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Cardinal Consistency of Reciprocal Preference
Relations: A Characterization of Multiplicative
Transitivity

Francisco Chiclana, Enrique Herrera-Viedma, Sergio Alonso, and Francisco Herrera

Abstract—Consistency of preferences is related to rationality,
which is associated with the transitivity property. Many properties
suggested to model transitivity of preferences are inappropriate for
reciprocal preference relations. In this paper, a functional equation
is put forward to model the “cardinal consistency in the strength
of preferences” of reciprocal preference relations. We show that
under the assumptions of continuity and monotonicity proper-
ties, the set of representable uninorm operators is characterized
as the solution to this functional equation. Cardinal consistency
with the conjunctive representable cross ratio uninorm is equiva-
lent to Tanino’s multiplicative transitivity property. Because any
two representable uninorms are order isomorphic, we conclude
that multiplicative transitivity is the most appropriate property for
modeling cardinal consistency of reciprocal preference relations.
Results toward the characterization of this uninorm consistency
property based on a restricted set of (n — 1) preference values,
which can be used in practical cases to construct perfect consistent
preference relations, are also presented.

Index Terms—Consistency, fuzzy preference relation, rational-
ity, reciprocity, transitivity, uninorm.

I. INTRODUCTION

N ORDER to reach a decision, experts have to express their
I preferences by means of a set of evaluations over a set of
alternatives. Different alternative preference elicitation methods
were compared in [41], where it was concluded that pairwise
comparison methods are more accurate than nonpairwise meth-
ods. Given two alternatives of a finite set of all potentially avail-
able X, an expert either prefers one to the other or is indifferent
between them. Obviously, there is another possibility that of an
expert being unable to compare them.

There exist two main mathematical models based on the
concept of preference relation. In the first one, a preference
relation is defined for each one of the aforementioned three
possible preference states, which is usually referred to as
a preference structure on the set of alternatives. The sec-
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ond one integrates the three possible preference states into
a single preference relation. Further to this, in each case,
two different representations could be adopted: the use of bi-
nary (crisp) preference relations or the use of [0,1]-valued
(fuzzy) preference relations. Reciprocal [0,1]-valued relations
(R=(ryj); Yi,j: 0<wr;; <1, r;; +r; = 1) are frequently
used in fuzzy set theory for representing intensities of prefer-
ences [2], [4], [36], [37], [44], [SO]-[53]. These are the types
of relations this paper deals with, and we will refer to them as
simply reciprocal preference relations. In probabilistic choice
theory, reciprocal preference relations describe the binary pref-
erence subsets of two alternatives of X, and are known with the
name “probabilistic binary preference relations” [39].

The main advantage of pairwise comparison is that of fo-
cusing exclusively on two alternatives at a time that facilitates
experts when expressing their preferences. However, this way of
providing preferences limits experts in their global perception of
the alternatives, generates more information than is really nec-
essary, and, as a consequence, the provided preferences could
be inconsistent.

In a crisp context, the concept of consistency has traditionally
been defined in terms of acyclicity [28], [42], [43], [49]. This
condition is closely related to the transitivity of the correspond-
ing binary preference relation, in the sense that if alternative
x; is preferred to alternative x; and this one to xj, then al-
ternative z; should be preferred to xj,. In a fuzzy context, the
traditional requirement to characterize consistency has followed
the way of extending the classical requirements of binary pref-
erence relations. However, the main difference in this case with
respect to the previous one resides on the role the intensity of
preference has. Indeed, many of the properties suggested for
reciprocal preference relations attempt to extend the binary no-
tion of transitivity of preferences by implementing the intensity
of preference [39]. Thus, consistency is also based on the no-
tion of transitivity. Among these properties we can cite weak
stochastic transitivity, minimum transitivity, moderate stochas-
tic transitivity (or restricted mininum transitivity), maximum
transitivity, strong stochastic transitivity (or restricted maximum
transitivity), additive transitivity, and multiplicative transitivity
(or product rule) [31], [33]-[35], [39], [51], [52], [56].

Recently, a general framework for studying the transitivity of
reciprocal preference relations, the cycle transitivity, was pre-
sented [14]. Cycle transitivity derives as a generalization of
the application of a particular -norm (algebraic product) tran-
sitivity property to reciprocal preference relations. Given any
three alternatives, the six possible (product transitivity) single
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inequalities are transformed into a double (dual upper—lower)
inequality. This result leads the authors to propose a general
definition of transitivity for reciprocal preference relations: the
cycle transitivity w.r.t. an upper bound function, with dual lower
bound function. The authors show that stochastic (weak, mod-
erate, and strong) transitivity properties are all special cases
of cycle transitivity. Multiplicative transitivity and minimum
transitivity are types of cycle transitivity w.r.t. self-dual upper
bound functions. Many phenomena have also been character-
ized within the cycle transitivity framework, details of which
can be found in [13] and [19]-[22].

We consider the term “consistency” as the ‘“cardinal con-
sistency in the strength of preferences” described by Saaty in
[48, p. 7]:

not merely the traditional requirement of the transitivity of pref-
erences |...], but the actual intensity with which the preference is
expressed transits through the sequence of objects in comparison.

