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Abstract. The popularity of modern online social networks has grown up so
quickly in the last few years that, nowadays, social network analysis has become
one of the hottest research lines in the world. It is important to highlight that
social network analysis is not limited to the analysis of networks connecting peo-
ple. Indeed, it is strongly connected with the classical methods widely recognized
in the context of graph theory. Thus, social network analysis is applied to many
different areas like for instance economics, bibliometrics, and so on. This contri-
bution shows how it can also be successfully applied in the context of designing
interpretable fuzzy systems. The key point consists of looking at the rule base
of a fuzzy system as a fuzzy inference-gram (fingram), i.e., as a social network
made of nodes representing fuzzy rules. In addition, nodes are connected through
edges that represent the interaction between rules, at inference level, in terms of
co-fired rules, i.e., rules fired at the same time by a given input vector. In short,
fingram analysis consists of studying the interaction among nodes in the network
for the purpose of understanding the structure and behavior of the fuzzy rule base
under consideration. It is based on the basic principles of social network analysis
which have been properly adapted to the design of fuzzy systems.

1 Introduction

Social networks [40] have existed since humans were aware of the great advantages de-
rived from the fact of collaborating and living together in structured groups. Of course,
this happened thousands of years ago. However, in the last few years the popularity
of modern social networks has grown up very quickly because of the huge boom of
new technologies for telecommunications. Nowadays, some websites like facebook1,
twitter2 or LinkedIn3 are widely known all around the world both for fun but also for
professional purposes, with millions of users registered. Moreover, users of such social
networks consider them as an essential part of their everyday life.

1 A social utility for connecting with friends online at http://www.facebook.com
2 A social utility for following people online at http://www.twitter.com
3 A professional social network online at http://www.linkedin.com
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In consequence, social networks are attracting more and more attention from both
industry and academia. Accordingly, lots of researchers have begun to work very ac-
tively on issues related to social networks [14] becoming a very flourishing field. There
are studies in the context of all kinds of social sciences [25] such as bibliometrics [42],
politics [11], medicine [13], economics [19], etc. There are also works dealing with
industrial applications, for example supply chain management [27].

This paper introduces a new methodology for visualizing and analyzing fuzzy rule-
based systems viewed as social networks. Hence, the main contribution consists in
defining the so-called fuzzy inference-grams (fingrams).

Since the proposal of Zadeh and Mamdani’s seminal ideas [28,43,44], interpretabil-
ity [1] is widely recognized as one of the strongest points of fuzzy system identification
methodologies. It represents the ability of fuzzy systems to model a real system in
a human-friendly understandable way. To do so, the knowledge embedded into fuzzy
systems is usually expressed in the form of linguistic variables and rules. Thus, the
rule base of a fuzzy system becomes the main communication interface to users [31].
Moreover, a fuzzy rule base can be seen as a population made up of a set of indi-
viduals (fuzzy rules) which compete and collaborate among them with the aim of
yielding both good generality-specificity and interpretability-accuracy trade-offs. In
consequence, users can understand the system behavior through checking graphically
existent relationships among rules. Fortunately, they can be easily analyzed by look-
ing at the rule base as a fingram, i.e., as a social network made of nodes (representing
fuzzy rules) and edges (representing the interaction among rules). Rule interaction is
measured at inference level in terms of co-fired rules, i.e., rules fired at the same time
by a given input vector.

The main goal of fingram analysis is the understanding of the structure and behavior
of a fuzzy rule base under consideration. It is mainly based on the adaptation of given
techniques for social network analysis to the design of fuzzy systems. As it will be
thoroughly explained along the paper, the analysis of fingrams offers many possibilities:
finding out the most significant rules, identifying potential inconsistencies among fuzzy
rules, assessing the interpretability of fuzzy systems, etc.

