
FOCUS

Learning consistent, complete and compact sets of fuzzy rules
in conjunctive normal form for regression problems

Jorge Casillas Æ Pedro Martı́nez Æ Alicia D. Benı́tez

Published online: 2 September 2008

� Springer-Verlag 2008

Abstract When a flexible fuzzy rule structure such as

those with antecedent in conjunctive normal form is used,

the interpretability of the obtained fuzzy model is signifi-

cantly improved. However, some important problems

appear related to the interaction among this set of rules.

Indeed, it is relatively easy to get inconsistencies, lack of

completeness, redundancies, etc. Generally, these proper-

ties are ignored or mildly faced. This paper, however,

focuses on the design of a multiobjective genetic algorithm

that properly considers all these properties thus ensuring an

effective search space exploration and generation of highly

legible and accurate fuzzy models.

Keywords Genetic fuzzy systems �
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1 Introduction

In knowledge discovery in databases we can distinguish

between two different approaches (Lavrač et al. 2004):

predictive induction and descriptive induction. The differ-

ence lies in the main objective pursued and, therefore, the

learning method used to attain that. On the one hand,

predictive induction looks for generating legible models

that describe with the highest reliability the data set that

represents the analyzed system. In that case, the goal is to

use the obtained model to simulate the system, thus getting

an explanation of its complex behavior. On the other hand,

descriptive induction looks for particular (interesting) pat-

terns of the data set. In that case, we do not get a global

view of the relationships among variables but we discover

a set of rules (different enough among them) statistically

significant.

This paper focuses on the former approach, the predic-

tive induction, to deal with regression problems where both

input and output are real-valued and where the knowledge

obtained is important to understand better the analyzed

system. To represent the knowledge, and with the aim of

generating legible enough models (which, no doubt, is one

of the fundamental premises in any knowledge extraction

process), we propose the use of fuzzy rule-based systems.

These systems use IF–THEN fuzzy rules and linguistic

variables to express the knowledge about the problem.

The automatic extraction of fuzzy rule-based systems can

be done with different learning methods, either greedy

algorithms (Nozaki et al. 1997; Wang and Mendel 1992) or

other methods such as neural networks (Fullér 2000; Nauck

et al. 1997) and genetic algorithms (GAs) (Cordón et al.

2001). Due to the aim of this paper on generating knowledge

with good interpretability, we propose the use of GAs

because it holds a sort of useful features for our purpose.

Firstly, they have a powerful search capacity that allows us to

work with multiobjective optimization. Secondly, they can

manage flexible representation structures mixing coding

schemes or including restrictions. From the beginning of the

90s many researchers have drawn their attention to the use of

GAs to automatically design different components of a fuzzy

rule-based system (Karr 1991; Thrift 1991; Valenzuela-

Rendón 1991). These learning systems are usually known as

genetic fuzzy systems (Cordón et al. 2001).

Regardless the learning tool used, a crucial problem

emerges: to obtain both an accurate and an understandable

model. Indeed, fuzzy modeling (i.e., the process of deriving
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fuzzy systems) usually comes with two contradictory

requirements to the obtained model: the interpretability,

capability to express the behavior of the real system in a

comprehensible way, and the accuracy, capability to

faithfully represent the real system. Of course, the ideal

thing would be to satisfy both criteria to a high degree but,

since they are contradictory issues, it is generally not

possible. The quest of a good trade-off between interpret-

ability and accuracy is target of numerous research works

nowadays (Casillas et al. 2003a, b).

To reach this balance, we propose in this paper the use

of fuzzy rules with antecedent in conjunctive normal form

(i.e, where the antecedent is the conjunction of a set of

propositions, each of them associating an input variable

with a set of linguistic terms connected by disjunction),

usually known as DNF-type fuzzy rules. This representa-

tion provides a high degree of compactness and knowledge

synthesis. Since we are interested in predictive induction,

the Pittsburgh-style GA (where each individual encodes a

complete set of rules) seems to be the best approach to

properly assess the interaction among the different fuzzy

rules to perform interpolative reasoning.

However, the combination of DNF-type fuzzy rules and

Pittsburgh-style GA are far from being easy since several

difficulties arise:

• Consistency: each combination of antecedents (one

label per input variable) should have only one possible

consequent label.

• Completeness: every training data example should fire

at least one fuzzy rule.

• Compactness: the lowest number of rules to accurately

represent input-output relationships should be obtained.

Among other issues, it involves avoiding redundant

rules.

• Non-overgeneral rules: a DNF-type fuzzy rule should

be general enough as to represent in a compact way the

input-output relationship but specific enough as to

avoid covering input areas without data.

Although it is relatively easy to comply with these

conditions when using simple (Mamdani-style) fuzzy rules

[see for example (Jin et al. 1999), where measures of

incompleteness and inconsistency are used as penalty in the

rule’s fitness], it becomes more complex in the case of

DNF-type fuzzy rules. Most of the methods that deal with

some kind of generalization of the antecedent of the fuzzy

rule (e.g., DNF-type rules or rules with ‘‘do not care’’) do

not address properly the problem (Casillas and Martı́nez-

López 2008; Castro et al. 1999; González and Pérez 1998,

1999; Ishibuchi et al. 2006; Ishibuchi and Nojima 2007;

Magdalena 1997; Otero and Sánchez 2006; Sánchez et al.

2001; Xiong and Litz 2000). Indeed, some of these pro-

posals use a penalty fitness to correct these deficiencies,

others infer a default output when no rules are fired, others

tend to generate a high number of rules, some other simply

do not prevent the system from generating inconsistencies

or redundancies...

There are few proposals that explicitly try to hold one

or more of the consistency, completeness and compact-

ness properties with a fuzzy rule structure with

generalization capability of the antecedent. For example,

Wang et al. (2005) use the same functions defined in Jin

et al. (1999) to detect conflicts with an agent-based evo-

lutionary approach in which the agents were multi-

objective Pittsburgh-style genetic fuzzy systems. How-

ever, they use simple crossover and mutation operators

and a posteriori reparation to solve inconsistencies and

redundancies. Other solution is proposed in Wang et al.