Saaty considers a positive multiplicative reciprocal matrix (A =
(aij); Yi,j = 0 < aj, a;j - aj; = 1) tobe consistent if and only
if Qi = Q55 * Qj Vi,j, k.

Some of the aforementioned transitivity properties are not
appropriate for reciprocal preference relations. An example of
this inappropriateness is the additive transitivity property that,
although equivalent to Saaty’s consistency property for multi-
plicative preference relations [6], [31], is in conflict with the
[0, 1] scale used for providing the preference values.

In this paper, we propose modeling the consistency of re-
ciprocal preference relations via a functional equation: r;; =
f(rij,rjx) Vi, j, k. It is shown that such a function f, under
reciprocity property, is associative and self-dual. Adding con-
tinuity and monotonicity properties to function f, the set of
representable uninorm operators is characterized as the solution
to the aforementioned functional equation. In particular, the con-
junctive representable cross ratio uninorm derives Tanino’s mul-
tiplicative transitivity property. Because any two representable
uninorms are order-isomorphic, we conclude that multiplica-
tive transitivity is the most appropriate property for modeling
cardinal consistency of reciprocal preference relations. This re-
sult is related to the g-isostochastic transitivity concept, a spe-
cial case of cycle transitivity w.r.t. self-dual upper bound func-
tions. As De Baets et al. point out [14], associativity makes
their function g behavior being closely related to a -conorm
on [0.5,1] x [0.5,1]. The functional equation proposed in this
paper for modeling consistency is the extension of the func-
tional equation modeling g-isostochastic transitivity, from the
restricted range [0.5, 1] x [0.5, 1] to the whole range of prefer-
ence values [0, 1] x [0, 1]. This range extension makes function
f to become a uninorm, whose behavior on [0, 0.5] x [0, 0.5] and
[0.5,1] x [0.5,1] is known to be closely related to #-norms and
t-conorms, respectively [27], [57]. Moreover, this result means
that the only g-isostochastic transitivity w.r.t. a continuous func-
tion g that can be applied to the whole range of preferences [0, 1]
is, up to isomorphisms, the multiplicative transitivity.

The rest of the paper is set out as follows. Section I comprises
an introduction to (crisp and fuzzy) preferences and the main
two approaches to model them, as well as some preliminaries

on consistency of preferences. In Section 111, a set of conditions
and properties for a reciprocal preference relation to be consid-
ered “fully consistent” will be established. In Section IV, the set
of representable uninorm operators is shown to be the solution
of this set of conditions. A characterization of the functional
consistency studied in Section III, based on a minimum set of
(n — 1) preference values, is given in Section V. This character-
ization can be used to construct consistent reciprocal preference
relations. Finally, conclusions are drawn in Section VI.

1I. PREFERENCE RELATIONS

In order for this paper to be as self-contained as possible,
we include in this section a brief review of the main concepts
needed throughout it. A short review of the concept of binary
relations and the associated crisp numerical representations used
in the literature to model preferences on a set of alternatives is
presented in Section II-A, which is followed by their fuzzy
extensions in Section II-B. Section II-C is devoted to a brief
description of what we mean by consistency of preferences, its
relation with the transitivity property of preferences, and how it
has been modeled in both crisp and fuzzy cases.

A. Crisp Preference Relations

Preference relations are usually assumed to model experts’
preferences in decision-making problems [24]. Given two alter-
natives, an expert judges them in one of the following ways: 1)
one alternative is preferred to another, or 2) the two alternatives
are indifferent to him/her; he/she is unable to compare them.
Accordingly, three binary relations can be defined on a finite set
of alternatives X .
1) The strict preference relation P: (x;,2;) € P if and only
if the expert prefers x; to x; (z; > x;).

2) The indifference relation I: (z;,x;) € I if and only if the
expert is indifferent between x; and x; (z; ~ x;).

3) The incomparability relation J: (z;,z;) € J if and only
if the expert is unable to compare x; and x;.

Using a numerical representation of preferences, any ordered
pair of alternatives (z;,z;) can be associated with a number
from the set {0, 1} as follows:

p,,;j:1<:>$i >—33j
pij:O<:>£L'j>-SC7;.

In a similar way, indifference and incomparability relations can
be represented numerically. A binary relation on X may be
conveniently represented by a square matrix of dimension car-
dinality of X. We make note that a different but equivalent
set of values ({1,—1}) to the earlier one has been used by
Fishburn [23].

A preference structure on X is defined as a triplet (P, I, .J)
of binary relations on X that satisfy:

1) P is irreflexive and asymmetrical;

2) I is reflexive and symmetrical;

3) J isirreflexive and symmetrical;

4 PnI=PnJ=InJ=10

5 PUPtUITUJ = X2,
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Here, P! is the transpose (or inverse) of P: (z;, zj) € P&
(x s x;) € P! [47]. Condition 5) is called the completeness
condition.

Fishburn [24] defines indifference as the absence of strict
preference. He also points out that indifference might arise in
three different ways: 1) when an expert truly feels that there is
no real difference, in a preference sense, between the alterna-
tives; 2) when the expert is uncertain as to his/her preference
between the alternatives because “he might find their compar-
ison difficult and may decline to commit himself[/herself] to
a strict preference judgment while not being sure that he[/she]
regards [them] equally desirable (or undesirable)”; or 3) when
both alternatives are considered incomparable on a preference
basis by the expert.