The rest of the contribution is organized as follows. Section 2 starts with a brief
overview on visual representation and analysis of fuzzy systems, then it presents some
techniques for social network visualization and analysis, and it ends with the introduc-
tion of basic aspects related to interpretability assessment. Section 3 goes in detail with
the generation and analysis of fingrams. It is important to notice that, as a first step,
the general approach is particularized for the analysis of fuzzy rule-based classifiers
(FRBCs), i.e., fuzzy rule-based systems for classification purposes. Section 4 summa-
rizes the experiments carried out along with the achieved results. Finally, some conclu-
sions and future work are sketched in Section 5.

2 Preliminaries

2.1 Visual Analysis of Fuzzy Rule-Based Systems

A complete analysis of visualization requirements for fuzzy systems is provided in
[35]. It gives an overview on existing methodologies to yield 2D and 3D graphical
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representations of fuzzy systems. It comprises visualization of fuzzy data, fuzzy parti-
tions, and fuzzy rules. Different alternatives are available depending on the requirements
of the end-user. Moreover, requirements may change according to the visualization tasks
to perform: interactive exploration; automatic computer-supported exploration; receiv-
ing feedback from users; and capturing users’ profiles and adaptation.

The most relevant works to obtain visual representations of multi-dimensional fuzzy
rules are those developed by Berthold et al. [6,15]. They make a mapping from a high-
dimensional feature space onto a two-dimensional space which maintains the pair-wise
distances between rules. The established mapping also displays an approximation of the
rule spread and overlapping. As a result, it is possible to visualize and explore multi-
dimensional fuzzy rule bases in a 2D graphical representation. Authors claim such rep-
resentation yields a user friendly and interpretable exploratory analysis. However, the
complexity of the analysis grows exponentially with the number of features and rules to
be displayed. In consequence, in complex problems with many rules the interpretation
of the resultant graph is not straightforward.

Unfortunately, there are not many papers tackling with visual analysis of the in-
ference process of fuzzy systems, and most of them are limited to visual descriptions.
Probably, this is due to the well-known linguistic expressivity of such systems that gives
prominence to linguistic representations. However, when dealing with complex prob-
lems, even when the design is made carefully to maximize interpretability, the number
of rules can become huge because of the curse of dimensionality characteristic of fuzzy
rule-based systems. In those cases, looking for a plausible linguistic explanation of the
inferred output, derived from the linguistic description of the fuzzy knowledge base, is
not straightforward. Explaining the inferred output as an aggregation of all the involved
rules is not easy when many rules are fired at the same time for a given input.

Some authors [22,23] have bet for searching visual explanations of the system output.
Ishibuchi et al. established a set of design constraints with the aim of producing groups
of rules with only two antecedent conditions that can be plotted in a two-dimensional
(2D) space. They look for a visual representation able to explain the output of fuzzy
rule-based classifiers to human users. Nevertheless, considering only two antecedents
per rule is a strong limitation that may penalize the accuracy of the system.

2.2 Visual Analysis of Social Networks

Although there are several approaches for visualizing different kind of social networks,
we will focus on co-citation social networks and the works published by Vargas-Quesada
and Moya-Anegón [32,42] which strongly inspired our proposal. Indeed, the term fin-
gram was coined by inspiration on the term scientogram firstly introduced by Vargas-
Quesada and Moya-Anegón [32] as a novel tool for visualizing the structure of
science [42].

Scientograms are visual science maps, i.e., visual representations of scientific do-
mains in the form of social networks. They illustrate interactions among authors and
papers through the basic notion of paper co-citation, representing the frequency with
which documents are jointly cited by pairs. It is possible to group them by author, jour-
nal, or categories. Obviously, depending on the kind of regrouping, the information that
can be extracted from the generated maps is different.
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The standardized co-citation measure, firstly introduced by Salton and Bergmark, is
computed by the next equation [38]:

MCN(i j) =
Cc(i j)

√
c(i) · c( j)

(1)

where Cc means co-citation, c stands for citation, while i and j represent two different
entities (authors, documents, journals, categories, institutions, countries, etc.).

