: all the links having the same values in
these two matrices will belong to the final PFNET.

Wi, for j # k.

w

FIG. 1. The Pathfinder algorithm.

To build a PENET, the following two different kinds of
auxiliary matrices are used:

. W;k, which stores the minimum cost to go from node j to
node k by following exactly i links. This matrix is computed
recursively using matrix Wj.k_l, with W! being the original
weight matrix.

° Di.k, which stores the minimum cost to go from node j to
node k by following any path in the network composed of i or
less links. This matrix is computed recursively using matrices
Wi oo Wi

The original Pathfinder algorithm pseudo-code is shown
in Figure 1. Notice that the algorithm has a time complexity
order O(q-n?) as g steps have to be done to build the ¢
matrices W and D'. Each of the latter matrices stores n>
weights, so a loop of this order is needed to compute them
in each step. Finally, an additional loop of n steps is needed
to compute each component of Wi*!, as seen in line 1 of
the algorithm. As the maximum possible value for gisn — 1,
Pathfinder has a time complexity of O(n*) in that case. On the
other hand, the resulting space is thus of complexity 2 - g - n?
(2-n* —2-n? when g =n — 1), since there is a need to build
g matrices W and ¢ other matrices D', as seen above.

Binary Pathfinder

Guerrero-Bote et al. (2006) recently proposed the Binary
Pathfinder algorithm, an improved variant of the original
Pathfinder aiming at reducing its time and space complex-
ity. Binary Pathfinder takes the two following aspects as a
base to put this improvement into effect:

1. The only matrix in the series of D' that is actually needed
for the algorithm to operate is the last one, DY, to be com-
pared with the initial weight matrix W'. The remainder
are not necessary.

2. The matrices D' can be directly generated from two previ-
ous ones in the same way as was done for the consecutive
Wi matrices: D't/ = D' ® D/.

Hence, we demonstrated that the distance matrix Dt/
storing the minimum distances between each couple of nodes
can be calculated from D' and D/, as follows:

A = MIN(dj,, &), (d},)" + (d)))'/")

where d ,11 = wy, obtaining the same result as with the original
Pathfinder algorithm described in the previous subsection.

Thanks to the latter, a new Pathfinder algorithm was
designed that does not need to compute every D' matrix,
i=1,...,q,butcan make larger steps. Taking the procedure
to transform an integer number to binary as a base (that is the
inspiration for the algorithm’s name), Guerrero-Bote et al.’s
Binary Pathfinder reduces the task to calculating just log(q)
matrices, those corresponding to indexes being powers of 2:
D', D?, D" D8,

The Binary Pathfinder algorithm pseudo-code is shown in
Figure 2. Notice that Binary Pathfinder keeps the same algo-
rithmic approach than the original Pathfinder version, the
classical dynamic programming approach (Dreyfus, 1965),
and the improvement introduced is due to the fact that it
smartly reduces the number of steps in the outer loop needed
to compute the same distance matrix D"~ while still sat-
isfying the Bellman’s principle of optimality (Bellman &
Kallaba, 1965).

The principal loop reduces the number of steps of the origi-
nal Pathfinder from g to log g. Therefore, the time complexity
of the new Binary Pathfinder variant becomes O(n> - log ¢)
instead of O(n - g), which in the maximum case becomes
o’ -logn) instead of on*), a very significant time dif-
ference for medium and large networks. On the other hand,
the space complexity is even more significantly reduced,
as only two squared matrices to compute D' in each step,
another matrix to store the final distance values DY, and one
last matrix W to store the original weights are required,
instead of 2 - ¢ matrices W' and D', as in the original algo-
rithm. Moreover, as Pathfinder, this algorithm can be applied
on directed networks and can consider any possible value for
gandr.

Fast Pathfinder

When analyzing the operation mode of the original
Pathfinder algorithm with ¢ =n — 1 from a computer science
point of view, one can recognize that what it does is nothing
but computing a distance matrix D"~! storing the lengths
of all the shortest paths (regarding the Minkowski r-metric)
between any pair of network nodes comprised by upton — 1
links, and then comparing the latter values to the original
weights in matrix W! to determine which links will finally
belong to the PFNET. In this case, the triangle inequality is

i=1;nqg=0; Generate D' = W; D7 < oco.
. IF (g mod 2 = 1) THEN compute DY = DY ® D'.
ng=1.
WHILE (2-i <q)
Compute D*' = D' © D'.
IF ((¢ — nq) mod (4 - i) > 0) THEN
Compute D7 = D7 © D%,
ng=nq+2-i.
i=2-i
. Compare W'and DY: all the links having the same values in
these two matrices will belong to the final PFNET.

CORXNAN B WD~

s

FIG. 2. Binary Pathfinder algorithm.

1914 JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—October 2008

DOI: 10.1002/asi

1. D« W, PENET <.
2. FOR k from 1 to n DO
3. FOR from 1 ton DO
FOR j from 1 to n DO
: dij =MIN{djj, (dig)" + (i)'}
. FOR i from 1 to n DO
FOR j from 1 to n DO
IF (d;; =w;;) THEN PFNET < PFNET U (i, j).

® N o v oa

FIG. 3. The Fast Pathfinder algorithm.

verified for the best path between any couple of nodes in the
network, thus the problem becomes a shortest path one.

In Quirin et al. (2007), the authors took the latter idea
as a base to compute the distance matrix in a more direct
way, thus reducing the number of steps required and speeding
up the algorithm. To do so, we applied again the dynamic
programming approach in order to ensure the obtaining of
the optimal solution for the graph shortest path problem.