Itis obvious from the third case that Fishburn treats the incom-
parability relation as an indifference relation, i.e., J is empty
(there is no incomparability). Asymmetry is considered by Fish-
burn [24] as an “obvious” condition for preferences: if an expert
prefers x; to x;, then he[/she] should not simultaneously prefer
x; to x;. In this case, an alternative numerical representation to
the earlier one is that of integrating the comparison outcomes
preference—indifference into one single reciprocal preference
relation R with the following interpretation [2]:

rij:1<:>x7j>'xj
T,']':O<:>Ij>'l'qj
Tij:0.5<:>$j'\/$i.

Again, a different but equivalent set of values ({1,0,—1}) to
this one has been used by Fishburn [23]. This numerical inter-
pretation in the absence of incomparability integrates both strict
preference and indifference relations in a single (reciprocal)
preference relation.

Both numerical interpretations of preferences are indeed re-
lated. In [47], it is proved that a preference structure (P, I, J)
on a set of alternatives X can be characterized by the single re-
flexive relation R = P U I: (z;,z;) € Rif and only if “x; is as
goodasx;.” Ris called the large preference relation of (P, I, .J).
Conversely, given any reflexive binary relation R on X, a pref-
erence structure (P, I, .J) can be constructed on it as follows:
P=RN@®R),I=RNR,J=RnN(R),where R’ isthe
complement of R: (z;,7;) € R < (xj,7;) ¢ R . On the other
hand, it is well known that a complete binary relation R on X,
i.e., a binary relation verifying max{7;;,7;; } = 1 Vi, j, has an
equivalent reciprocal preference representation R with [12], [14]

_ 14Ty — T
- L

Tij

B. Fuzzy and Reciprocal Preference Relations

Given three alternatives x;, x;, x;, such that x; is preferred to
x; and x; to xy, the question whether the “degree or strength
of preference” of x; over x; exceeds, equals, or is less than
the “degree or strength of preference” of x; over x; cannot
be answered by the classical preference modeling. The imple-
mentation of the degree of preference between alternatives may
be essential in many situations. Take, for example, the case of
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three alternatives {, y, z} and two experts. If one of the experts
prefers x to y to z, and the other prefers z to y to z, then using
the aforementioned numerical values, it may be difficult or im-
possible to decide which alternative is the best. This may not be
the case if intensities of preferences are allowed in the earlier
model. As Fishburn points out [23], if alternative y is closer
to the best alternative than to the worst one for both experts,
then it might seem appropriate to “elect” it as the social choice,
while if it is closer to the worst than to the best, then it might be
excluded from the choice set.

The introduction of the concept of fuzzy set as an extension
of the classical concept of set when applied to a binary relation
leads to the concept of a fuzzy relation. Obviously, the earlier
two interpretations for modeling experts’ preferences can there-
fore be extended to allow the implementation of intensity of
preferences. In [45], we can find for the first time the fuzzy
models for strict preference, indifference, and incomparability
relations. The fuzzy preference structure and its characteriza-
tion has been widely dealt with in the literature. For more de-
tails, the reader should consult [3], [15]-[18], [25], [26], [54],
and [55]. The second fuzzy interpretation of intensity of prefer-
ences was introduced by Bezdek et al. [2] via the concept of a
reciprocal (fuzzy) preference relation, and later reinterpreted by
Nurmi [44]. The adapted definition of a reciprocal preference
relation is the following.

Definition 1 (Reciprocal Preference Relation): A recipro-
cal preference relation R on a finite set of alternatives X
is characterized by a membership function pp : X x X —
[0,1], p(xi, zj) = 7ij;, verifying

rij+rp =1 Vije{l,...,n}.

When cardinality of X is small, the reciprocal preference rela-
tion may be conveniently denoted by the matrix R = (r;;). The
following interpretation is also usually assumed.

1) r;; = 1 indicates the maximum degree of preference for

T; OVer x;.
2) r;; €]0.5,1] indicates a definite preference for x; over
Zj-

3) r;; = 0.5 indicates indifference between x; and x;.

This is the interpretation we are assuming in this paper. For
more details, the reader should consult [4], [5], [36], [37], and
[5S1]-[53].

Remark 1: As mentioned before, in probabilistic choice the-
ory, reciprocal preference relations are referred to as probabilis-
tic binary preference relations. In fuzzy set theory, reciprocal
preference relations when used to represent intensities of pref-
erences have usually been referred to as reciprocal fuzzy prefer-
ence relations. Reciprocal preference relations can be seen as a
particular case of (weakly) complete fuzzy preference relations,
i.e., fuzzy preference relations satisfying r;; +r;; > 1 Vi, j.

C. On the Consistency of Reciprocal Preference Relations

The main advantage of pairwise comparison is that of focus-
ing exclusively on two alternatives at a time, which facilitates
experts when expressing their preferences. However, this way of
providing preferences limits experts in their global perception
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of the alternatives, and the provided preferences could not be
rational. Usually, rationality is related to consistency, which is
associated with the transitivity property [9], [10], [31], [50].
Transitivity seems like a reasonable criterion of coherence for
an individual’s preferences: if x is preferred to y and y is pre-
ferred to z, common sense suggests that = should be preferred
to z. Obviously, there might be some natural situations where
transitivity is not appropriate to be required as pointed out by
De Schuymer et al. [20].