In addition, network scaling (NS) is aimed to obtain simplified structures revealing
the backbone, i.e., the underlying organization of the original network. NS is based on
estimating the proximity between pairs of nodes by means of computing distances, sim-
ilarities, correlations, and so on. Actually, NS is efficiently carried out by Pathfinder al-
gorithm [8,12] that is essential to make feasible a good visual interpretation. Pathfinder
is in charge of pruning the initial network while keeping only the most relevant links
into the final Pathfinder networks (PFNETs). It is worthy to remark that the combi-
nation of entity co-citation and NS yields high quality, schematic network visualiza-
tions in several fields such as psychology (for representing the cognitive structure of
a subject [39]), software development (for debugging of multi-agent systems [41]), or
scientometrics (for analyzing large scientific domains [9]).

The next step is about the automatic visualization of PFNETs. For this porpuse, the
spring embedder family of methods is the most widely used in the area of Information
Science. Spring embedders assign coordinates to the nodes with the aim of producing
aesthetical pleasant graphs. Vargas-Quesada and Moya-Anegón recommend the use of
Kamada-Kawai’s algorithm [26] which is one of the most extended methods to perform
this task. Starting from a circular position of the nodes, it generates networks following
aesthetic criteria: maximizing the use of available space, minimizing the number of
crossed links, forcing the separation of nodes, building balanced maps, etc. Notice that,
the combination of entities co-citation, PFNETs, and Kamada-Kawai makes the entities
that share most sources with the rest, tend to be located toward the center.

Lastly, concerning the analysis of scientograms, according to [42] there are three
main measures of centrality that yield useful information with the aim of identifying
the most significant nodes of a PFNET: Degree of Centrality (regarding the number
of direct links gathering in a node), Centrality of Closeness (measuring the distance
among nodes), and Centrality of Intermediation or Betweeness (looking at nodes that
act as link between other nodes contained in the shortest path).

2.3 Assessing Interpretability of Fuzzy Rule-Based Systems

Interpretability characterization and evaluation is a very subjective task which strongly
depends on the skills and background (experience, preferences, knowledge, etc.) of the
specific end-user who interprets the linguistic description of a fuzzy system with the
aim of conceiving the significance of the system behavior.

Thus, assessing interpretability remains a trending and hot topic. Gacto et al. [17]
have recently published a complete taxonomy about existent interpretability indexes.
They identify four groups of indexes coming up from the combination of two different
criteria, namely the nature of the index (complexity vs. semantic) and the considered
elements (partitions vs. rule base) in the fuzzy system under study:
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1. Complexity at partition level.
2. Complexity at rule base level.
3. Semantic-based interpretability at partition level.
4. Semantic-based interpretability at rule base level.

Most previous works [7,20] only deal with the readability of fuzzy systems. Therefore,
most indexes correspond to groups (1) and (2). They usually make only basic analysis
of complexity, i.e., they only count the number of elements (features, membership func-
tions, rules, premises, etc.) included in the fuzzy system at partition level (group 1) and
rule base level (group 2). Hence, they may be deemed as structural-based interpretabil-
ity indexes.

On the other hand, group (3) contains works regarding structural properties of fuzzy
partitions [34] such as distinguishability, coverage, and so on. They generally measure
the degree of fulfillment of semantic constraints that should be overimposed during
the design process. It is widely admitted that working with the so-called Strong Fuzzy
Partitions (SFPs) [37] satisfies all semantic constraints required to have interpretable
fuzzy partitions from the structural point of view.

Finally, only a few authors have begun recently to put emphasis on the importance of
defining indexes in group (4). They advocate for extending the analysis of readability
to evaluate the comprehensibility, i.e., the implicit and explicit semantics embedded in
fuzzy systems [16,31]. There are also some papers dealing with the consistency of fuzzy
rule bases and with the number of co-fired rules, i.e., rules simultaneously fired from a
given input [4,10,30].

3 Proposal

This section thoroughly explains how to visualize and analyze FRBCs by means of fin-
grams. They represent a novel tool that arises from adopting a social network based
approach inspired on the one proposed by Vargas-Quesada and Moya-Anegón for visu-
alizing and analyzing the structure of science [42].

Fingrams are graphs which represent fuzzy rule bases as social networks. They con-
tain nodes representing fuzzy rules and edges showing the interactions among them in
terms of co-fired rules.