As seen in Binary Pathfinder, the only two matrices that
are finally needed to obtain the PFNET as a result of prun-
ing the original network are D"~! and W'. Since D"~ ! is
a shortest path distance matrix, we borrowed an alternative
and quicker way to compute it from a classical algorithm
in graph theory (Cormen, Leiserson, Rivest, & Stein, 2001):
Floyd-Warshall’s algorithm (Floyd, 1962; Warshall, 1962),
also based on the dynamic programming approach, which
is able to compute all the shortest paths of length up to
n — 1 links (according to an Euclidean metric) in a cubic
time complexity.

Hence, the Floyd-Warshall’s algorithm was adapted to
the computation of the D"~! matrix for a PFNET using
the Minkowski r-metric and became the base of the Fast
Pathfinder proposal. Working in this way, we are able to
build this matrix in cubic time and avoid the need to compute
the temporary matrices W' and D', the substitution is much
more effective. The Fast Pathfinder pseudo-code is shown in
Figure 3.

Since the shortest path computation procedure has
an O(n’) time complexity and the W-D comparison
takes time O(n?), the algorithm will have a time com-
plexity of O(n’) + 0(n?) = MAX{0(n?), O(n®)} = O(n?).
Besides, notice that the algorithm is required to store only
two square matrices to operate (W and D).

MST-Pathfinder

The goal of this section is to introduce the MST-Pathfinder
algorithm using a well-known relation between Minimum
Spanning Trees (MST) and PFNETSs parameterized with
(r=o00 and g=n —1). We first review the Kruskal’s MST
algorithm that has served as a base for the definition of the new
algorithm, which is presented thereafter. Then, we present the
mathematical proof of the correctness of MST-Pathfinder, and
we detail its time and its space complexity.

Underlying Idea: Relation Between Minimum Spanning
Trees and Pathfinder Networks (r=00, g=n—1)

It is well-known that there is a relationship between the
results obtained with a MST! algorithm and the Pathfinder
algorithm. Dearholt and Schvaneveldt (1990) explicitly
stated that, for a given symmetric cost matrix W, r and ¢,
the union of all the MSTs extracted from a PENET(r, ¢) is
PFNET(co, n — 1). As we have seen in the previous two sec-
tions, for each couple of nodes (i, j), PEFNET(co, n — 1) is
the set of links with the minimum cost among all the paths
between the nodes i and j. On the other hand, Chen and Mor-
ris (2003) explored the relationships between both from a
network visualization point of view, after introducing that
a PFNET is the union set of all the possible MSTs derived
from a network. The authors compared the Kamada-Kawai
visualization of an MST network with the one obtained from
a PFNET, using the parameters g =n — 1 and r = co. They
concluded by saying that the visual-spatial features of the
PENET are better than those of the MST applied on cocitation
networks (for instance, MST gives more clustered networks),
but the MST algorithm is more efficient.

So, the very challenging development we are tackling in
this contribution is to provide the user with a new algo-
rithm giving the same result than Pathfinder (i.e., the same
PFNET(co, n — 1)) but with the same efficiency than the
usual MST algorithms. In fact, our roadmap is to propose
new implementations of PENET-based algorithms, by impos-
ing some constraints on the parameter values compared to the
original Pathfinder, in such a way that the new variants can
be faster for the generation of PFNETs(co, n — 1) online.
As we have seen in the previous section, Binary Pathfinder
is able to speed up the original Pathfinder algorithm, while
Fast Pathfinder algorithm speeds up Binary Pathfinder. The
latter one does so by imposing a single constraint, i.e.,
considering n — 1 as the only possible value for the param-
eter g. We can notice that all the latter algorithms apply the
dynamic programming approach, well-known in algorithm
theory (Dreyfus, 1965).

Now, we have explored how imposing one additional con-
straint we can succeed in generating PFNETSs using a greedy
approach. Greedy algorithms are known to be faster than their
dynamic programming counterparts when they are able to
reach the globally optimal solution (Cormen et al., 2001).
Therefore, our idea was to explore the potential of MST algo-
rithms for this task, first because a connection with Pathfinder
has already been proved, and second because they use the
greedy approach so they should be faster than the current
state-of-the-art Pathfinder variants.

To do so, we need to look for a stronger relation between
the PFNET(co,n — 1) of anetwork G, and the different MSTs
of G. Although it is not stated explicitly in Dearholt and

'Let G = (V, E) be anon-directed wei ghted and connected network where
V is the set of the nodes and E is the set of the links valued by their costs.
A Minimum Spanning Tree of G is a sub-network T = (V, E’) of G, E’ CE,
including all the nodes of G, where T is a tree and where the sum of the
costs of each link is minimal.

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—October 2008 1915

DOI: 10.1002/asi

Schvaneveldt (1990), the union of all the MSTs extracted
from a given network G is also its PENET(co, n — 1).

This result is very important because even if it concerns
only a specific setting of the Pathfinder algorithm (g=n — 1
and r = 00), this setting is the most used for many applica-
tions. In fact, when applied to a given network, Pathfinder(co,
n — 1) prunes the network in such a way that two nodes only
remain connected if the weight of their link is equal or bet-
ter than the minimal link weight (the maximal similarity) on
all the other paths. The consequences on the global network
are that (1) the nodes are connected only if they are the most
closest, in terms of the distance measure, and (2) the short-
est path between two nodes in a PENET is intuitively the
best one to describe the relationship of these two nodes.

Hence, as the generation of PENET(co, n — 1) is the sim-
ple union of all the MSTs of a given network, we can design
a new algorithm, alternative to Pathfinder, to generate these
PFNETSs by using any existing MST algorithm. In fact, there
are at least two of such algorithms that are well-known in
graph theory and computer science literature, respectively
called Kruskal’s (Kruskal, 1956) and Prim’s (Prim, 1957).
Because of its simplicity, the adaptation of Kruskal’s algo-
rithm was finally used in the design of our new pruning
technique; it was called MST-Pathfinder, in reference to the
new approach to quickly prune networks based on MSTs,
even if it does not follow the usual Pathfinder algorithm oper-
ation mode as the different variants introduced in the previous
section.