There are three fundamental and hierarchical levels of ratio-
nality assumptions when dealing with preference relations [32],
[40].

1) The first level of rationality requires indifference between

any alternative x; and itself.

2) The second one requires that if an expert prefers x; to

x;, that expert should not simultaneously prefer x; to x;.
This asymmetry condition is viewed as an “obvious” con-
dition/criterion of consistency for preferences [24]. This
rationality condition is modeled by the property of reci-
procity in the pairwise comparison between any two al-
ternatives [7], which is seen by Saaty as basic in making
paired comparisons [48].

3) Finally, the third one is associated with the transitivity in

the pairwise comparison among any three alternatives.

A preference relation verifying the third level of rationality is
usually called a consistent preference relation and any property
that guarantees the transitivity of the preferences is called a con-
sistency property. The lack of consistency in decision making
can lead to inconsistent conclusions; that is why it is important,
in fact crucial, to study conditions under which consistency is
satisfied [48].

Consistency of reciprocal preference relations is therefore
based on the notion of transitivity, in the sense that if alterna-
tive x; is preferred to alternative x; (r;; > 0.5) and this one to
2 (rjr 2> 0.5), then alternative x; should be preferred to x;,
(rir > 0.5). This transitivity notion is normally referred to as
weak stochastic transitivity [39], [52]. However, the implemen-
tation of the intensity of preference in modeling consistency
of reciprocal preference relations has been proposed in many
different ways [31], [33]-[35], [48], [52]. Among the many
properties or conditions suggested, we can cite the following.

1) Minimum transitivity [53]:

Tik = min{n]’,rjk} Vi,j,k
2) Moderate stochastic transitivity (or restricted minimum
transitivity) [39], [51]-[53]:

Vi, g,k : min{r;;,rjp} > 0.5 = ry > min{r;, v}
3) Maximum transitivity [53]:
Vi, j, k.

i > max{rj, i}

4) Strong stochastic transitivity (or restricted maximum tran-
sitivity) [39], [51]-[53]:

Vi,j, k- min{n]-,rjk} > 0.5 = Tk > max{r,;]-,rjk}.

5) Additive transitivity [52]:
(’I“ij — 05) + (’I“jk — 05) =r;: — 0.5 Vi, 5, k.

6) Multiplicative [39],

[51]-[53]:
V’i,j,k 1Ty ik Tki ¢ {0, ].} =

transitivity (or product rule)

Tij *Tjk " Tki = Tik * Tkj * Tji-

The first observation is that maximum transitivity cannot be
verified under reciprocity. Indeed, if R = (r;;) is reciprocal and
verifies maximum transitivity, then

rri = 1 — 1 <1 —max{r;,rj} =min{r;,re;} Vi,J, k.

From maximum transitivity, we have 7;; > max{ry;,7;;}
Vi, 7, k. Therefore, maximum transitivity and reciprocity are
verified only when 7, = 7;; = rj;, = 0.5 V1, j, k.

Additive transitivity, although equivalent to Saaty’s consis-
tency property for multiplicative preference relations [6], [31],
is in conflict with the [0,1] scale used for providing the pref-
erence values, and therefore, it is an inappropriate property to
model consistency of reciprocal preference relations [8].

Minimum transitivity for reciprocal preference relations has
been characterized by De Baets et al. in their general frame-
work of transitivity of reciprocal preference relations, the cycle
transitivity [14].

Definition 2 (Cycle Transitivity): A reciprocal preference re-
lation R = (r;;) is called cycle-transitive w.r.t. an upper bound
function U if and only if

L(ciji, Bijk,vijk) < iji + Bijr +viji — 1
< U(wijk, Biji,vijk) Vi, 54,k
where Qijk = min{r,;]-,rjk,rk,;},ﬂijk = median{rij,rjk,rk,;},
Vijk = max{r;j, vjx, r; }, and L is the dual lower function of
U,ie.
L(cijr, Bijis vijr) =1 = UL = Yijis L = Biji, 1 — aijr)-

De Baets et al. proved that minimum transitivity of recipro-
cal preference relations was the only transitivity property with
1-Lipschitz commutative conjuntor such that its corresponding
upper bound is self-dual [14].

Strong stochastic transitivity under reciprocity property can
be equivalently stated as

Tik = max{rij, ’I“jk}, if Tijs Tk > 0.5;
if?"ij, Tik < 05,

otherwise.

Tik S min{rij, rjk};
min{r;;, 7} < ripg < max{ry;, 7},

Multiplicative transitivity property was proposed by Tanino
for reciprocal preference relations when r;; > 0 Vi, j. This
property has also been proposed to model transitivity of pref-
erences in probabilistic choice theory with the name of prod-
uct rule [39]. By simple algebraic manipulation, multiplicative
transitivity property, under the assumption of reciprocity, can be
expressed as

Tij " Tjk
rij - rik + (L= rig) - (L =rje)”

Tik =
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Comparison of independent random variables in terms of win-
ning probabilities sometimes results in multiplicative transitive
reciprocal relations, for instance, for random variables with an
exponential distribution, power-law distribution, or Gumbel dis-
tribution [21]. De Baets et al. [14] have shown that multiplica-
tive transitivity property is a special case of the cycle transitivity
property w.r.t. a self-dual upper bound function.