3.1 Fingram Generation, Scaling and Drawing

Given a fuzzy system containing N rules and an experimental dataset covering most
possible situations, the N ×N weight matrix M describes the interactions among the N
rules in terms of frequency of co-firing.

M =

⎛

⎜
⎜
⎝

0 m12 . . . m1N

m21 0 . . . m2N

. . . . . . . . . . . .
mN1 mN2 . . . 0

⎞

⎟
⎟
⎠ (2)

The co-firing measure (mi j), inspired on the standardized co-citation measure (Eq. 1)
proposed by Salton and Bergmark [38], is defined by the next equation:
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mi j =

{ SFRi j√
FRi·FR j

, i �= j

0 , i = j
(3)

where SFRi j means the number of data samples for which rules Ri and R j are simul-
taneously fired, while FRi and FR j count respectively the total number of samples for
which the same rules Ri and R j are fired, without taking care if they are fired together
or not. Notice that mi j are normalized and M is symmetrical. Note also that the number
of times a rule is fired is computed in an inferential way for all available data samples.
Hence, it is extremely dependant on the goodness (quantity and quality) of the available
experimental data.

An undirected graph is straightforwardly generated from the weight matrix M. This
is made up by connecting N nodes using edges whose weights are directly taken from
M. Thus, mi j equals zero means that there is no link between nodes i and j.

Since the initial graph related to the matrix M is likely to be quite dense and difficult
to analyze, it is worthy to apply a pruning mechanism before printing and exploring
the generated fingram. To do so, a NS method like Pathfinder4 [8,12] able to discover
and keep only the most relevant links in M is very effective. It has already been suc-
cessfully applied in the context of social networks. As result of running Pathfinder the
initial graph representing M is translated into a pruned network called PFNET. This
only keeps those links which do not violate the triangle inequality stating that the direct
distance between two nodes must be lesser than or equal to the distance between them
passing through any group of intermediate and connected nodes. Notice that, thanks to
the properties of PFNETs, the pruned fingram preserves the underlying structure with
all relevant information at global level in comparison to the original one.

Even though there are many different methods for the automatic visualization of
social networks, the spring embedder family has become the most widely used in the
area of Information Science. Spring embedders assign coordinates to the nodes in such
a way that the final graph will be pleasing to the eye, and that the most important
elements are located in the center of the representation. Among them, probably the
most famous method is the one proposed by Kamada and Kawai [26]. Starting from
a circular position of the nodes, it generates networks with aesthetic criteria such as
the maximum use of available space, the minimum number of crossed links, the forced
separation of nodes, the generation of balanced maps, etc. Notice that, the combination
of rule co-firing, PFNETs, and Kamada-Kawai makes the most relevant rules, those
exhibiting the highest interaction with the rest, tend to be located toward the center of
the graphical representation.

The visual representation of the resultant graph is what we have called fingram. Fur-
thermore, it can be enhanced with additional relevant information related to the specific
problem under consideration. For instance, in the case of classification problems, the
nodes represent fuzzy rules of FRBCs. More specifically, each rule is represented by a
circular node whose size is proportional to the number of covered instances, and whose
color corresponds to the class pointed out by the rule. Each node is labeled with the rule

4 We have selected a recently published variant of Pathfinder algorithm (MST-PathFinder [36])
able to prune maps in cubic time.
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identifier Ri but also with two very informative numbers, the percentage of instances
in the dataset that are covered by the rule and the percentage of them matching with
the rule output. Moreover, the number of border lines around a node indicates the num-
ber of linguistic propositions minus one in the rule description. In addition, each link
among two nodes is characterized by an attached label that yields the related co-firing
measure. The link thickness is proportional to its value. Furthermore, the link color is
informative too. It is green for those rules pointing out the same class, and red in the
case of rules pointing out different classes (potential inconsistencies).