(1998), where redundancy by subsumption is removed by

a specific a posteriori operator. However, consistency of

the rule set is not ensured.

We take a completely different approach from the above

methods and propose an algorithm that intrinsically

explores feasible solutions (according to the mentioned

consistency, completeness, non-redundancy, and non-

overgenerality restrictions), thus avoiding the use of pen-

alties, reparations, or additional function objectives. It

considers a multiobjective optimization process which

generates a large range of solutions with different inter-

pretability-accuracy balances under the mentioned

restrictions.

The paper is organized as follows: Section 2 briefly

presents the difficulties that appear when using DNF-type

fuzzy rules. Section 3 describes the proposed algorithm,

called Pitts-DNF. Section 4 shows the results obtained in a

set of real-world problems compared with other fuzzy rule

learning methods. Finally, Sect. 5 concludes and suggests

some further works.

2 Some properties to be considered when learning

DNF-type fuzzy rules

In order to obtain a high degree of knowledge synthesis,

thus improving the interpretability, we opted by a compact

description based on DNF-type fuzzy rules where the

antecedent is described in conjunctive normal form. This

kind of fuzzy rule structure is defined as follows:

IF X1 is fA1 and . . . and Xn is fAn THEN Y is B;

where each input variable Xi takes as a value a set of lin-

guistic terms eAi ¼ fAi1 or . . . or Aili
g; whose members are

joined by a disjunctive (T-conorm) operator, whilst the

output variable remains an usual linguistic variable with a

single label associated. The structure is a natural support to

allow the absence of some input variables in each rule
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(simply making eAi be the whole set of linguistic terms

available).

When a whole set of such a kind of rules is simulta-

neously learnt (as recommended in predictive induction

tasks), collisions easily appear. Basically, these collisions

are of two types: inconsistency and redundancy. Further-

more, to have a fuzzy rule structure that allows a variable

generality degree of the antecedent may lead the learning

algorithm to two undesirable situations: over-generality

and incompleteness. These four cases are discussed in the

following sections.

2.1 Consistency

The first kind of collision is the inconsistency. Two rules

are inconsistent between them when their antecedents

overlap themselves, i.e., their antecedents are the same,

they coincide in some labels for each input variable, or one

is subsumed by the other (i.e., an antecedent is completely

contained in a larger and more comprehensive antecedent)

but the consequent is different. For instance, the two fol-

lowing rules are inconsistent:

Example 1

R1 : IF X1 is A1 and X2 is B1 THEN Y is C1

R2 : IF X1 is A1 and X2 is B1 THEN Y is C2

and the same in this second example where the antecedents

are partially overlapped:

Example 2

R1 : IF X1 is fA1 or A2g and X2 is B1 THEN Y is C1

R2 : IF X1 is A1 and X2 is fB1 or B2g THEN Y is C2

or in this third case where the antecedent of the former rule

subsumes the latter:

Example 3

R1 : IF X1 is A1 and X2 is fB1 or B2g THEN Y is C1

R2 : IF X1 is A1 and X2 is B1 THEN Y is C2

All these cases of inconsistency cause a linguistic contra-

diction that should be avoided for the sake of a better

interpretability.

To solve these inconsistencies sometimes involves

making more specific a general rule (as R1 or R2 in the

example 2, or R1 in the example 3) or removing the more

specific rule (as R1 or R2 in the example 1, or R2 in the

example 3). Therefore, in these cases, to solve the incon-

sistency also helps to reduce the complexity of the rule set.

In other situations, however, to solve the inconsistency

may imply the necessity of a higher number of rules as shown

in Fig. 1. Therefore, the interpretability improvement

obtained when solving the inconsistency may involve a more

complex rule set. This fact could be solved by considering a

firing-level-based hierarchy of the rule set (being the more

specific rules in an upper position) (Yager 1993), discounting

the strength of the more general rules when they are incon-

sistent with more specific ones (Ishibuchi et al. 2006), or

even by extending the knowledge representation to consider

rules with exceptions (Carmona et al. 2004). These issues

are out of the scope of this paper.

2.2 Redundancy

A second, less serious collision is when the antecedent is

overlapped as in any of the above examples but the

X1
A1 A2 A3 A4

X2

B1

B2

B3

B4

IF X1 is {A2 or A3} and X2 is {B1 or B2 or B3} THEN Y is C1

IF X1 is A3 and X2 is B2 THEN Y is C2

(a)

X1
A1 A2 A3 A4

X2

B1

B2

B3

B4

IF X1 is {A2 or A3} and X2 is B1 THEN Y is C1

IF X1 is A3 and X2 is B2 THEN Y is C2

(b)

IF X1 is A2 and X2 is B2 THEN Y is C1

IF X1 is {A2 or A3} and X2 is B3 THEN Y is C1

Consistent solution (4 rules)Inconsistent solution (2 rules)

Fig. 1 Example of a an

inconsistent solution and b a

consistent solution. Notice that

in this case more rules are

needed to hold consistency
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consequent is the same. In that case, we have a redundancy.

For instance:

Example 4

R1 : IF X1 is A1 and X2 is fA2 or B2g THEN Y is C1

R2 : IF X1 is A1 and X2 is A2 THEN Y is C1

Redundancy increases the fuzzy rule set size

unnecessarily and can even provoke some undesirable

interaction effects with some inference engines. When both

rules have the same antecedent or one subsumes the other,

the fuzzy rule set can be easily fixed by removing the

repeated or the most specific rule (R2 in the Example 4),

respectively.

2.3 Over-generality

The use of a flexible structure to represent the antecedent of

the fuzzy rule can also lead the algorithm to generate over-

general rules. This fact appears when a DNF-type fuzzy

rule includes a higher number of linguistic terms per var-

iable than the ones strictly necessary according to the

training data as illustrated in Fig. 2. It makes the fuzzy rule

cover input regions where there is no available information,

which is not desirable at all since the quality of the rule in

those regions can not be tested.

