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Abstract

Forecasting airborne pollen concentrations is one of the most studied topics in aerobiology, due to its crucial application to allergol-
ogy. The most used tools for this problem are single lineal regressions and autoregressive models (ARIMA). Notwithstanding, few works
have used more sophisticated tools based in Artificial Intelligence, as are neural or neuro-fuzzy models. In this work, we applied some of
these models to forecast olive pollen concentrations in the atmosphere of Granada (Spain). We first studied the overall performance of
the selected models, then considering the data segmented into intervals (low, medium and high concentration), to test how they behave
on each interval. Experimental results show an advantage of the neuro-fuzzy models against classical statistical methods, although there
is still room for improvement.1
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1. Introduction and problem description

Forecasting future airborne pollen concentrations is
undeniably of a high importance because of its medical,
environmental and biological effects. The presence and
amount of airborne pollen depends on a wide range of fac-
tors including meteorological (temperature, rain, humidity,
wind, etc.), biological (phenological and physiological state
of plants, plants distribution, etc.) and geological (topogra-
phy) issues. Actually, this is a highly chaotic and thus a
hard to model problem.

Application of classic statistical methods to this problem
has yielded results not entirely satisfactory (Dı́az de la
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Guardia et al., 2003; Galán, Cariñanos, Garcı́a-Mozo,
Alcázar, & Domı́nguez-Vı́lchez, 2001). Models based on
Soft Computing techniques have proved successful in a
number of hard time series problems, including electric
load forecasting (Dash, Liew, Rahman, & Dash, 1995; Kal-
aitzakis, Stavrakakis, & Anagnostakis, 2002; Kim, Yu, &
Song, 2002; Tamimi & Egbert, 2000), financial forecasting
(Kuo, 2001; Kuo & Xue, 1998; Vázquez Abad, Fdez-Rive-
rola, & Corchado, 2000), etc.

Regarding Aerobiology, some works have applied Neu-
ral Networks to pollen forecasting, reporting encouraging
results (Castellano-Méndez, Aira, Iglesias, Jato, & Gonzá-
lez-Manteiga, 2005; Ranzi, Lauriola, Marletto, & Zinoni,
2003; Sánchez-Mesa, Galán, Martı́nez Heras, & Hervás-
Martı́nez, 2002). In this work, we have selected models
which combine Fuzzy Systems and Neural Networks to
model the airborne pollen concentration and compare their
performance with classical methods which have been used
before.
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2. Objectives

Two were the main objectives of this work:

• To apply neural models and neuro-fuzzy models to the
airborne pollen concentration data, evaluate their per-
formance and compare them against the most used sta-
tistical methods.

• To study if forecasting errors vary in different parts of
the state-space depending on the absolute value of the
series.

3. Data and methodology

The study was carried out on daily aerobiological data
obtained over 11 years, from 1992 to 2003 inclusive, in
the city of Granada (Southern Spain). Hence, around
4000 data points were available. The data were obtained
following the standard methodology of the Spanish Aero-
biological Network (Dominguez, Galán, Villamandos, &
Infante, 1991), and are measured in grains per cubic meter
(grains/m3) of air.

Only Olea europaea L. pollen values were considered,
because this species is one of the most allergenic in the Ibe-
rian Peninsula, and has a very strong seasonality. Fortu-
nately, it also has a very specific pollen morphology (it is
monoespecific) which allows us to indentify it perfectly
on the species level. This is important in order to reduce
the study to just one type of pollen hence producing a less
noisy dataset with a consistent phenological behaviour. In
addition, there exist other statistical studies about this pol-
len series, so more information was available for modelling
(Alba & Dı́az de la Guardia, 1998; Alba, Dı́az de la Guar-
dia, Ocaña, & Valderrama, 2002; Dı́az de la Guardia et al.,
2003).

To better model the series some preprocessing of data is
necessary. Besides of rescaling the dataset into the interval
[0,1], special characteristics of the data suggests that fur-
ther transformations could be used. In particular, the pres-
ence of a high variance is normally tackled using a
logarithmic transformation. Notwithstanding, in this case,
a linear log-like transformation was used instead, consider-
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Fig. 1. Sampled 2003 data, linear log-like transfo
ing three different intervals. The first interval, which we
shall call low interval, concerns all data below 50 grains/
m3 and was selected to try and separate the error of the
broad regions of the series with values zero or close to zero,
which are known to produce numerical instability in some
of the models. The second or medium interval was fixed to
contain values between 51 and 200 grains/m3. This second
threshold was proposed by the SEAIC (Sociedad Española
de Alergologı́a e Inmunologı́a Clı́nica) for Olea pollen
(SEAIC, 2005) as a general turning point between accept-
able and risky concentrations, considering the alergological
effects on the sensitive population. Fig. 1 shows the trans-
formation applied. The third interval (high) includes data
from 201 grains/m3 and above.

Preprocessed data series was divided into two groups:
dataset A comprised the years 1992–2002, both included,
and was used for training/building the models; and dataset
B, which comprised only 2003 data, was used to test the
models’ performance.

To apply the Soft Computing models, we had to reshape
the dataset into a compatible structure: a set of input–
output vectors [xt�k,xt�k+1, . . . ,xt�2,xt�1;xt]. To set this
structure, i.e. to select the variables used as inputs to the
models, we studied the autocorrelation function (acf) and
the partial autocorrelation function (pacf) for the trans-
formed dataset (Fig. 2) to get an insight of the inner rela-
tions amongst the lagged variables.