Finally, it is important to highlight that our proposal is not affected by the well-
known curse of dimensionality problem of fuzzy systems that implies that the number
of fuzzy rules grows exponentially with the number of inputs. First, nodes represent
directly rules instead of premises. Second, Pathfinder has been successfully applied to
the analysis of large scientific domains representing thousands of co-cited entities [42].
In consequence, fingrams are able to display the interactions among thousands of rules
in the form of highly interpretable graphs. Hence, even when the number of rules is
huge the pruned fingram can be still comfortably viewed by any expert.

3.2 Fingram Exploratory Analysis and Interpretability Assessment

The expert analysis of fingrams can take profit of all tools already available for social
network analysis. As a first approach, we advocate for the use of the so-called Degree
of Centrality [42]. This means that we will point out the most significant rules, those
corresponding to the nodes that concentrate the larger number of links in a fingram.
Remind that thanks to the specific way scaling and drawing are done, the most salient
links and nodes are likely to be placed in the center, and those less relevant in the pe-
riphery. Thus, those rules that correspond to nodes located in the periphery of a fingram,
especially those connected with a low value (the weight of the associated link is small)
to the remaining graph, are good candidates to be deleted. This could have an interest-
ing collateral advantage since removing such rules is likely to increase interpretability
while keeping almost the same accuracy. A basic simplification procedure may consist
first on ranking rules according to their relevance and then finding out and removing
those non-relevant ones, normally located at the periphery of the fingram.

Furthermore, the analysis of fingrams can report very useful information about the
analysis and verification, at inference level, of the related fuzzy rule bases. For instance,
one can directly analyze its global structure through exploring the number and location
of apparent groups of rules, analyze the respective location of the rules coding for dif-
ferent classes, etc. As a result, it is easy to detect potential inconsistencies among fuzzy
rules. They turn up when the co-fired rules yield different output classes. In addition, the
higher the link weight (co-firing degree computed by Eq. 3) is, the larger the interaction
among rules is, and the larger the degree of inconsistency results.

Notice that, even when a rule base is fully consistent at linguistic level, there may
arise some possible inconsistencies at inference level because of the rule aggregation
procedure made as part of the inference process. Such potential conflicts are difficult
to detect mainly because they are partially hidden since they are typically produced
by new unknown data samples that were not taken into account during the learning
stage. For instance, it may happen that several rules are fired at the same time for a new
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given input vector and as result several outputs are activated with degrees higher than
zero. When two different classes are activated with very similar degrees the situation
can be labeled as an ambiguous case. Such situation is not desirable, no matter if the
system is (or not) able to yield the right output class, because a slight modification in
the input data may yield a wrong output. We can conclude that a FRBC producing many
ambiguous cases is a non-reliable system and should be corrected.

With respect to interpretability, we assume that fuzzy partitions are interpretable
and the matching among linguistic terms and fuzzy sets is supervised and approved
by an expert. Notice that interpretable fuzzy partitions must represent prototypes that
are meaningful for the end-user. Then, given a rule format along with an inference
mechanism, the system interpretability can be evaluated looking only at rule level. Our
assumption is the following: the larger the number of co-fired rules, the smaller the
comprehensibility of the FRBC.

Fingrams give us all required information. Eq. 4 formalizes a novel interpretability
index:

COFCI =

⎧
⎪⎪⎨

⎪⎪⎩
1−

√
N
∑

i=1

N
∑

j=1
[(Pi+Pj)·mi j]

MaxT hr , i f
N
∑

i=1

N
∑
j=1

[(Pi +Pj) ·mi j]≤ MaxT hr

0, otherwise

(4)

where COFCI stands for Co-firing Based Comprehensibility Index. N is the total num-
ber of rules. Pi and Pj count the number of premises (antecedent conditions) in rules i
and j, while mi j is the measure of co-firing for the same rules i and j; it is computed
by Eq. 3. In addition, MaxT hr is a threshold which represents a maximum value es-
tablished to get a normalized measure in the interval [0,1]. It should be fixed by the
designer of the FRBC, looking at the maximum number of rules that may be accept-
able (by an end-user) for each specific problem according to its inherent complexity
(number of inputs, output classes, available training data, etc.). According to our exper-
imentations, we suggest setting MaxT hr greater or equal than one thousand times the
multiplication of the number of classes (C) by the number of inputs (I) by the number
of training samples (T ):

MaxThr ≥ 103 ·C · I ·T (5)

4 Experimental Analysis

This experimental study deals with an example of medical application where inter-
pretability is of prime importance. Interpretability is a distinguishing capability of fuzzy
systems which is really appreciated in most applications. Moreover, it becomes an
essential requirement for those applications that involve an extensive interaction with
humans. For instance, decision support systems in medicine [33] must be easily under-
standable, for both physicians and patients, with the aim of being widely accepted and
successfully applicable.