Kruskal’s MST Algorithm

Kruskal’s algorithm (1956) is a greedy algorithm that gives
an MST for a connected weighted network. In it, all the links
are sorted in ascending order. The links are then added one
by one to the final tree only if they are not already in the same
cluster (i.e., the tree remains a tree and does not become a
network). In this case, at each iteration, two nodes belonging
to the current tree are only connected by the links having the
minimal cost, so the total cost of the tree is also minimal.

The algorithm uses several sub-functions. The function
CREATE-CLUSTER(v) applied to a node v creates a single
cluster of size 1, just including v as member. The function
CLUSTER(v) returns the cluster associated to node v. As
the only purpose of this function is the comparison of two
clusters to know if they are the same or not, this is usually
done by returning an element (or an index) able to iden-
tify in an unique way the cluster containing v. The function
MERGE-CLUSTER(u, v) performs the union of the clus-
ter containing node u and that containing node v. Kruskal’s
algorithm pseudo-code is shown in Figure 4.

As stated before, this algorithm is quite simple. When a
disjoint-set data structure is used to perform the operations
on the clusters, its time complexity is O(|E| - log(n)), where
|E| is the number of links and »n the number of nodes of G
(Cormen et al., 2001). As |E| is bounded by n?, the time
complexity is equivalent to O(n”-log(n)). As we need to
store two link sets (7 and F), the memory complexity is 2 - n.

. Define atree T =0.
. Define V[G], the set of the nodes of the network G.
. For each node v € V[G]
CREATE-CLUSTER(v).
Create F, a set of all the links of G sorted by their weights.
FOR each link e(u,v) € F
IF CLUSTER(x) # CLUSTER(v), THEN
T=TU/{e(u,v)}.
MERGE-CLUSTER(u, v).
. Return T'.

SOPNAU R LD~

—_

FIG. 4. Kruskal’s algorithm.

Structure of MST-Pathfinder

In view of the latter, to generate the PENET(co, n — 1),
we have to compute all the possible MSTs of a network
and return the union of the corresponding link sets. As said,
the two corresponding well-known algorithms to compute an
MST are Kruskal’s and Prim’s. We could justify the choice
of Kruskal’s algorithm instead of Prim’s one by noticing that
the latter grows an initial tree by looking all the neighbours of
a given node and selecting the one that minimizes the current
cost of the tree. This neighbour-based behavior seems to be
more efficient when the networks are represented as a real
graph (by means of pointers, or some other data structures).
Another more technical and important reason for this choice
will be explained later.

Our proposal concerns a way to compute the union of all
the possible MSTs of a given network with the same time
complexity required to compute just one of these MSTs.
First, we should notice that the differences between the var-
ious MSTs of a given network are only related to the links
having the same values, but not being present in the same
cluster during a given step of the algorithm. During this step,
the algorithm has to choose between different links, and all
these choices correspond to the same amount of different pos-
sible MSTs. In particular, if all the weights of the original net-
work links are different, the MST is unique (Kravitz, 2007).
This is related to the non-deterministic behavior of the orig-
inal Kruskal’s algorithm, which lets this algorithm produce,
arbitrarily, only one of all the possible MSTs. In the follow-
ing, we will refer to the links that are not shared by all the pos-
sible MSTs generated from a given network as special-links.

So, to achieve our final goal of merging directly the dif-
ferent MSTs during the run of the algorithm, we have to
detect these special-links. The first property of these links is
that they have the same weights. This fact can be efficiently
checked once the link set is sorted (during the initialization
of the algorithm). If the original algorithm is scrutinized, we
can notice that once one of these links is added to the tree T,
the two clusters corresponding to this link are immediately
merged. In this case, it is impossible to detect if the two links
are or not special-links in a further step.

The only solution is to store them in a temporary set H
instead of adding them directly to the current tree, and process
this set only when we are sure that this will not affect the

1916 JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—October 2008

DOI: 10.1002/asi

1. Define a tree T =@.

2. Define V[G], the set of the nodes of the network G.
3. Define W, the matrix of the costs for each link of G.
4. For each node v € V[G]

5. CREATE-CLUSTER(v).
6. Create F, a set of all the links of G sorted by their weights.
7. FOR each link e(u, v) remaining in F

8
9

H=40.
FOR each link e(u’, V') remaining in F where w(u, v) =
w',v')
10. F=F—{e V)}.
11. IF CLUSTER(#) # CLUSTER('), THEN
12. T=TU{e@' V)}.
13. H=HU{e@' v)}.
14. FOR eachlink e(u’,Vv') € H
15. MERGE-CLUSTER(/, v/).
16. Return 7.
FIG.5. The MST-Pathfinder algorithm.

detection of other special-links. The processing of the set
(i.e., the union of all the links of the temporary set with the
current tree) can be done once a new link with a different
weight has been found. These remarks let us define directly
the MST-Pathfinder algorithm, shown in Figure 5.

The main goal of this algorithm is to merge directly all
the links corresponding to the different possible MSTs of
a network G, so the final result is equivalent to the PFNET
(00, n — 1) of that network. Notice that, on the contrary to the
Pathfinder variants described in the previous section, there
is not a need of any weight comparison to select the final
links belonging to the PFNET but those are just the same
ones in the MST. Thus, the algorithm is faster working in
this way.

Itis also worth noticing that this improvement can be done
only with Kruskal’s algorithm and not with Prim’s. Indeed,
in Kruskal’s, the links-sort acts in a global way, allowing us
to detect (and join) the different links that would be present
in the different MST trees. In Prim’s algorithm, the growing
of the tree is done in an incremental (so a local) way, by adding
a non-explored link to the current tree. Under that condition,
the detection of two links with the same values that should be
merged could not be achieved directly, at least using an effi-
cient computation (a sorting operation would be required to
do sobecause they could be located far away from each other).