If the learning algorithm does not care about that, the

antecedent structure of some generated fuzzy rules is actu-

ally designed in a random way, since any consequent used in

the empty regions would return exactly the same accuracy

degree. This fact is even more serious if the learning algo-

rithm is oriented by an objective function designed to

increase the generality degree of the fuzzy rules.

To ensure optimal generality, however, may provoke

some undesirable effects. The first one is that sometimes a

higher number of rules is needed (as shown in Fig. 2).

Another drawback is that generating a fuzzy rule set that

only covers the training input regions may worsen the

prediction generality (i.e., the capability to accurately

predict the output in unforeseen input data), typically

measured by the test error, if there is data on these areas.

Therefore, the question whether keeping optimal gen-

erality is recommendable or not is a controversial issue.

We believe, nonetheless, that from the knowledge discov-

ery field point of view it is preferable to provide the expert

with a set of rules that properly represent the analyzed data

instead of doing a pseudo-random generalization of the rule

antecedents.

In the last resort, and always considering the expert

interests, a good solution would be to provide a fuzzy rule set

strictly generated from the data and another one to cover the

input gaps. This latter fuzzy rule set with total completeness

could be generated by doing linguistic extrapolation (e.g.,

Wang 2003). We leave this last approach for a further work.

A simpler solution, but extensively done in the litera-

ture, is to return a conservative output (e.g., in regression

problems it is usual to give the mean value of the output

domain) when no rules are fired due to the fact that the data

lies in an uncovered input region. If it is done during the

learning process, an incomplete rule set may be generated

(as discussed in the next section) and, therefore, it is not

recommended at all. However, it can be considered in the

inference engine once the learning has finished and the

final fuzzy system is used to predict the output for new

input data. We will follow this approach for reporting test

results in this paper.

2.4 Completeness

The last interesting property is completeness. This means

that no input regions where there is data should be

uncovered, i.e., with no rules being triggered. In

X1
A1 A2 A3 A4

X2

B1

B2

B3

B4

IF X1 is {A2 or A3} and X2 is {B1 or B2 or B3} THEN Y is C1

(a)

X1
A1 A2 A3 A4

X2

B1

B2

B3

B4

IF X1 is {A2 or A3} and X2 is {B1 or B2} THEN Y is C1

IF X1 is A2 and X2 is B3 THEN Y is C1

(b) Solution with optimal generality (2 rules)Over-general solution (1 rule)

Fig. 2 Example of a solution

with a over-generality and

b optimal generality according

to training data. Notice that in

this case more rules are needed

to hold optimal generality
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classification tasks this fact is not usual since an uncovered

training example is considered as misclassified, so these

kinds of solutions are penalized. However, in regression

problems where an output must be always returned, if the

inference is designed to give a default answer (e.g., the

mean value as said in the previous section), incomplete

fuzzy rule sets may be generated.

Moreover, if the learning system seeks for an optimal

generality (see the previous section) and/or with a reduced

number of rules, the risk of obtaining incomplete rule sets

is higher. We will endow our proposed algorithm with an

effective way of ensuring completeness.

3 Pitts-DNF algorithm

The learning algorithm we propose in this paper, called

Pitts-DNF, has been designed to avoid generating DNF-

type fuzzy rule sets with inconsistencies, redundancies,

over-generality, or training incompleteness. Its scheme is

shown in Algorithm 1.

Algorithm 1: Pitts-DNF algorithm

Parameters: Population size, crossover probability, antecedent

mutation probability, and consequent mutation probability

Input: Data set: D ¼ fðx; yÞ j x 2 R
n; y 2 R

mg: Membership function

definitions

Output: Set of non-dominated solutions, each one with a different

number of rules/accuracy trade-off. Each solution is a consistent,

non redundant, non over-general, and complete DNF-type fuzzy

rule set

begin

Initialization(P)

CH  � Covering_Hypermatrix(D)

Evaluation(P, D)

While not stop condition do

P1  � Multiobjective_Selection(P)

P2  � Crossover(P1)

P3  � Antecedent_Mutation(P2, CH)

P4  � Consequent_Mutation(P3)

P5  � Completeness_Operator(P4, D)

Evaluation(P5, D)

P  � Multiobjective_Replacement(P5, P)

end

end

3.1 Coding scheme

Each individual of the population represents a set of fuzzy

rules (i.e., Pittsburgh style). Therefore, each chromosome

consists of the concatenation of a number of rules. The

number of rules is not fixed a priori so, the chromosome

size is variable-length. Each rule (part of the chromosome)

is encoded by a binary string for the antecedent part and an

integer coding scheme for the consequent part. A binary

coding could also be used for the consequent part without

influencing on the algorithm behavior, but since we use a

fuzzy rule structure where only one label is associated to

each output variable, integer coding seems to be more

appropriate.

The antecedent part has a size equal to the sum of the

number of linguistic terms used in each input variable.

The allele ‘1’ means that the corresponding linguistic

term is used in the corresponding variable. The conse-

quent part has a size equal to the number of output

variables. In that part, each gene contains the index of

the linguistic term used for the corresponding output

variable.

For example, assuming we have three linguistic terms

(S [small], M [medium], and L [large]) for each input/

output variable, the fuzzy rule

½IF X1 is S and X2 is fM or Lg THEN Y is M�

is encoded as

½100j011jj2�:

A chromosome will be the concatenation of a variable

number of these fuzzy rules, e.g.,

½100j011jj2 010j111jj1 001j101jj3�

for a set of three rules. Notice that we do not fix a maxi-

mum number of rules per chromosome. Since our

algorithm removes any unnecessary redundancy and

unfired fuzzy rules, the number of rules is restrained all the

time in a natural way.

It is allowed a variable with all the labels set to ‘1’

(which means the variable is not considered in the corre-

sponding rule), but it is forbidden a variable with all the

labels set to ‘0’. It is so because, although one could think

of assigning this latter combination to the fact of not using

the variable (as in the case of all the labels set to ‘1’), then

we would have solutions genotypically closer but pheno-

typically far, which is not advisable.
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3.2 Initialization

Since we are looking for optimal completeness, we need to

start with rules which cover all the examples. Because of

that, we use the well-know Wang–Mendel algorithm

(Wang and Mendel 1992), briefly described in Appendix,

to generate the antecedent structure.