Social Network Analysis of Co-fired Fuzzy Rules 121

We have chosen the well-known Wisconsin Breast Cancer Database (WBCD) [29]
for illustrative porpuses. This dataset contains cases from a study that was conducted
at the University of Wisconsin Hospitals, Madison, about patients who had undergone
surgery for breast cancer. The task is to determine if the detected tumor is benign or
malignant. Thus, the dataset contains 683 samples (we have removed the missing val-
ues), nine features (Clump Thickness, Cell Size, Cell Shape, Marginal Adhesion, Ep-
ithelial Size, Bare Nuclei, Bland Chromatin, Normal Nucleoli, and Mitoses) and one
output class (Benign / Malignant). The whole dataset is freely available at the KEEL5

machine-learning repository.
For simplicity, this analysis focuses only on FRBCs that were generated follow-

ing the HILK (Highly Interpretable Linguistic Knowledge) fuzzy modeling methodol-
ogy [3,5]. We have chosen HILK because it is especially thought for making easier the
design process of interpretable FRBCs. To do so, it imposes several constraints (SFPs,
global semantics, Mamdani rules [28], etc.) during the design phase. The rule base is
made up of rules of form:

If Xa is Ai
a︸ ︷︷ ︸

Proposition Pa

AND . . . AND Xz is A j
z︸ ︷︷ ︸

Proposition Pz

Then Y is Cn

where Cn is the selected output class; Xa is the name of the input variable a; and Ai
a

represents the label i of such variable. Namely, Ai
a can be one of the elementary terms

in the SFP or a composite term defined as a convex hull of adjacent elementary terms
corresponding to OR and NOT combinations [21]. These kinds of rules are usually
known as DNF rules. Notice that, the absence of an input in a rule means that it is not
considered in the evaluation of such rule. This special kind of proposition is usually
referred as Don’t care [24] and it should be interpreted as ANY since it means that
it is true no matter the selected linguistic term. Because several output classes can be
activated since several fuzzy rules can be fired at the same time by the same input vector,
the winner rule fuzzy reasoning mechanism is considered. Furthermore, the well-known
minimum and maximum fuzzy operators are taken for conjunction and disjunction.

It is important to notice that HILK methodology is implemented as part of the free
software tool GUAJE6 [2]. Moreover, the new methodology for visualizing and explor-
ing fuzzy rule bases proposed in this paper is also implemented in that tool. The drawing
of the graphs themselves is done using another freeware tool named Graphviz7 [18].

The rest of this section is devoted to show the utility of the new methodology pro-
posed in this paper through some illustrative examples. As a starting point, the entire
dataset has been randomly split into two subsets. The 75% of samples are considered as
training set while the remaining 25% of samples compose the test set. Please notice that
we do not apply cross-validation because, for the sake of clarity, we do not care about
finding the best FRBC for the WBCD problem. We are aware that probably there are
better rule bases for WBCD in the fuzzy literature, but our goal is to explain the new

5 KEEL stands for Knowledge Extraction based on Evolutionary Learning. It is a free software
tool available online at http://sci2s.ugr.es/keel/

6 A free software tool for generating understandable and accurate fuzzy rule-based systems in a
Java environment http://www.softcomputing.es/guaje

7 A free software tool available online at http://www.graphviz.org/

http://sci2s.ugr.es/keel/
http://www.softcomputing.es/guaje
http://www.graphviz.org/
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methodology with a simple case instead of looking for the best solution for this specific
problem.