Proof of the Correctness of MST-Pathfinder

Let G be a connected, weighted graph and let 7 be the
subgraph of G produced by the MST-pathfinder algorithm
(i.e., the union of all the MSTs of the graph G), and PF be
the subgraph PFNET(co,n — 1) .

If T=PF, then T is the PFNET(co, n — 1). Otherwise,
there should be links in 7 that are not in PF or the contrary.

Let e(u, v) be a link with weight w that is in T, but is not
in PF. This means that there is a path M in PF connecting
the vertex # and v with a lower cost than w. But this could not
be possible because all the links composing M should have

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—October 2008

been first considered by the MST-pathfinder algorithm during
its run. So, when e(u, v) was considered, the vertexes u and
v would have been in the same cluster. As a consequence,
e(u, v) should not be in 7.

On the other hand, let e(u, v) be an edge with weight w
that is in PF, but is not in 7. Because of the definition of
PFNET, this means that all the other paths in T connect-
ing u and v contain at least one link e(i, j) with a weight
larger than w. In that case, the MST-pathfinder algorithm
could not have avoided the inclusion of e(u, v) in T, because
it would have been analyzed before or at the same time than
that link e(i, j), and u and v would have not been at this time
in the same cluster. As a consequence, e(i, j) should also be
inT.

By contradiction, we have T' = PF.

Time and Space Complexity of MST-Pathfinder

The algorithm needs O(|E|-log(|E|)) operations to sort
the list of the links by their weights, where |E| is the
number of links. To know which cluster belongs to each
node, we can use a disjoint-set data structure with union
by rank and path compression. According to Cormen et al.
(2001), the cost of the related operations depends on two
parameters: M, the total number of CREATE-CLUSTER(v),
CLUSTER(v) and MERGE-CLUSTER(u, v) calls and N, the
number of CREATE-CLUSTER(v) calls. In this case, the
best total cost of the calls is proved to be in O(M log(N)). In
MST-Pathfinder, CREATE-CLUSTER(v) is called n times.
Now, although there are two nested FOR loops, at most
|E] CLUSTER(v) and |E| MERGE-CLUSTER(u, v) oper-
ations are performed in the worst case, because the size of
F decreases by 1 at each step, and both loops are based on
F. In our case, M =3|E| +n and N =n, so the cost of the
algorithm is expressed by:

O(|E| - log(|E)) + O(G|E| + n) - log(n))
= MAX{O(|E| - log(|E|)), O(|E]| - log(n)), O(n - log(n))}
= O(|E| - log(|ED)

When having a dense network, |E| is close to n”> and
log(n?) is O(log(n)), so the theoretical time complexity of the
full algorithm can be simplified to O(n?-log(n)), having
the same time complexity that Kruskal’s algorithm. In conclu-
sion, this algorithm is much faster than the original Pathfinder
(O(n*), when applied with g =n — 1), in spite of the recent
improvements we have described in the previous section: the
Binary Pathfinder has a time complexity of O(n> - log(n))
and Fast Pathfinder has a time complexity of O(n3).

It is important to mention that the time complexity devel-
oped previously has only a theoretical importance. In prac-
tice, due to the high number of calls to the CLUSTER(v)
functions, compared to the number of calls to MERGE-
CLUSTER(u, v), it is more efficient to consider another,
much simpler data structure than the disjoint-set to imple-
ment these functions. In our case, each node v is affected by
a single index c(v) encoding the corresponding cluster in an

1917
DOI: 10.1002/asi

TABLE 1.

Comparison of the run time (expressed in seconds) of all the algorithms for the random matrices case studies.

#Nodes #Links Original PF Binary PF Fast-PF MST-PF (low-complexity) MST-PF (practical)
1 100 9.90E+03 1.55 0.183 0.00925 0.0021 0.00208

2 200 3.98E+04 23.59 1.76 0.0702 0.0101 0.0101

3 300 8.97E+04 181 8.98 0.238 0.0266 0.0264

4 400 1.60E+4-05 604 24.56 0.585 0.0537 0.0533

5 1000 9.99E+4-05 >3600 >3600 10.01 0.629 0.629

6 10000 1.00E+08 >3600 >3600 >3600 128.31 127.62

unique way, so each call to CLUSTER(v) is done in O(1).
Then, MERGE-CLUSTER(«, v) involves affecting the value
c(u) to each node having the value c(v), and this can be done
in O(n). So, the practical time complexity of the algorithm is
O(n) + O(|E| -1og(|E])) + O(|E| - n) = MAX{ O(n), O(|E|
log(|E|)), O(|E|-n)} =O(E|-n)= own3). Compared to
O(n? -log(n)), this complexity is worst in theory. How-
ever, the run time is faster in practice, as we will see in
the next section. For this purpose, we name the algorithm
using the disjoint-set data structure with union by rank and
path compression, the low-complexity MST-Pathfinder;
and the index-based disjoint-set variant, the practical MST-
Pathfinder.

Concerning the space complexity, we need to store three
lists of links with their weights: F, T, and H. The record of
the cluster index can be done with a single additional attribute
for each node, so the total space complexity of the algorithm
is 3-n% 4+ n. The only drawback is that this algorithm cannot
be applied on directed networks, because the sorting process
deals with undirected links.

Experiments

The goal of this section is to present an experimental study
showing the run time improvement of the MST-Pathfinder
algorithm in comparison with the other Pathfinder variants
when dealing with two case studies: a laboratory problem
where networks of medium and large sizes are randomly
generated, and a real world problem of information visual-
ization with medium-sized networks obtained by a cocitation
analysis of 20 scientific domains.