Specifically, every chromosome is generated with the

minimum number of rules that cover the examples

according to this algorithm and with a random consequent

for every rule (except one chromosome that uses the con-

sequents provided by Wang–Mendel). In this way, all

chromosomes start with the same number of rules, being as

specific as possible (i.e., with Mamdani-type structure

instead the DNF one).

3.3 Covering hypermatrix computation

The objective of this step is to generate a data structure

which will be used when generating new rules to effi-

ciently avoid over-generality or generating rules in

regions without training data. This structure, that we

have called covering hypermatrix, stores the label com-

binations of the antecedent that cover all the examples in

the training data set. Notice that the hypermatrix repre-

sents the highest allowed input covering, but it does not

show whether a lower number of rules would completely

cover the training data set or not, so it can not be used

to ensure completeness.

The structure of this hypermatrix is an array, which

dimension is equal to the number of input variables, con-

taining ‘1’ in a cell if the corresponding input combination

covers at least a training example and containing ‘0’ in

other case. With this structure it is possible to design an

efficient mutation operator to avoid over-general rules.

The implementation of this structure must be specially

efficient, because of its high requirements of access time to

the information. In this work we decided implement the

hypermatrix using a hash table, which keys are built with

the label concatenation of the contained rules. In order to

optimize the table in space and information retrieve time,

the combinations ‘0’ are not stored. We consider that if a

particular key does not exist then its value is ‘0’.

3.4 Crossover operator

The crossover operator is applied with a given probability

rate to each randomly mated pair of parents. It only

interchanges rules between the two parents, but it does not

modify them. Furthermore, it guarantees the children does

not present neither inconsistencies nor redundancies. The

pseudo-code is included in Fig. 3 and an example of its

application is shown in Fig. 4.

3.5 Antecedent mutation operator

This operator together with the consequent mutation are

the ones that create new rules. It is applied with a given

probability rate to each individual. As its name sug-

gests, it acts on input variables. When a gene in the

antecedent part of a fuzzy rule is chosen to be mutated,

the operator analyzes among the available movements

(it will be explained below) those that ensure to keep

consistency and non-overgenerality (this later case is

quickly checked with the covering hypermatrix). The

consistency is checked by analyzing the collision of the

candidate mutate rule with the rest of them. An option

among the permitted ones is randomly chosen. There-

fore, the antecedent mutation operator only explores

feasible solutions, thus constraining the search space

and ensuring a better exploration.

Figure 5 shows the pseudo-code of the operator. The

two different actions are explained in the following.

Fig. 3 Crossover operator
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3.5.1 Contraction operation

It converts the mutated rule into a more specific one by

choosing a gene of the selected variable with a ‘1’ and

flipping to ‘0’. Clearly, the contraction operator can only be

applied when there are, at least, two ‘1’, because on the

contrary all the genes of this variable will be ‘0’ and, as

mentioned in Sect. 3.1, it is not allowed.

This operator will never cause inconsistency, redun-

dancy or over-generality since it generates a more specific

rule, thus avoiding to go into conflict with other rules. The

only undesired property it could cause is lack of com-

pleteness, but it will be solved by the completeness

operator later.

3.5.2 Expansion operation

This operation carries out the opposite process to con-

traction operator, making the rule be more general. It

chooses a gene with allele ‘0’ and flips it to ‘1’. In this

case, the restriction is that the expansion operation can only

be applied when there is, at least, a ‘0’ in the genes of the

variable.

Unfortunately, this operator can cause collision prob-

lems with other rules or generate over-general rules.

Therefore, firstly the set of expansion movements that can

be applied to the selected variable without causing incon-

sistencies or creating over-generality (this latter case is

checked using the covering hypermatrix) are generated,

and then one of them is randomly chosen. In case there are

Offspring 1
Offspring 2

Consistent rules

Parent 2Parent 1

Inconsistent rules

IF X1 is A2 and X2 is B1 THEN Y is C1

IF X1 is A3 and X2 is B2 THEN Y is C2

IF X1 is A2 and X2 is B2 THEN Y is C1

IF X1 is {A2 or A3} and X2 is B3 THEN Y is C1

IF X1 is {A2 or A3} and X2 is B1 THEN Y is C1

IF X1 is A3 and X2 is B2 THEN Y is C1

IF X1 is A2 and X2 is B3 THEN Y is C2

IF X1 is A3 and X2 is B3 THEN Y is C2

IF X1 is {A2 or A3} and X2 is B1 THEN Y is C1

IF X1 is A2 and X2 is B1 THEN Y is C1

IF X1 is A2 and X2 is B2 THEN Y is C1

IF X1 is A2 and X2 is B3 THEN Y is C2

IF X1 is A3 and X2 is B2 THEN Y is C2

IF X1 is A2 and X2 is B2 THEN Y is C1

IF X1 is {A2 or A3} and X2 is B3 THEN Y is C1

IF X1 is A3 and X2 is B2 THEN Y is C1

IF X1 is {A2 or A3} and X2 is B1 THEN Y is C1

IF X1 is A3 and X2 is B3 THEN Y is C2

IF X1 is A2 and X2 is B1 THEN Y is C1

IF X1 is {A2 or A3} and X2 is B3 THEN Y is C1

IF X1 is A2 and X2 is B3 THEN Y is C2

IF X1 is A3 and X2 is B3 THEN Y is C2

IF X1 is A3 and X2 is B2 THEN Y is C2

IF X1 is A3 and X2 is B2 THEN Y is C1

Steps 4, 5 and 6. Distribute randomly the 
consistent rules between the two children Step 7. Remove redundant rules

Step 3. Divide each group of inconsistent rules 
into two sets and assign to different children

Step 2. Analyze inconsistent rules

Fig. 4 Example of crossover

operator application

Fig. 5 Antecedent mutation operator
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no allowed movements, and if the variable contains at least

two linguistic terms, the contraction operation is applied.

If after performing expansion the mutated rule subsumes

other rules, the more specific ones are removed. With this

operation it is not possible to get lack of completeness.