In practical cases, we have to face the problem of which tran-
sitivity property to use for modeling and measuring the consis-
tency of reciprocal preference relations. Obviously, apart from
maximum transitivity and additive transitivity, all the earlier
listed properties of transitivity could be used to address this
issue. The rest of the paper is devoted to the modeling of the
“cardinal consistency in the strength of preferences” for recip-
rocal preference relations via a functional equation. We will
show that under reasonable conditions, multiplicative transitiv-
ity property is characterized, up to isomorphism, as the most
appropriate property to model and measure consistency of re-
ciprocal preference relations.

III. CARDINAL CONSISTENCY OF RECIPROCAL
PREFERENCE RELATIONS

The assumption of experts being able to quantify their prefer-
ences in the domain [0,1] instead of {0, 1} underlies unlimited
computational abilities and resources from the experts. Taking
these unlimited computational abilities and resources into ac-
count, we may formulate that an expert’s preferences are consis-
tent when for any three alternatives x;, x;, x, their preference
values are related in the following “exact” form:

ri = f(rij, mjr) Vi, j, k (D
f being a function f : [0,1] x [0, 1] — [0,1]. This functional
consistency is the extension of the g-isostochastic transitivity
property from [0.5, 1] to the whole range of preferences [0, 1].

In practical cases, the aformentioned functional consistency
might obviously not be verified even when a reciprocal pref-
erence relation verifies weak transitivity property. However,
the assumption of modeling consistency using expression (1)
can be used to introduce levels of consistency, which, in group
decision-making situations, could be exploited by assigning a
relative importance weight to each one of the experts in arriving
to a collective preference opinion. Also, expression (1) can be
used as a principle for deriving missing values. Indeed, using
just these preference values provided by an expert, expression
(1) could be used to estimate those preference values which
were not given by that expert because he/she was uncertain as to
his/her preference between the alternatives or he/she was unable
to compare them. By doing this, the estimated values are assured
to be “compatible” with the rest of the information provided by
that expert [29]-[31].

Note that (1) implies that f(r;;,7,) = f(ru, rw) Yi, 5, k, L
On the other hand, we have 7;; = f(ry,r;) and ry =
f(ri;,7;1). Putting these expressions together we have that f is
associative

F(frasry)srin) = fra, f(ry,rix)) Vi, g, k, L.
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Proposition 1 (Associativity): Let R = (r;;) be a reciprocal
preference relation. A function f : [0,1] x [0, 1] — [0, 1] veri-
fying rir, = f(rij,7j5) (Vi, j, k) is associative, i.e.

f(f(x,y),Z)Zf(m,f(y,z)) Va,y,z € [071]

Equation (1) and the assumed reciprocity property of prefer-
ences imply that

Tei = f(rhj,rji) = F(1—=7jp, 1 —1i5)
Because r; =1 —ry, =1 — f(rij,rji) Vi, j, k, then
fU=rjp, L —rij) =1~ f(rijyrjn) Vi, g,k

This means that function f verifies a self-duality property.

Proposition 2 (Self-Duality): Let R = (r;;) be a reciprocal
preference relation. A function f : [0, 1] x [0,1] — [0, 1] veri-
fying rir, = f(rij, k) (Vi, j, k) is self-dual, i.e.

Vi, j, k.

fle,y)+ fl-y,1-2)=1  Vr,y€|0,1].
From this result, we have
flz,1—2)=0.5 Vz € [0,1]

and
J0.5,7i) = f(f(rir, 1 —rin), 1)
= f(rir, f(1 = rig, i) = f(rir, 0.5)

On the other hand, (1) and Proposition 1 imply

rik = f(rijs k) = f(rig, f(rgis rir)) = f(F (i, ria), rin)

= f(0.5,7)  Vi,k.

Therefore, 0.5 is the identity element of function f.

Proposition 3 (Identity Element): Let R = (r;;) be a recip-
rocal preference relation. A function f : [0, 1] x [0,1] — [0, 1]

verifying 7, = f(rij,rjx) (Vi,j,k) has 0.5 as its identity
element

Vi, k.

f(0.5,z) = f(2,0.5) ==z vz € [0,1].

The preference value r;; should not decrease when any of
the preference values 7;;, r;;, increases while the other remains
fixed. We impose this monotonicity (increasing) property to
function f.

Property 1 (Monotonicity): Let R = (r;;) be a reciprocal
preference relation. A function f : [0,1] x [0, 1] — [0, 1] veri-
fying rip, = f(rij,7j%) (Vi,4, k) is assumed to be monotonic
(increasing), i.e.

flx,y) > f@',y) y>y.

The following result states that functional consistency with
function f being monotonic, associative, self-dual, and with
identity element 0.5 implies strong stochastic transitivity, and
therefore, minimum transitivity as well.