Case Study 1: Random Networks

In this experiment, our aim is twofold. First, we com-
pare the execution time of the five algorithms (the origi-
nal Pathfinder, the Binary Pathfinder, the Fast Pathfinder,
the low-complexity MST-Pathfinder, and the practical
MST-Pathfinder) on random matrices, from sizes 100 to
10°000. Second, we prove that the practical MST-Pathfinder
is faster than the low-complexity MST-Pathfinder. Recall that
the two variants use two different internal algorithms to man-
age the disjoint-set data structure. The former uses the most
known algorithm in the literature for this structure, the union
by rank and path compression (Cormen et al., 2001), while the
latter uses a trivial algorithm based on the update of a simple
index.

1918
DOI: 10.1002/asi

In order to measure the run time of all the algorithms, we
used 20 different matrices for each of the six networks sizes
considered (100, 200, 300, 400, 1000, 10°000), randomly
filled with real numbers from 1 to 1000, and we averaged
the results in order to make a more fair comparison (notice
that, although the algorithms are deterministic, the measure-
ment of the run time values can have small fluctuations in
some cases, so this is a most robust procedure). The goal was
to compare the run time of all the algorithms using labora-
tory cases and very large matrices. Only symmetric matrices
were considered in this experiment; they represent fully con-
nected networks and the parameters were settog =n — 1 and
r =00, when applicable. The algorithms have been written
in C, and compiled on Linux with the GNU GCC compiler
with the — O3 option on an Intel dual-core Pentium 3.2 GHz
with 2 GB of memory.

The obtained results are shown in Table 1. The first con-
clusion is that this experiment shows the important run
time improvement achieved by the MST-Pathfinder algo-
rithm for medium? and large networks. Networks containing
100°000°000 links are pruned in around 2 minutes instead
of time greater than 1 hour spent by the remaining algo-
rithms.? This allows us to process medium networks online
and large networks in a reasonable time. Another point is
that the improvement of MST-Pathfinder, in comparison to
Fast-Pathfinder, is clearly demonstrated here: From a com-
plexity of o3 to a complexity of O(n? -log(n)), the run
time changes from more than 1 hour (around 3 hours accord-
ing to some tests we performed without considering the 1
hour run time threshold) to only 2 minutes.

The second conclusion is that the practical
MST-Pathfinder algorithm is slightly faster than the low-
complexity variant, as explained in the previous section: The
improvement is around 0.54% for a network of 10’000 nodes.

Case Study 2: A Method to Generate Scientograms
for Vast Scientific Domains

The graphical representation of information for its later
visualization is a very common activity in the most of sci-
entific disciplines. However, its combination with computer
science is a rather new task.

2We use the term medium to describe networks having 100 to 1000 nodes
(Borner et al., 2007).

3A run time of 1 hour was our imposed threshold in order to stop the
algorithms in a reasonable time.

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—October 2008

The achievement of a vast scientogram is a recurrent idea
in the modern age. In 1998, Chen (1998a, 1998b) was the
first researcher to bring forth the use of PFNETs in citation
analysis. This is due to the fact that scientograms are the
most appropriate means to represent the spatial distribution
of research areas, while also affording information on their
interactions (Small & Garfield, 1985). Taking the latter as
a base, Moya-Anegon et al. (2004) proposed a method for
the visualization and analysis of vast scientific domains
using the ISI*-JCR category cocitation information. They
represented it as a social network, simplified that network by
means of the Pathfinder algorithm considering g =n — 1 and
r = 00, and graphically depicted its layout using the Kamada-
Kawai’s algorithm (Kamada & Kawai, 1989), thus getting a
structural model of the scientific research in a vast domain.
Note thatg =n — 1 and r = oo are the common parameter val-
ues when Pathfinder is used for large domains scientogram
generation. These values are very advantageous for large
network pruning (Chen, 2004).

The different method stages are briefly described as
follows.

Category Cocitation Measure

Cocitation is a widely used and generally accepted tech-
nique for obtaining relational information about documents
belonging to a domain. Because we strive to represent and
analyze the structure of vast domains, whether they be the-
matic, geographic, or institutional, we fall back on to ISI-JCR
cocitation categories (Moya-Anegén et al., 2004) as a tool for
this purpose.

Hence, once the rough information of the ISI-JCR cocita-
tion for the categories present in the domain to be analyzed
is obtained, a cocitation measure CM is computed for each
pair of categories i and j as follows:

CM(ij) = Celif) + — o
Ve@) -e(j)

where Cc is the cocitation frequency and c is the citation
frequency.

Notice that the aim of this scientogram generation method
is that the final scientogram obtained is a tree. Hence, in
order to avoid the existence of cycles in the pruned network,
the considered measure of association adds the normalized
cocitation (divided by the square root of the product of the
frequencies of the cocited documents’ citations; Salton &
Bergmark, 1979) to the rough category cocitation frequency.
In this way, the network weights become real numbers, allow-
ing us to create small differences between similar values
for the cocitation frequency, thus avoiding the occurrence
of cycles and achieving the optimal prune of each link
considering the citing conditions of each category.

“Currently registered as Thomson Reuters.

Network Pruning by Pathfinder

The Pathfinder algorithm is then applied to the cocitation
matrix to prune the network. We should take into account the
fact that the networks resulting from citation, cocitation, or
term co-occurrence analysis are usually dense when the cate-
gories are used as the unit for each node. Due to this fact, and
especially in the case of vast scientific domains with a high
number of entities (categories in our case) in the network,
Pathfinder is usually parameterized to r =oco and g=n — 1,
obtain an schematic representation of the most outstanding
existing information by means of a network showing just the
most salient links.