3.6 Consequent mutation operator

This operator, which is applied with a given probability rate

to each individual, creates new rules by changing the con-

sequent. It simply consists on randomly selecting an output

variable of a rule that is not partially overlapped with other

rules (it would be the only problematic case since the con-

sequent mutation operator receives consistent and non-

subsumed rules). Then, the consequent is randomly changed

to the immediately higher or lower linguistic term. The

operation does not cause over-generality or lack of com-

pleteness since the fuzzy rule antecedent structures are kept

invariable.

3.7 Completeness operator

The crossover operator and the antecedent mutation by

contraction can produce fuzzy rule sets that do not cover

some specific data set examples. It is fixed with this

operator by adding rules to patch the uncovered input

subspaces. It can be considered a reparation operator with a

low incidence since it does not change the generated rules,

it only adds new ones. Figure 6 shows its operation mode.

3.8 Inference mechanism

We consider the Max–Min inference scheme (i.e., T-conorm

of maximum as aggregation and T-norm of minimum

as relational operator), and the T-norm of minimum as

conjunction, T-conorm of maximum as disjunction,

and center-of-gravity as defuzzification. Moreover, in test

mode the mean of the output domain is returned when

no rules are fired for the given test example as explained in

Sect. 2.3.

3.9 Multiobjective approach

A generational approach with the multiobjective elitist

replacement strategy of NSGA-II (Deb et al. 2002) is used.

Crowding distance in the objective function space is con-

sidered. Binary tournament selection based on the

nondomination rank (or the crowding distance when both

solutions belong to the same front) is applied. The

crowding distance is normalized for each objective

according to the extreme values of the solutions contained

in the analyzed front.

3.10 Objective functions

We consider two objective functions to assess the quality

of the generated fuzzy systems, the former (approximation

error) to improve the accuracy and the latter (complexity)

to improve the interpretability.

• Approximation error: The mean squared error (MSE) is

used. It is computed as follows:

F1ðSÞ ¼
1

N

X

N

i¼1

ðSðxiÞ � yiÞ2; ð1Þ

with S being the fuzzy system to be evaluated, N the data

set size and (xi,yi) the ith input-output pair of the data set.

The objective is to minimize this function.

• Complexity: As complexity measure, we use the

number of DNF-type fuzzy rules:

F2ðSÞ ¼ jSj: ð2Þ

The objective is to minimize this function.

Since the algorithm is designed to ensure optimal

covering, i.e., without lack of completeness or with over-

generalization, we do not care on the linguistic complexity

(i.e., generalization) of each fuzzy rule. In a natural way,

the more general (i.e., with more labels considered in each

rule) the fuzzy rules, the fewer the number of rules.

It is an advantage of our approach that simplifies the

design of an interpretability-based objective function. For

example, Ishibuchi and Nojima (2007) need to consider a

third objective to evaluate the generality degree of ‘‘do notFig. 6 Completeness operator
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care’’ fuzzy rules in classification since their algorithm

does not hold this correspondence between number of rules

and generality.

4 Experimental results

This section includes the obtained results of the proposed

algorithm in five real-world regression problems (i.e, with

real-valued input and output), and compares them with

other fuzzy rule learning methods.

4.1 Problems and learning methods

We have considered the following regression problems:

• The Diabetes problem concerns the study of the factors

affecting patterns of insulin-dependent diabetes melli-

tus in children (Hastie and Tibshirani 1990). The

objective is to investigate the dependence of the level

of serum C-peptide on the various other factors in

order to understand the patterns of residual insulin

secretion. The response measurement is the logarithm

of C-peptide concentration (pmol/ml) at the diagnosis,

and the predictor measurements age and base deficit, a

measure of acidity. The data set has been obtained

from L. Torgo’s website.1

• The Ele1 problem relates to the estimation of the low

voltage electrical line length in rural towns (Cordón

et al. 1999). We were provided with a sample of real

measurements from 495 towns in Spain. The estimation

is based on the number of inhabitants of the town and

the distance from the center of the town to the three

furthest clients. The data set (and the partitions used in

this paper) is available at the authors’ website.2

• The Laser problem uses a set of laser data from the

Santa Fe Institute (SFI) time series prediction and

analysis competition (Weigend and Gershenfeld 1993).

The original laser data set from the SFI competition

consisted of 1000 observations of the fluctuations in a

far-infrared laser. This time series data has been

adapted for regression by considering the four last

values as input and the next value as output. The data

set is available at KEEL website.3

• The Ele2 problem concerns the estimation of electrical

network maintenance costs of medium voltage line

based on sum of the lengths of all streets in the town,

total area of the town, area occupied by buildings, and

energy supply to the town (Cordón et al. 1999). The

information is obtained by sampling a model of the

optimal electrical network for a town. The data set (and

the partitions used in this paper) is available at the

authors’ website 2.

• The DEE problem involves predicting the daily average

price of TkWhe electricity energy in Spain. The data set

contains real values from 2003 about the daily

consumption in Spain of energy from hydroelectric,

nuclear electric, carbon, fuel, and natural gas. The data

set has been obtained from KEEL website 3.

Table 1 collects the main features of each problem,

where #InputVar stands for number of input variables,

#Exam for total number of examples, and #LingTerms for

the number of triangular-shaped uniformly distributed lin-

guistic terms considered for each variable in this

experimental analysis.

The experiments shown in this paper have been per-

formed with a fivefold cross validation. Thus, the data set is

divided into five subsets of (approximately) equal size. The

algorithm is then applied five times to each problem, each

time leaving out one of the subsets from training, but using

only the omitted subset to compute the test error.

We have considered several learning methods for

comparison (all of them use the same inference engine

described in Sect. 3.8 for our proposal):

• Wang and Mendel (Wang and Mendel 1992): It is a

simple algorithm that, in spite of not obtaining accurate

results, is a traditional reference in the research

community. The algorithm has been implemented by us.

• COR-BWAS (Casillas et al. 2005b): It is an ant colony

optimization-based learning algorithm with a great

performance between interpretability and accuracy. We

have disabled fuzzy rule selection since the algorithm

does not guarantee total completeness, so the results

could not be directly compared with our proposal.