Proposition 4: Let f :[0,1] x [0,1] — [0,1] be an increas-
ing, associative, self-dual function with identity element 0.5.
Then

f(z,y) > max{z,y},
f(z,y) < min{z, y},
min{z,y} < f(z,y) < max{z,y},

ifx > o and

if min{z,y} > 0.5
if max{z,y} <0.5

otherwise.
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The following result is obtained:
Corollary 1: Let f : [0,1] x [0,1] — [0, 1] be an increasing,
associative, self-dual function with identity element 0.5. Then
) z>05= f(z,1)= f(l,z) =1.
In particular, f(1,1) = 1.
2) x<0.5= f(x,0) = f(0,2) =0.
In particular, f(0,0) = 0.
Monotonicity property means that self-duality of f is not
applicable when (z,y) € {(0,1), (0,1)}. Indeed, if this were
the case, then Va > 0.5, and we would have

z = f(0.5,2) = f(f(0,1),x) = f(0, f(1,2)) = £(0,1)=0.5.

The same conclusion is obtained when x < 0.5. Therefore, it
cannot be f(0,1) = f(1,0) = 0.5. So, if f(0,1) (f(1,0)) ex-
ists, then we have the following two cases.

1) If f(0,1) > 0.5, then

f(0,1) = (0, f(1,1)) = f(f(0,1),1) = 1.

2) If (0,1) < 0.5, then f(0,1) = 0.

Proposition 5: Let R = (r;;) be a reciprocal preference rela-
tion. If a monotonic (increasing) function f : [0, 1] x [0,1] —
[0, 1] verifies 7, = f(rij, 1) (Vi,J, k), then it is self-dual on
[0,1] x [0,1]\{(0,1),(1,0)} and £(0,1), f(1,0) € {0,1}.

Another desirable property to be verified by function f should
be that of continuity, because it is expected that a slight change
of the values in (r;;,7;;) should produce a slight change in the
value r;;. However, continuity is not possible to be achieved at
(0,1) nor at (1,0), because

}%f(xvl_x)#f(ovl) A }Fli%f(l_x7x)7éf(170)

Property 2 (Continuity): Let R = (r;;) be a reciprocal pref-
erence relation. A function f:[0,1] x [0, 1] — [0,1] verify-
ing rir, = f(rij, 1) (Vi, j, k) is assumed to be continuous on
0,1] x [0, 1\{(0, 1), (1,0)}.

To conclude this section, we note that if there exist alternatives
Z;, ), and x; such that

f(rijsrin) = f(rijsrp) Vi
then
rik = f(0.5,751) = f(f(rji,riz)srie) = f(rjis f(rigsmix))
= f(rji, f(rij,mjn)) = f(f(rjisrig),min) = £(0.5,75)
=Tji-

Obviously, when f(ry;, ;) = f(ri;,7j:) Vi, we derive ry; =
ry;. This property is known with the name of “cancellative”
property. Due to the problems with the definition of func-
tion f when (x,y) € {(0,1),(1,0)}, we have the following
proposition.

Proposition 6 (Cancellative): Let R = (r;;) be a reciprocal
preference relation. If a monotonic (increasing) function f :
[0,1] x [0,1] — [0, 1] verifies 7, = f(rij, %) (Vi, ], k), then
£ is cancellative on [0, 1] x [0,1]\{(0, 1), (1,0)}.

Summarizing, a reciprocal preference relation R = (r;;) is
consistent if and only if

rit = f(rij,Tjk) Vi, j, k

with f:[0,1] x [0,1] — [0,1] being a continuous, mono-
tonic increasing, associative, cancellative, self-dual function
on [0, 1] x [0,1]\{(0, 1), (1,0)}, with identity element 0.5, and
£(0,1), £(1,0) € {0,1}.

IV. REPRESENTABLE UNINORMS AND CARDINAL
CONSISTENCY OF RECIPROCAL PREFERENCE RELATIONS:
THE MULTIPLICATIVE TRANSITIVITY PROPERTY

Uninorms were introduced by Yager and Rybalov [57] as a
generalization of the #-norm and #-conorm, and share with them
the commutativity, associativity, and monotonicity properties.
It is the boundary condition or identity element that is used to
generalize -norms and #-conorms. The identity element of #-
norms is the number 1, while for t-conorms, it is 0. Uninorms
can have an identity element lying anywhere in the unit interval
[0,1].

Function f in the previous section shares all properties of a
uninorm but commutativity, which cannot be directly derived
from the aforementioned set of properties. However, commuta-
tivity of f can be derived indirectly from associative, cancella-
tive, and continuity properties of f, as proved by the following
result by Aczél [1].

Theorem 1: Let I be a (closed, open, half-open, finite, or
infinite) proper interval of real numbers. Then F : [? — [
is a continuous operation on I that satisfies the associativity
equation

F(F(z,y),2) = F(x, F(y,2))  Va,y,z€l

and is cancellative, i.e.
F(xy,y) = F(zg,y)  or  Fly,z1) = F(y,22)
implies xr; = xy forany z € 1

if and only if there exists a continuous and strictly monotonic
function ¢ : I — J such that

F(z,y) = ¢ " [o(z) + ¢(y)]
Here, J is one of the real intervals

[5’ 00[7

Ve,y € 1. 2)

}—OO,’V], ]—OO,’V[, ]5700[» or ]—O0,00[

for some v < 0 < §. Accordingly, I has to be open at least
from one side. The function in (2) is unique up to a linear
transformation [¢(x) may be replaced by (1/C)¢(x), C # 0,
but by no other function].