Thus, we use GUAJE with the aim of building FRBCs automatically extracted from
the available training data. Uniform SFPs with three triangular fuzzy sets are initially
defined for each input. We are going to consider rules generated with the well-known
Wang and Mendel (WM) and Fuzzy Decision Trees (FDT) algorithms both provided
by GUAJE8. Hence, we generate two first set of rules corresponding to FRBCWM and
FRBCFDT . Moreover, we have simplified them with the simplification algorithm, also
provided by GUAJE, in order to obtain two additional more compact FRBCs. Let’s
call them FRBCWM−SIMP and FRBCFDT−SIMP. Two further simplifications guided by
fingram analysis of FRBCFDT−SIMP have been carried out. They are named as
FRBCFDT−SIMP−F1 and FRBCFDT−SIMP−F2.

Table 1 summarizes the main quality indicators characterizing those FRBCs previ-
ously generated. On the one hand, each column corresponds to one of the FRBCs under
consideration. On the other hand, each row is related to one specific quality indicator.

Table 1. Quality evaluation of the generated FRBCs

FRBCWM FRBCWM−SIMP FRBCFDT FRBCFDT−SIMP FRBCFDT−SIMP−F1 FRBCFDT−SIMP−F2

ACCTR 0.998 0.998 0.975 0.975 0.943 0.939
ACCTS 0.83 0.918 0.947 0.953 0.93 0.918

NR 195 23 35 9 3 2
TRL 1755 155 165 27 6 4
ARL 9 6.739 4.714 3 2 2

AFRTR 6.043 2.977 2.625 1.488 1.133 1.093
AFRTS 6.299 3.047 2.965 1.614 1.155 1.113

AFDT R 0.555 0.797 0.766 0.865 0.859 0.878
AFDTS 0.455 0.776 0.734 0.847 0.823 0.867

COFCI 0 0.675 0.510 0.880 0.960 0.969

Firstly, we take care of the achieved accuracy regarding both training (ACCTR) and
test (ACCTS). Accuracy is computed as the percentage of samples properly classified.
Secondly, we tackle with assessing interpretability. To do so, considering only one in-
dex is not enough as it was pointed out in Section 2.3. Therefore, we have considered
several structural-based but also semantic-based interpretability indexes at rule base
level. NR stands for number of rules. TRL means total rule length, that represents the
total number of linguistic propositions into the whole rule base. ARL stands for aver-
age rule length, computed as T RL divided by NR. We have also reported the average
number of fired rules with respect to both training (AFRT R) and test (AFRT S) sets. One
rule is counted as fired by a given data sample only in the case in which it is activated
with a confidence firing degree greater or equal than 0.1. In addition, we have com-
puted the average confidence firing degree (AFD) regarding again training (AFDTR)
and test (AFDT S) sets. AFD is measured as the firing degree of the winner rule for each

8 The interested reader is referred to [2,3] for further details about algorithms provided by
GUAJE.
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data sample and then averaged for the whole dataset. Finally, COFCI is the novel in-
terpretability index proposed in this work. It is computed following Eq. 4 with MaxT hr
equals 104.

Looking carefully to values shown in Table 1, we can draw some interesting con-
clusions. First, WM generates a lot of complete rules, i.e., each rule takes into account
all inputs. In consequence, generated rules are quite specific and they are likely to be
simplified. Moreover, rule base is affected by overfitting because FRBCW M exhibits
very high ACCT R while ACCT S is not so good. Furthermore, it seems there is a lot of
redundancy inside the rule base. Indeed, AFRT R and AFRT S achieve very high val-
ues while AFDT R and AFDT S remain quite low that implies a lot of overlapping among
rules. Regarding all interpretability indicators (NR, T RL, ARL, AFR, AFD and COFCI),
FRBCWM can be deemed as not interpretable at all. Such feeling is confirmed when ob-
serving the fingrams displayed in Fig. 1. Of course, the rule base is so complex that
is not easy to make any useful interpretation neither focusing on the initial network
(Fig. 1(a)) nor looking at the scaled one (Fig. 1(b)). Anyway, we can appreciate how
the scaling process becomes very effective turning up a quite clear structure that was
hidden.