• Thrift (Thrift 1991): It is a classic Pittsburgh-style

GA-based Mamdani-type fuzzy rule learning method.

The mean output value is provided to compute MSE

when no fuzzy rules are fired for a training example.

The algorithm has been implemented by us.

Table 1 Data sets considered in the experimental analysis

Problem #InputVar #Exam #LingTerms

Diabetes 2 43 7

Ele1 2 495 7

Laser 4 993 5

Ele2 4 1,066 5

DEE 6 365 5

1 L. Torgo. Collection of regression datasets. http://www.liacc.up.

pt/*ltorgo/Regression/DataSets.html
2 J. Casillas. FMLib: fuzzy modeling library. http://decsai.ugr.

es/*casillas/FMLib/
3 KEEL: Knowledge extraction based on evolutionary learning.

http://www.keel.es
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• Pittsburgh (Casillas and Martı́nez-López 2008): It is a

Pittsburgh-style GA that also learns DNF-type fuzzy

rules. A generational approach and direct replacement

are performed, with elitism of the best solution. The

fitness is the MSE (Eq. 1). The pool is randomly

initialized and binary tournament selection is done. The

same length-variable coding scheme used in this paper

is considered. Specific genetic operators for this

representation are used. As in Thrift, the mean value

is provided when no fuzzy rules are fired.

• Fuzzy-GAP (Sánchez and Couso 2000): This method

employs a genetic programming algorithm hybrided

with a GA (i.e., GA-P) to learn a fuzzy regression

model. The algorithm generates complex fuzzy

rules with any combination of conjunction and/or

disjunctions in the antecedent part. The number of

fuzzy rules must be fixed a priori. We have used the

implementation of this algorithm available at KEEL

software3.

Our algorithm has been run with the following

parameter values: 300 iterations, 60 as population size,

0.7 as crossover probability, and 0.2 as antecedent and

consequent mutation probability per chromosome. We

have not performed any previous analysis to fix these

values, so better results may probably be obtained by

tuning them though we have informally noticed our

algorithm is not specially sensitive to any parameter. The

same parameter values are also used in Thrift and Pitts-

burgh algorithms. For COR-BWAS, we have fixed

standard values [mostly the ones recommended in Casillas

et al. (2005b)], i.e., 100 iterations, number of ants equal to

the number of input subspaces (defined by the Wang–

Mendel algorithm), heuristic 1 (max value), q = 0.20, a
= 2, b = 1, local search depth 10, local search neighbor

size equal to the number of ants, mutation probability 0.3,

r = 4, and restart after 10 iterations without improvement.

Fuzzy-GAP is run with the default parameter values

suggested in KEEL software3, except the number of lin-

guistic terms per variable that is the same that in the rest

of algorithms and the number of fuzzy rules, that is set to

about half of the number of rules used by the Wang–

Mendel method (note Fuzzy-GAP uses flexible structures

based on conjunctions and disjunctions to express the

antecedent of the fuzzy rules).

4.2 Obtained results

Table 2 collects the obtained results for each problem,

where #R stands for the number of fuzzy rules and MSEtra

and MSEtst the approximation error (Eq. 1) values over the

Table 2 Results obtained in the different problems

Method #R MSEtra MSEtst

�x r �x r �x r

Diabetes problem

Wang–Mendel 18.6 1.4 0.22836 0.0425 1.40241 0.6890

COR-BWAS 18.6 1.4 0.17496 0.0250 1.45869 0.7091

Thrift 46.2 0.7 0.07448 0.0098 0.87825 0.3575

Pittsburgh 15.0 2.9 0.10398 0.0182 0.95088 0.7881

Fuzzy-GAP 10.0 0.0 0.14292 0.0376 0.50141 0.3014

Pitts-DNF min 1.6 0.5 0.41624 0.1231 0.45392 0.1288

Pitts-DNF med 5.4 0.5 0.12958 0.0136 0.32134 0.1922

Pitts-DNF max 9.6 1.2 0.10656 0.0150 0.63396 0.5276

Ele1 problem

Wang–Mendel 22.0 1.4 423466 8069 455262 19943

COR-BWAS 22.0 1.4 354304 7065 417142 9823

Thrift 46.4 1.0 335086 5285 435373 57252

Pittsburgh 17.2 4.3 342464 19209 738691 543165

Fuzzy-GAP 11 0 481603 58989 548122 70968

Pitts-DNF min 2.0 0.0 767922 55787 760271 56310

Pitts-DNF med 8.2 0.7 344636 8999 415266 71200

Pitts-DNF max 14.0 1.1 330496 4815 440692 40370

Laser problem

Wang–Mendel 58.4 1.0 265.21 20.68 278.58 45.55

COR-BWAS 58.4 1.0 220.83 8.06 232.77 54.16

Thrift 517.8 10.1 461.24 95.05 490.10 114.73

Pittsburgh 196.8 2.9 231.30 31.56 311.88 132.51

Fuzzy-GAP 29.0 0.0 540.20 200.95 567.61 279.50

Pitts-DNF min 11.4 1.6 641.70 258.86 633.88 258.98

Pitts-DNF med 20.6 1.0 163.01 11.13 234.69 72.53

Pitts-DNF max 33.6 3.2 109.16 11.39 199.19 90.74

Ele2 problem

Wang–Mendel 65.0 0.0 112270 1498 112718 4685

COR-BWAS 65.0 0.0 102664 1080 102740 4321

Thrift 524.6 6.4 146305 12991 168472 20135

Pittsburgh 240.0 21.1 210717 32027 265130 30161

Fuzzy-GAP 33.0 0.0 279166 90017 290062 89155

Pitts-DNF min 12.2 0.7 202943 43684 212018 44616

Pitts-DNF med 18.6 1.4 86930 3955 99310 12996

Pitts-DNF max 32.4 6.6 70207 1658 88017 8968

DEE problem

Wang–Mendel 178 2 0.14117 0.0074 0.22064 0.0264

COR-BWAS 178 2 0.12463 0.0052 0.20513 0.0231

Thrift 13020 33 0.38778 0.0357 0.45830 0.0804

Pittsburgh 982 56 0.42111 0.0784 0.72109 0.3263

Fuzzy-GAP 89 0 0.17751 0.0130 0.20633 0.0172

Pitts-DNF min 34 1 0.22073 0.0219 0.30635 0.0884

Pitts-DNF med 57 3 0.13821 0.0060 0.27465 0.1366

Pitts-DNF max 98 5 0.11267 0.0035 0.21692 0.0359
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training and test data set, respectively. Since our algorithm