Remark 2: Although function F' in Theorem 1 was not as-
sumed to be commutative, the result (2) shows that it is. Strict
monotonicity of function ¢ implies that function F' is also
strictly monotonic.

The representation of function F' given by (2) coincides
with Fodor, Yager, and Rybalov representation theorem for al-
most continuous uninorms U, i.e., uninorms with identity ele-
ment in |0, 1] continuous on [0, 1] x [0, 1]\{(0,1), (1,0)} [27].
Therefore, the assumption of modeling consistency of recip-
rocal preferences in [0, 1] using the functional expression (1)
has solution f a representable uninorm operator with strong
negator N(z) = 1 — z [57]. The representation theorem also
provides a relationship between the generator function ¢ and
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the strong negation N: ¢ !(—¢(z)) = N(z). In our case,
N(z) =1— z, and we have ¢(x) + ¢(1 — z) = 0, and in par-
ticular, ¢(0.5) = 0. Conforming to this result, we propose the
following definition of consistent reciprocal preference relation.

Definition 3 (U-consistent reciprocal preference relation):
Let U be a representable uninorm operator with strong negator
N(z) =1— . A reciprocal preference relation R on a finite
set of alternatives is consistent with respect to U (U-consistent)
if and only if

Vi,j,k : (rl-k,rkj) ¢ {(071),(1,0)} = Tij = U(rik,rkj).

Tanino’s multiplicative transitivity property is the U-
consistency property with U being the AND-like repre-
sentable cross ratio uninorm with generator function ¢(z) =

In (z/(1 - z)) [38]

0, (z,y) € {(0,1),(1,0)}

U(a:,y) = ry
zy+ (1 —z)(1—y)’

3)

This particular uninorm is the one used in the PROSPECTOR
expert system [11]. Because the generator function of Theo-
rem 1 is unique up to a linear transformation, then any two
representable uninorms are order-isomorphic. Therefore, the
multiplicative transitivity property is, among the many pro-
posed properties, being characterized as the most appropriate
one to model the cardinal consistency of reciprocal preference
relations.

otherwise.

V. CONSTRUCTION OF U-CONSISTENT RECIPROCAL
PREFERENCE RELATIONS

A consequence of AczEl’s result is that the interval [ is
open at least from one side, which, in our case, means that
I €{]0,1],[0,1[,]0,1[}. If we exclude one of the extreme
values of the unit interval, the other extreme should also be
excluded due to the reciprocity of preferences. This implies
that we should consider the functional equation (1) only when
0 < r; <1 Vi,7. Under this restriction, in the following, we
prove that for a reciprocal preference relation R

rie = U(rij, rjk) Vi, j, k

is equivalent to

Tik = U(Ti(it1)s T(i+1)(i42)s - > T(k=2)(k—1) T(h—1)k) Vi <k

where U is a representable uninorm operator with strong negator
N(z)=1-z.

Proposition 7: For a reciprocal preference relation R and
a representable uninorm operator with strong negator N (z) =
1—,U:]0,1] x ]0,1[—>]0, 1[, the following statements are
equivalent

1) Tik = U(Tij7rjk) Vi,j, k.

2) Tik = U(Tij,rjk) Vi %j 75 k.

Proof: On the one hand, because U(z,1 —z) = 0.5 and
reciprocity 7;; = 0.5, we have that r;;, = U(r;;, 7)) needs to
be checked just for ¢ # k. On the other hand, the property
U(0.5,z) = U(x,0.5) = x implies that we need to consider
values j # i, k. [ |
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Proposition 8: For a reciprocal preference relation R and
a representable uninorm operator with strong negator N (z) =
1 -z, U:]0,1[x]0,1[—>]0, 1], the following statements are
equivalent.

1) Tik = U(?“i]',’l“jk) V’i 75_7 75 kj.

2) rip = U(nj,rjk)Vi 7&] #*kNi<k.

Proof: We prove 2) = 1). If i > k, then

Tik — 1 — Tk = 1 — U(rkj,rﬁ)
=1-U1—rjr,l —riy)
=U(rjk,7ij)
= U(rij,rjk)- "

Proposition 9: For a reciprocal preference relation R and
a representable uninorm operator with strong negator N (z) =
1 -z, U:]0,1[x]0,1[—>]0, 1], the following statements are
equivalent.

1) riyp = U(Tij,’l“jk) Vi£j#kNi<Ek.

2) T = U(Tij,’l"jk,) Vi < i< k.

Proof: We prove 2) = 1).

I) If j < i < k, then

U(rij,mjk) = Ulrij, U(rji, mix))
(U(rij,rji)Tik)
(0.5,7i1) = Tik.

U
U
I Ifi < k < j, then
U(rij,rje) = UU(ri, mrj), i)
= U(rig, U(rijsin))
=U(ri,0.5) = riy. [

Proposition 10: For a reciprocal preference relation R and
a representable uninorm operator with strong negator N(x) =
1—ua, U:]0,1[%]0,1[—]0, 1], the following statements are
equivalent.