Network Layout by Kamada-Kawai

Kamada and Kawai’s (1989) algorithm is then used to
automatically produce representations of the pruned network
resulting from the Pathfinder run on a plane, starting from a
circular position of the nodes. It generates social networks
with aesthetic criteria such as the maximum use of avail-
able space, the minimum number of crossed links, the forced
separation of nodes, building balanced maps, etc.

In general, the weights of the links belongs to R and are
all different, so the final result is a tree as the one shown in
Figure 6.

Comparison of the Run Time

The goal of this section is to conduct the experimental
procedure described above to measure the run time of all the
Pathfinder variants considered in this article and show the run
time improvement obtained on 20 real world networks. The
networks were obtained from the ISI-JCR category cocita-
tion information available at the SCImago research group’s
Atlas of Science.’ Their sizes range from 212 to 263 nodes
and from 8485 to 23430 links. Notice that the link weights in
these medium networks correspond to similarities instead of
distance measurements.® The original Pathfinder, the Binary,
the Fast Pathfinder, and the MST-Pathfinder algorithms
have been compared to prune the latter networks to design
the scientograms. Pathfinder parameters have been set to
g =n — 1 and r = oo (when considered), the typical values in
vast domain scientogram design. The same computer con-
sidered for the previous case study has been used: an Intel
dual-core Pentium 3.2 GHz with 2 GB of memory.

Fifty independent runs have been performed for each
algorithm and each network, and the global run time has
been averaged for each to obtain more precise statistics. The
obtained results are shown in Table 2.

Shttp://www.atlasofscience.net

According to the Moya’s method (Moya-Anegén et al., 2004), the nor-
malized cocitation coefficients are used and correspond to similarities. More
details can be found in that paper. Actually, using similarities or distances
has no influence at all in our proposal. In case of using similarities, we
would need only to sort the set of the links of G in a reverse way in the
MST-Pathfinder algorithm (see Figure 5).

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—October 2008 1919

DOI: 10.1002/asi

FIG. 6. An example of a scientogram corresponding to the Europe scientific domain in 2002.

TABLE 2. Comparison of the run times (expressed in seconds) of all the algorithms for the scientograms case study.

MST-PF MST-PF

Domain (year) #Nodes #Links Original PF Binary PF Fast PF (low-complexity) (practical)
1 China (2002) 212 8541 28.31 1.87 0.180 0.00398 0.00400
2 Japan (2002) 213 9028 28.70 1.69 0.179 0.00422 0.00423
3 France (2002) 216 10087 31.79 2.14 0.187 0.00473 0.00470
4 Peru (2002) 218 8485 30.97 2.20 0.200 0.00396 0.00397
5 Germany (2002) 218 11745 35.53 2.20 0.214 0.00555 0.00552
6 UK (2002) 218 13567 37.74 2.21 0.196 0.00651 0.00646
7 Europe (2002) 218 17242 40.10 2.19 0.193 0.00852 0.00845
8 USA (2002) 218 18132 40.59 2.21 0.196 0.00909 0.00904
9 World (2002) 218 20154 40.19 2.20 0.195 0.01031 0.01020
10 Cuba (2004) 219 10644 34.15 2.15 0.200 0.00500 0.00499
11 Spain (1994) 219 13478 37.65 221 0.194 0.00644 0.00639
12 Cuba (2006) 221 11286 35.71 2.08 0.204 0.00532 0.00529
13 Spain (1998) 223 16226 47.61 2.94 0.211 0.00789 0.00786
14 Venezuela (2005) 239 15415 53.86 3.12 0.265 0.00750 0.00747
15 Spain (2002) 240 19183 57.59 3.43 0.258 0.00976 0.00973
16 Spain (2004) 240 23430 60.21 3.42 0.257 0.01216 0.01208
17 Chile (2004) 242 17914 59.09 3.04 0.269 0.00901 0.00897
18 Mexico (2005) 250 21264 75.24 4.11 0.300 0.01104 0.01089
19 Portugal (2005) 254 22179 84.45 4.99 0.321 0.01153 0.01143
20 Argentina (2005) 263 19562 82.84 4.10 0.346 0.00998 0.00994

As shown, the MST-Pathfinder variant is some orders of
magnitude faster than the Fast Pathfinder variant that itself
outperforms the Binary and the original Pathfinder algo-
rithms. More precisely, the MST-Pathfinder is 6200 times
faster in average than the original Pathfinder, 360 times faster
than the Binary algorithm, and 30 times faster than the Fast
Pathfinder. In this sense, the comparison with the original

algorithm, having a complexity of O(n*), the Binary variant,
0(n3 -logn), and the Fast one, O(n3), clearly demonstrates
how the O(n? -logn) variant speeds up the pruning of the
networks.

Concerning the second point, the comparison between
the low-complexity and the practical variants of the MST-
Pathfinder, we can see that the variant having the largest

1920 JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—October 2008

DOI: 10.1002/asi

MATLHALE 5L

MATERIALS SOCRMEEREARER & WO

CENET S &)

ANATEINY

PHOLOGY

THANSELARY 10

EILECTROGHBWATF
TS0 CES -
T 1AL i
HLITF gn A T 'f LCE R 1510 1
L M AT RIS 1) L -\.‘\ ! | ST S CIFLIMARY
©HEM I TR M [a1 ik T s G N OO d '
PsRMAC DG e O
' ol
g . S Gy
T 3 L T LD SEASES
SPORT ST & e | i
Pty NUCLEAR REDNIE & MEDICAL IMAG g MEDICAL LB OREIERY TECHNC oY)
‘ 0 Y
HEURGSEIE S
ES = ol
" 3) L5 & SERVELS
EEHAOORALEE ENCES s as ghor L idLoe 2
Py Ewncuu_‘n@m:umzmnuagn_m
: EEA COLOGY
P CHoy SERIC CGICAL CARDIAC & CARDIE ST ETEMS

o e el ooy

FIG. 7. A detailed view of the center of the Europe scientogram, processed by the original Pathfinder algorithm.

theoretical time complexity (O(n?) instead of O(n? - logn))
obtains the fastest results. In fact, the run time is slightly bet-
ter and the improvement is more or less the same on these
medium networks—~0.5% faster in average—than for the case
of larger networks (see the section of the first case study).