performs multiobjective optimization, several solutions are

returned in each run. Therefore, we show three represen-

tative solutions from the final Pareto-optimal set, those

with the minimum number of rules (i.e., the worst MSEtra),

the median solution, and the maximum number of rules

(i.e., the best MSEtra). �x represents the arithmetic mean of

each value over the five partitions and r the corresponding

standard deviation. The best mean results for each problem

among the analyzed methods are shown in boldface.

4.3 Analysis

From the obtained results we can observe that the proposed

method generates fuzzy models with a good degree of

accuracy and interpretability. The most accurate solutions

provided by our method (Pitts-DNF max) obtain the best

training errors in four problems. Good test errors are also

achieved.

Compared to the rest of the methods, we can observe the

following:

• As regards Wang–Mendel and COR-BWAS, our method

not only outperforms them in accuracy but also uses

about a 50% of the number of rules needed by them, thus

improving the interpretability of the obtained fuzzy

models. To illustrate the capability of Pitts-DNF to

compactly represent the rules, Table 3 shows an example

of the fuzzy rule set obtained by COR-BWAS and the

median solution of Pitts-DNF in a data partition of the

Ele1 problem. Both solutions offer similar degrees of

accuracy, however the rule set obtained by Pitts-DNF is

much more compact, only consisting of seven DNF-type

fuzzy rules (they are identified with a subindex in the

consequent linguistic term for each cell of Table 3b).

Note also that this set of rules are the optimal ones to

represent the obtained table decision.

• Thrift and the Pittsburgh method show serious difficul-

ties to generate compact fuzzy rule sets, being this fact

more significant as the complexity of the problem

increases. They both tend to generate a huge number of

fuzzy rules, even taking into account that the Pittsburgh

method uses DNF-type fuzzy rules. This fact shows

how the constraints of the search space imposed by our

Pitts-DNF algorithm dramatically improve the search

process, being significantly more accurate and inter-

pretable than these other two methods. This leads us to

think our algorithm deals better with the curse of

dimensionality.

• Finally, even considering our median results from the

Pareto sets (Pitts-DNF med), our method outperforms

Fuzzy-GAP generating fuzzy models more accurate

and with a lower number of rules.

Analyzing our median results (Pitts-DNF med) we can

observe that the algorithm is able to derive fuzzy models

with a very low number of fuzzy rules preserving a good

accuracy degree. It is important to remark that, due to the

design of the proposed algorithm, these small fuzzy rule

sets still completely cover the training data sets, which is

not ensured by the other two Pittsburgh-style algorithms.

Furthermore, Figs. 7, 8, 9, 10, and 11 show the average

Pareto fronts and generality degrees obtained by the

Table 3 Fuzzy rule set obtained in the first data partition of Ele1

problem by (a) COR-BWAS and (b) Pitts-DNF (median solution)

X1

XS VS S M L VL XL
(a) COR-BWAS MSEtra / tst = 356137/370626 #R = 22]

X2 XS XS VS

VS XS VS VS VS

S VS S S S M

M VS M S VL

L M S XL

VL VS L M

XL M

(b) Pitts-DNF [MSEtra / tst = 348914/390556 #R = 7 (#RMamdani =

16)]

X2 XS XS1 VL7

VS XS1 VS3 VS3 VS3

S VS2 S5 S5 S5 S5

M VS2 M6

L VL7

VL M6 VS4

XL
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Fig. 7 Average Pareto front (solid circles) and generality degrees

(empty squares) obtained in the Diabetes problem
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proposed Pitts-DNF algorithm. The generality degree is

computed by counting the mean number of linguistic terms

used per variable in each rule. It is normalized to be

between 0 (maximum specificity, i.e., where all the fuzzy

rules are Mamdani-style) and 1 (maximum generality, i.e.,

where only one rule that covers the whole input space is

used).

The generality degrees are plotted to show the corre-

spondence between number of rules and generality kept by

the algorithm without needing to consider this third

objective. Naturally, as the number of rules increases, they

become more specific so the mean generality degree

decreases. As it can be observed, the algorithm generates a

large range of solutions with different interpretability-

accuracy balances.

5 Self-analysis: strengths, weaknesses, opportunities,

and threats

A honest self-analysis of the proposed algorithm is described

in Table 4, where strengths represent the main advantages of

Pitts-DNF, weaknesses show its drawbacks, opportunities

outline some suggested further lines of investigation, and

threats include some optional approaches that could compete

with our proposal.

Pitts-DNF has some important strengths. Firstly, the

experiments show that the algorithm performance, both in

interpretability and accuracy, is competitive compared with

other approaches. Moreover, it uses a flexible fuzzy rule

structure for a better knowledge synthesis which increases

the interpretability. Besides, it generates consistent fuzzy

rule sets, which improves the interpretability since the rules

do not interfere among them. It also generates both
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 100

 200

 300

 400

 500

 600

 700

 10  15  20  25  30  35
 0

 0.2

 0.4

 0.6

 0.8

 1

F
1 

(M
S

E
)

G
en

er
al

ity

F2 (#R)

Pareto front
Generality degree

Fig. 9 Average Pareto front (solid circles) and generality degrees

(empty squares) obtained in the Laser problem

60

80

100

120

140

160

180

200

220

 10  15  20  25  30  35
 0

 0.2

 0.4

 0.6

 0.8

 1

F
1 

(M
S

E
) 

x 
10

3

G
en

er
al

ity

F2 (#R)

Pareto front
Generality degree

Fig. 10 Average Pareto front (solid circles) and generality degrees

(empty squares) obtained in the Ele2 problem

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 30  40  50  60  70  80  90  100
 0

 0.2

 0.4

 0.6

 0.8

 1

F
1 

(M
S

E
)

G
en

er
al

ity

F2 (#R)

Pareto front
Generality degree

Fig. 11 Average Pareto front (solid circles) and generality degrees

(empty squares) obtained in the DEE problem

462 J. Casillas et al.

123



complete and non over-general fuzzy rule sets; therefore,

the expert is sure that the provided fuzzy rule sets always

cover the whole training data set and they do not cover

areas where there are not training data, which helps to gain

additional insight into the data set. It generates compact

fuzzy rule sets without redundancies. Finally, it performs

multiobjective optimization, so a large range of different

interpretability-accuracy trade-offs are returned.