(a) Complete fingram (b) Scaled fingram

Fig. 1. Fingrams related to FRBCWM before and after network scaling with Pathfinder

Second, FDT produces a smaller set of much more general incompletes rules mini-
mizing the overfitting effect. Thus, FRBCFDT yields much closer values for both ACCTR

and ACCTS. In comparison with FRBCWM , ARL and AFR are significantly decreased
while AFD is increased, so COFCI increases accordingly. We can conclude that
FRBCFDT yields a better interpretability-accuracy trade-off than FRBCWM . Fingrams
corresponding to FRBCFDT are depicted in Fig. 2. Obviously, they are much clearer
than those ones previously presented in Fig. 1.

With respect to the effect of the initial simplification, not guided by fingrams, we
appreciate an improvement in the generalization capabilities of the selected FRBCs. Of
course, simplification is made considering only training data. It preserves ACCT R while
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(a) Complete fingram (b) Scaled fingram

Fig. 2. Fingrams related to FRBCFDT before and after network scaling with Pathfinder

Fig. 3. Scaled fingram related to FRBCFDT−SIMP

interpretability is strongly improved. As a side effect, ACCTS is also increased. Further-
more, AFD grows up regarding both training and test. As a result, simplified FRBCs
become much more trustworthy. Moreover, making a comparison between the two sim-
plified FRBCs under study (FRBCWM−SIMP and FRBCFDT−SIMP), it becomes obvious
that FRBCFDT−SIMP yields the best interpretability-accuracy trade-off. FRBCFDT−SIMP

is made up of only nine rules so its related fingram, plotted in Fig. 3, becomes very
informative.

Each rule is represented by a circular node whose size is proportional to the number
of covered instances, and whose color corresponds to the class pointed out by the rule.
Each node is labeled with the rule identifier Ri but also with two very informative
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numbers, the percentage of instances in the dataset that are covered by the rule (cov)
and the percentage of them matching with the rule output (Ci). In addition, the number
of border lines around a node indicates the number of linguistic propositions minus one
in the rule description. Each link between two nodes is characterized by an attached
label that yields the related co-firing measure. The link thickness is proportional to its
value. Furthermore, the link color is informative too; it is green for those rules pointing
out the same class, while it is red in the case of rules pointing out different classes
(potential inconsistencies).

From Fig. 3 we appreciate how most samples belonging to class C1 are handled by
R1. On the other hand, rules R8 and R9 seem to be the most significant ones for class
C2. If we keep only those three rules while removing the remaining, then we gener-
ate FRBCFDT−SIMP−F1 whose quality indicators are detailed in Table 1. It is a very
simple and highly interpretable FRBC, while its accuracy it is not strongly penalized
with respect to FRBCFDT−SIMP. Finally, looking carefully at rules R8 and R9 they may
be merged into only one rule. In that case we obtain FRBCFDT−SIMP−F2. Again, in-
terpretability gets better while accuracy is only slightly reduced, as it was shown in
Table 1.

5 Conclusions and Future Work

This paper has introduced a new methodology for exploratory analysis of fuzzy rule-
based systems. In addition, we have proposed a novel interpretability index that takes
into account the comprehensibility of fuzzy systems looking at the correspondence be-
tween their linguistic description and their inference process. It deals with semantic-
based interpretability at rule base level and it is therefore aimed to cover the lack of
such kind of indexes in the fuzzy literature.

We have shown the utility of our proposal in a simple but very illustrative classifica-
tion problem where interpretability is highly appreciated because it copes with a med-
ical diagnosis application. Achieved results are encouraging. The analysis of fingrams
has helped us effectively in the hard task of searching for good interpretability-accuracy
trade-offs. Anyway, in the future we will extensively validate the methodology and we
will look for other co-firing metrics able to yield additional information about consis-
tency, generality and/or specificity of rules.

Notice that, a software module for fingrams generation and analysis is available with
the free software tool GUAJE. It can be freely downloaded at:

http://www.softcomputing.es/guaje
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