1) rip = U(’I’l‘j,’l’jk) Vi< j<k.

2) ik = UTigig1)s T(i+1)(i42)s - - > T(k=2)(k—1)> T(k—1)k )
Vi < k.
Proof:

1) = 2).Let: < k, we have that
Tik = U(ri(i+1)ar(i+l)k)

Tk = U(T(ir1)(i42) i+ 2)k)

T2k = U(T(k—2)(k=1)> T(k—1)k)-

Putting all these expressions together, and applying asso-
ciativity of U, we have

Tik = U(Ti(i+1)77"(i+1)(i+2)v- ~-ar(k—2)(k—1)ar(k—l)k)
Vi < k

2) = 1).Let¢ < j < k, we have that
U(rig,rir) = UU(Tigit1), T(i+1)(i42)5 -+ T(=1)5 )5

U(Tj(j+1)a'r(j+l)(j+2)a~~~vr(k—1)k )-
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Associativity of U implies that
U(rij,mie) =UTigie1)s T41)(i4+2) - - - T(j—1)j 5
TiG1)s TG+ (G12)s - s T(k—1)k) = Tik- W

Summarizing, we have proved the following result.

Theorem 2: For a reciprocal preference relation R and a
representable uninorm operator with strong negator N(x) =
1—ua, U:]0,1[x]0,1[—]0, 1], the following statements are
equivalent.

1) Tik = U(rij,rjk) Vl,j,k

2) ik = UTitie1)s T+1)(i42)> -+ s T(h=2)(k—1)> T(h—1)k)

Vi < k.

Given a representable uninorm operator with strong nega-
tor N(x) =1—a, U, Theorem 2 allows us to construct a
U-consistent reciprocal preference relation from the follow-
ing set of n — 1 preference values Ry = {r;;.1) €]0,1[ i =
1,...,n — 1} as follows.

1) V(i,7) suchthat j > i+ 1

Tij = U(Ti(it1) T(i41)(i42)> - - > T(—1)7)-
2) V(i,7) suchthatj < i
rij =1 —rj.
For the cross ratio uninorm

_ Y
Vo) = o)

v,y €]0,1]
we have
V(i,7) such that j > i+ 1

i—(i+1
H?:((l ) TG+ (i+141)

j—(i+1 :
TGl (iti+1) T H’f:(() - (i) (i+141))

i = =)
1=0
Example 1: Suppose we have a set of four alternatives
{1,292, 3,24} and certain knowledge to assure that alterna-
tive x7 is weakly more important than alternative x5, alterna-
tive x2 is more important than 3, and finally, alternative 3 is
strongly more important than alternative x4. Suppose this sit-
uation is modeled by the preference values {r2 = 0.55, 793 =
0.65,734 = 0.75}. Applying Theorem 2 with the cross ratio uni-
norm, we obtain the following values (with two decimal places):
712 " 723
r12 - Te3 + (L —712) - (1 —723)
T12 * 723 " T34

S = 0.87
" T19 - T3 - T34 + (1 —112) - (1 —rag) - (1 —734)

T3 = = 0.69

T23 - T34
Toy = =0.85
M o sy + (L) - (1 —134)
To1 = 1-— 19 = 0.45
39 = 1-— 93 = 0.35

T43 = 1-— 34 = 0.25

31 = 1 — T3 = 0.31
T41 = 1—7‘14 :013

T49 = 1-— 94 = 0.15

and therefore

0.5 0.55 0.69 0.87
0.45 0.5 0.65 0.85
031 035 0.5 0.75
0.13 0.15 0.25 0.5

R:

is a (multiplicative) consistent preference relation.

VI. CONCLUSION

Rationality is related to consistency, which is associated with
the rransitivity property. For reciprocal preference relations,
many properties have been suggested to model transitivity, some
of which have been proved to be inappropriate. Recently, a gen-
eral framework for studying the transitivity of reciprocal pref-
erence relations, the cycle transitivity, was presented in [14].
Stochastic (weak, moderate, and strong) transitivity properties
and product rule (multiplicative transitivity), which are prop-
erties specifically devised for probabilistic binary preference
relations, have usually been proposed to model transitivity of
reciprocal preference relation in fuzzy set theory. All these tran-
sitivity properties are special cases of cycle transitivity. In prac-
tical cases, any of these properties could be used to model, and
therefore, to measure the consistency of reciprocal preference
relations.

In this paper, we have argued that the assumption of experts
being able to quantify their preferences in the domain [0,1] in-
stead of {0, 1} underlies unlimited computational abilities and
resources from the experts. As a consequence, we have proposed
to model the cardinal consistency of reciprocal preference rela-
tions via a functional equation, and we have shown that when
such a function is almost continuous and monotonic (increas-
ing), then it must be a representable uninorm. Cardinal consis-
tency with the conjunctive representable cross ratio uninorm is
equivalent to Tanino’s multiplicative transitivity property. Be-
cause any two representable uninorms are order-isomorphic,
multiplicative transitivity is being characterized as the most ap-
propriate to model consistency of reciprocal preference rela-
tions. Finally, we also provided results toward the construction
of consistent reciprocal preference relation from a minimum set
of (n — 1) preference values.
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