The main weaknesses of the method are the following.

Firstly, it only works in regression problems. Although it

can be easily adapted to classification, to get a competitive

classification algorithm may involve more effort than a

simple adaptation. Secondly, as discussed in Sect. 2, the

fact of constraining the fuzzy rule sets to be consistent and

non over-general may imply generating a higher number of

rules is some problems. Finally, even when the algorithm is

better prepared for dealing with high dimensional problems

than other approaches, it still needs to be improved to

properly generalize the fuzzy rules.

We also want to mention some possible threats to Pitts-

DNF. On the one hand, other approaches based on guiding

the search process by objective functions that penalize

inconsistencies of the fuzzy rule set (Wang et al. 2005),

though they seem to be worst approaches since unfeasible

solutions are explored, can obtain good solutions in

practice due to the search flexibility. On the other hand,

consistency may be faced by applying a two-stage

sequential approach: generation of Mamdani-type fuzzy

rules (e.g., by Wang and Mendel 1992) plus an a posteriori

rule grouping process (e.g., by Carmona and Castro 2005).

However, we think this two-stage approach, although it is

useful to look for accurate solutions, it is not able to bal-

ance the accuracy with the linguistic generalization

capability since it keeps the original decision table

unaltered.

As further work, we intend to adapt the algorithm to

classification problems (where the output is a class instead

of a real value) and to learn Takagi-Sugeno fuzzy rules, to

combine Pitts-DNF with a membership function parameter

learning/tuning process (e.g., Casillas et al. 2005a), to

study other solutions for avoiding over-generality without

leaving uncovered regions (e.g., by doing linguistic

extrapolation), and to analyze other fuzzy rule structures

even more flexible than DNF-type for a more compact

knowledge representation (such as using more relational

operators in the antecedent or local exceptions to general

rules).

Acknowledgments This work was supported in part by the

Spanish Ministry of Education and Science under grant no.

Table 4 SWOT analysis of Pitts-DNF

Strengths Weaknesses

Its performance, both in interpretability and accuracy, is competitive

compared with other approaches

It only works in data-driven regression problems

It uses a flexible fuzzy rule structure for a better knowledge synthesis The considered properties (consistency, completeness and optimal

generality) may involve to generate a higher number of rules is

some problems

It generates consistent, complete, compact, and non over-general

fuzzy rule sets

Although it is better prepared for dealing with high dimensional

problems than other approaches, it still needs to be improved to

properly generalize the fuzzy rules

It performs multiobjective optimization to return solutions with

different interpretability-accuracy trade-offs

Opportunities Threats

To adapt the algorithm to classification problems Solutions based on guiding the search process by objective functions

that penalize the lack of some of the analyzed properties may obtain

good solutions in the practice due to the search flexibility

To adapt the algorithm to learn Takagi-Sugeno

fuzzy rules

Consistency may be obtained by applying a two-stage sequential

approach: generation of Mamdani-type fuzzy rules plus an

a posteriori rule grouping process

To combine Pitts-DNF with a membership function

parameter learning/tuning process

To study more complex solutions for avoiding over-

generality without leaving uncovered regions

To analyze other fuzzy rule structures even more

flexible than DNF-type for a more compact

knowledge representation
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Appendix: Wang–Mendel algorithm

The ad hoc data-driven Mamdani-type fuzzy rule set gen-

eration process proposed by Wang and Mendel(1992) is

widely known and used because of its simplicity. In our

algorithm, Pitts-DNF, it is used in the initialization process

and completeness operator. Therefore, for the sake of

readability we briefly introduce the algorithm in this

appendix.

It is based on working with an input-output data pair set

representing the behavior of the problem being solved:

E ¼ fe1; . . .; eNg; el ¼ ðxl
1; . . .; xl

n; y
l
1; . . .; yl

mÞ;

with N being the data set size, n the number of input

variables, and m the number of output variables. The

algorithm consists of the following steps:

1. Consider a fuzzy partition (definitions of the member-

ship functions parameters) for each input/output

variable.

2. Generate a candidate fuzzy rule set: This set is formed

by the rule best covering each example contained in E.

Thus, N candidate fuzzy rules, CRl, are obtained. The

structure of each rule is generated by taking a specific

example, i.e., an (n + m)-dimensional real vector, and

setting each one of the variables to the linguistic term

(associated fuzzy set) best covering every vector

component:

CRl :IF X1 is Al
1 and . . . and Xn is Al

n

THEN Y1 is Bl
1 and . . . and Ym is Bl

m

Al
i ¼ arg max

A02Ai

lA0 ðxl
iÞ; Bl

j ¼ arg max
B02Bj

lB0 ðyl
jÞ

3. Give an importance degree to each candidate rule:

DðCRlÞ ¼
Y

n

i¼1

lAl
i
ðxl

iÞ �
Y

m

j¼1

lBl
j
ðyl

jÞ

4. Obtain a final fuzzy rule set from the candidate fuzzy

rule set: To do so, the N candidate rules are first

grouped in g different groups, each one of them

composed of all the candidate rules containing the

same antecedent combination. To build the final fuzzy

rule set, the rule with the highest importance degree is

chosen in each group. Hence, g will be both

the number of different antecedent combinations in

the candidate rule set and the number of rules in the

Mamdani-type fuzzy rule set finally generated.
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