Description of Some Implementation Issues

In this example, we have used the Europe data of 2002.
The data are directly extracted from a database of cocitation
measures. Some specific criteria are set up in order to select
a subset of the whole database restricted to the countries, the
journals, or the authors. The resulting file encodes a fully
connected network, with labeled nodes and weighted links,
ready to be pruned. Thus, the first step is to use the MST-
Pathfinder algorithm to prune this network. The computing
time for this step is roughly 9 ms (see Table 2). From 218
nodes (ISI-JCR categories) and 17242 links, the network is
pruned until having only 217 links, becoming a tree. So, with
this map, a highly simplified network has been obtained in a
fast way.

The next step is to print the map in a convenient way. Many
graphical libraries can be used for this purpose, but the best
we have found so far is the GraphViz library. GraphViz is
an open source network drawing software, freely provided
by AT & T Labs, and available at http://www.graphviz.org.
It integrates the Kamada-Kawai algorithm in the form of the

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—October 2008

neato utility. This utility exports in diverse graphical formats
a description of a network done with a proprietary language,
the DOT language (Gansner & North, 2000). Thus, the sec-
ond step was to convert the previous network in the format
accepted by this library. The computing time for this step is
0.6 ms.

The last step is to generate the graphical output from the
DOT description using neato. Actually, as these maps are
designed for online consultation, the Scalable Vector Graph-
ics (SVG) format was chosen. The time to generate the SVG
image is 1300 ms. The following command was used to
generate this map, once the library is installed:

dot -Kneato -Tsvg -o Europe.svg Europe.dot

With this procedure, we are able to generate the full
Europe scientific domain scientogram without exceeding
1.5 seconds. This enables the generation of these maps in an
online way providing a faster interaction for the user. This also
enables the generation of a high number of maps in a short
time to compare them among a time line or geographically,
which is one of our aims in the short future.

The final result is shown in Figure 9. Two detailed views,
produced by the original Pathfinder algorithm and the MST-
Pathfinder algorithm are presented in Figures 7 and 8 to show
that they are equal. In fact, the two files used to produce these
pictures were identical in a binary way.

1921
DOI: 10.1002/asi

PHOLGEY
miaLoey,
MATERALS SCRNGEEMATE R ALS Y g
A _»,-\ AT
AGRICULTUR SLENCE .
EMGINEE o
FEC TSRS SES
F A RE
5 o y
MATERIALS S0 EF & W00 s .
/ Rt
FIECTHREHBLETR HoLoey o moRos oL
AT TR ML T AL
BOLOG
PO MG IS TE S M 0 P He
CHEM! SR MIED AL wickolc . e L G N TOL GG
Fruimaclle ﬂi r
TONCE " \ TR*EAEE
SPOAT BRI =
i - wenca Lghorarall TecHn cov .
LG NUCLERR & MECICAL IMAG NG Y .. W
nevRgsdilces e Yo
= o LEDICINE, CEMERRIESTTETIT
i ol AR N & 5L
EEHM CRIBERINENCEE Gas HILRELOEE s HpaToplic
PL M RO HMEN AL S CLPATIOHAL HEALTH
P guas P THICH CoLoGy
R g
YOO QR OG AL CARDIAC 8 CARD A STEME
o A L Doy

FIG. 8. A detailed view of the center of the Europe scientogram, processed by the MST-Pathfinder algorithm.

FIG. 9. An example of the output corresponding to the Europe data, computed by the Kamada-Kawai algorithm.

1922 JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—October 2008
DOI: 10.1002/asi

TABLE 3. Summary of the properties of the Pathfinder variants.

Time complexity
(forg=n—-1)

Name of the algorithm Application domain

Approach in

Space complexity algorithm theory

Original PF Any valid values for ¢ and r,

(un-)directed graphs

O(q-n?)=0@* 2.g-n?=2-n%-2.n2

Dynamic programming

Binary PF Any valid values for g and r, O(loggq - n¥)=0Wm?. logn) 4.n? Dynamic programming
(un-)directed graphs
Fast PF Any valid values forr, g=n —1, on®) 2-n? Dynamic programming
(un-)directed graphs
MST-PF r=o00,q=n-—1, O(n? -log(n)) 3-n%4n Greedy approach
(low-complexity) undirected graphs
MST-PF r=00,q=n-—1, on?) 3-n%4n Greedy approach
(practical) undirected graphs
Conclusion Chen, C. (1998a). Bridging the gap: The use of pathfinder networks in visual

In this article, we have introduced a new variant of the
Pathfinder algorithm for the specific parameter setting used
in many applications (g must be fixed to n — 1 and r to 00),
enabling us to drastically decrease the run time of the original
algorithm. Our proposal is based on the fact that the union
of the MSTs is equal to PENET (oo, n — 1), what allows us
to reduce the time complexity from omn*) to O(n?- logn).
Notice that MST-Pathfinder saves also a noticeable amount
of memory in comparison to the original and the Binary vari-
ant of Pathfinder. See Table 3 to have a global view of the
properties of the Pathfinder variants.

The experimental comparison on the laboratory problem
conducted on large networks has demonstrated the fast run
time when networks are fully connected. The other experi-
mental comparison of the run time for 20 medium networks
from real world domains has proved the ability of the new
proposal to prune medium networks in real time.

Acknowledgments

This work was funded by the Plan Nacional de Inves-
tigacién Cientifica, Desarrollo e Innovacién Tecnoldgica
2004-2007 and the Fondo Europeo de Desarrollo Regional
(FEDER) as part of research projects SEJ-2004-08358-C02-
01 and SEJ2004-08358-C02-02. We would like to thank the
anonymous reviewers for their interesting comments and sug-
gestions, which has allowed us to improve the quality of the
contribution.

References

Bellman, R., & Kalaba. (1965). Dynamic programming and modern control
theory. New York: Academic Press.

Borner, K., Sanyal, S., & Vespignani, A. (2007). Networks science.
Annual Review of Information Science and Technology (ARIST), 41,
537-606.

Breiger, R.L. (2004). Handbook of data analysis. In (pp. 505-526). London:
Sage Publications.

Buzydlowski, J. (2002). A comparison of self-organizing maps and
pathfinder networks for the mapping of co-cited authors. Unpublished
doctoral dissertation. Drexel University.

navigation. Journal of Visual Languages and Computing, 9, 267-286.

Chen, C. (1998b). Generalised similarity analysis and pathfinder network
scaling. Interacting with Computers, 10, 107-128.

Chen, C. (2004). Information visualization: Beyond the horizon. Berlin,
Germany: Springer.

Chen, C., Kuljis, J., & Paul, R. (2001). Visualizing latent domain knowl-
edge. IEEE Transactions on Systems, Man and Cybernetics, Part C, 31(4),
518-529.

Chen, C., & Morris, S. (2003). Visualizing evolving networks: Minimum
spanning trees versus pathfinder networks. In Proc. IEEE symposium on
information visualization (INFOVIS) (pp. 67-74).

Cormen, T.H., Leiserson, C.E., Rivest, R.L., & Stein, C. (2001). Introduction
to algorithms (2nd ed.). The MIT Press.

De Moya-Anegén, F., Vargas-Quesada, B., Chinchilla-Rodriguez, Z.,
Herrero-Solana, V., Corera-Alvarez, E., & Munoz-Fernandez, E. J. (2005).
Domain analysis and information retrieval through the construction of
heliocentric maps based on ISI-JCR category cocitation. Information
Processing & Management, 41(6), 1520-1533.

Dearholt, D., & Schvaneveldt, R. (1990). Properties of pathfinder networks.
In R. Schvaneveldt (Ed.), Pathfinder associative networks: studies in
knowledge organization (pp. 1-30). Ablex Publishing Corporation.

Dreyfus, S. (1965). Dynamic programming and the calculus of variations.
New York: Academic Press.

Floyd, R. (1962). Agorithm 97: Shortest path. Communications of the ACD,
5(6), 345.

Gansner, E.R., & North, S.C. (2000). An open graph visualization system
and its applications to software engineering. Software — Practice and
Experience, 30(11), 1203-1233.

Guerrero-Bote, V., Zapico-Alonso, F., Espinosa-Calvo, M., Gdémez-
Crisostomo, R., & Moya-Anegon, F. (2006). Binary Pathfinder: An
improvement to the pathfinder algorithm. Information Processing &
Management, 42, 1484-1490.

Kamada, T., & Kawai, S. (1989). An algorithm for drawing general
undirected graphs. Information Processing Letters, 31, 7-15.

Kravitz, D. (2007). Two comments on minimum spanning trees. The Bulletin
of the ICA, 49, 7-10.

Kruskal, J. (1956). On the shortest spanning subtree and the traveling
salesman problem. Proc. of the American Mathematical Society, 7(1),
48-50.

Kudikyala, U., & Vaughn, R. (2005). Software requirement understanding
using pathfinder networks: Discovering and evaluating mental models.
Journal of Systems and Software, 74(1), 101-108.

Martino, F., & Spoto, A. (2006). Social network analysis: A brief theoretical
review and further perspectives in the study of information technology.
Psychology Journal, 4(1), 53-86.

Moya-Anegén, F. de, Vargas-Quesada, B., Chinchilla-Rodriguez, Z.,
Herrero-Solana, V., Corera—Alvarez, E., & Munoz-Fernandez, F. J. (2004).
A new technique for building maps of large scientific domains based on
the cocitation of classes and categories. Scientometrics, 61(1), 129-145.

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—October 2008 1923

DOI: 10.1002/asi

Moya-Anegén, F. de, Vargas-Quesada, B., Chinchilla-Rodriguez, Z.,
Herrero-Solana, V., Corera-Alvarez, E., & Munoz-Fernandez, F.J. (2007).
Visualizing the marrow of science. Journal of the American Society for
Information Science and Technology, 58(14), 2167-2179.

Prim, R. (1957). Shortest connection networks and some generalizations.
Bell System Technical Journal, 36(6), 1389-1401.

Quirin, A., Cordén, O., Santamaria, J., Vargas-Quesada, B., & Moya-
Anegén, F. (2008). A new variant of the pathfinder algorithm to generate
large visual science maps in cubic time. Information Processing &
Management, 44(4), 1397-14009.

Salton, G., & Bergmark, D. (1979). A citation study of computer sci-
ence literature. IEEE Transaction on Professional Communication, 22,
146-158.

Schvaneveldt, R.W. (1990). Pathfinder associative networks. Norwood, NJ:
Ablex.

Shope, S., DeJoode, J., Cooke, N., & Pedersen, H. (2004). Using pathfinder
to generate communication networks in a cognitive task analysis. In
Proc. of the human factors and ergonomics society, 48th annual meeting
(pp. 678-682).

Small, H., & Garfield, E. (1985). The geography of science: Disci-
plinary and national mappings. Journal of Information Science, 11(4),
147-159.

Vargas-Quesada, B., & Moya-Anegén, F. (2007). Visualizing the science
structure. New York: Springer.

Warshall, S. (1962). A Theorem on Boolean matrices. Journal of the ACM,
9(1), 11-12.

1924 JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—October 2008

DOI: 10.1002/asi