These diagrams indicate that present values are strongly
influenced by previous days values, decreasing its influence
as the time lag increases. Concretely, there is positive par-
tial autocorrelation in the previous 6 days, while the most
recent 2 days are those showing a stronger ascendancy over
the actual value. For this reason, and taking into account
computational efficiency considerations, only two autocor-
relation steps were considered here as inputs for the
models.

For each of the models, the values of the parameters
were selected according to their corresponding authors’
indications and after a little tuning through a short trial-
and-error stage.

A twofold analysis of the forecast errors was carried out.
On the one hand, we aimed at establishing the overall
performance of the selected models in one-step-ahead
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rmation applied to it and resulting 2003 data.



Fig. 2. Autocorrelation (a) and partial autocorrelation (b) diagrams of the transformed data series.

1220 J.L. Aznarte M. et al. / Expert Systems with Applications 32 (2007) 1218–1225
forecasts. Thus we built a model of each type using dataset
A to tune its parameters. Then its forecasting accuracy was
evaluated by measuring the root mean squared error
(RMSE) of the predictions on dataset B.

RMSE is defined as

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1

ðŷi � yiÞ
2

vuut ð1Þ

where N is the number of data available, yi is the expected
output and ŷi is the output produced by the system for da-
tum i.

Aside from RMSE, we calculated the Theil’s U statistic
as well, in order to have a measure which is scale-free.
Theil’s U statistic is defined as

U ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
iðDyi � DŷiÞ2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

iDy2
i

p ð2Þ

where Dyi and Dŷi are differences over successive values of
the expected and produced outputs, respectively. This mea-
sure is not bounded by zero and one. It can be interpreted
as the RMSE of the changes for the proposed forecasting
model divided by the RMSE of a no-change model. It
has the no-change model as the benchmark. Values lower
than 1.0 show an improvement over the simple no-change
forecast.

On the other hand, we intended to show the accuracy of
the one-step-ahead forecasts in terms of the prediction
error, but this time we considered it segmented into the
intervals that we used to transform the data. We wanted
to know if the forecasts were equally good (or bad) on each
interval, which could allow us to give the final user an esti-
mation of the accuracy of the forecasts depending on the
interval.

4. Considered models

To test the applicability and performance of neural and
neuro-fuzzy methods on this problem we have selected the
following models: multilayered perceptron (MLP), adaptive
neuro-fuzzy inference system (ANFIS), hybrid neuro-fuzzy
inference system (HyFIS); generalized regression neural
network (GRNN), and NEFPROX. To compare them,
we have also selected two of the most popular classic statis-
tical methods applied to time series modelling: ARMA
models and Holt–Winters Exponential Smoothing. As a
benchmark model, we used a naive predictor, consisting
in a model that forecasts the value that the series will take
at instant t + 1 as the value that it took at instant t.
4.1. Classic statistical models

4.1.1. Box–Jenkins models: ARMA

The most popular class of linear time series models con-
sists of autoregressive moving average (ARMA) models,
including purely autoregressive (AR) models and purely
moving-average (MA) models as special cases (Box & Jen-
kins, 1970). ARMA models are frequently used to model
linear dynamic structures, to depict linear relationships
among lagged variables, and to serve as vehicles for linear
forecasting.

Box–Jenkins models are one of the most frequently used
families of parametric models in time series analysis. This is
due to their flexibility in approximating many stationary
processes and to their computational efficiency. In Bel-
monte and Canela (2002) and Alba et al. (2002), there
are applications of this approach to the airborne pollen ser-
ies. In our case, the study of 4the autocorrelation functions
of the series suggested that ARMA(2, 0) was the most suit-
able model.
4.1.2. Holt–Winters exponential smoothing

The development of time series models begun with a
modelling strategy called classical time series decomposi-
tion (Winters, 1960). This approach consists of describing
the behaviour of the time series through its non-observable
components: trend (Tt), seasonality (St), cycle (Ct) and ran-
dom perturbation (�t). This is shown in Fig. 3.
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Fig. 3. Decomposition of the series into seasonal and trend components.
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Holt–Winters method tries to express the time series
as an additive or multiplicative combination of its
components:

X t ¼ lt þ T t þ St þ �t�q ð3Þ

where lt is the exponentially weighted average of the past
values of the series,

lt ¼ aX t þ að1� aÞlt�1 ð4Þ

and Tt, St are estimated from the data.

4.2. Multilayered perceptron (MLP)

The MLP, trained by the standard backpropagation
algorithm is the most widely used neural network approach
for complex mappings between input and output. Its math-
ematical properties for non-linear function approximation
are well-documented (Rumelhart, Hinton, & Williams,
1986). In our case, a multilayered perceptron with two
inputs and 10 hidden units was used.
4.3. General regression neural networks

The basic GRNN was proposed in 1991 by Specht
(1991) as an extension of his probabilistic neural network
(PNN). It takes advantage of the fact that given a known
joint continuous probability density function f(x,y) of a
vector input x and a scalar output y, the expected value
of y given x can be computed by estimating the joint pdf
using the Parzen estimator.

The core GRNN equation is

ŷðxÞ ¼
Pn

i¼1yi � h
dðx;xiÞ

r

� �

Pn
i¼1h dðx;xiÞ

r

� � ð5Þ

where h is a Parzen kernel estimator, usually Gaussian, and
d is a distance measure, Euclidean in our case. The width of
each kernel centered on data xi is represented by r, and yi is
the expected output for that data.

4.4. Fuzzy rule based systems for time series analysis

Fuzzy rule based system (FRBS) is a popular computing
framework based on the concepts of fuzzy set theory, fuzzy
IF–THEN rules, and fuzzy reasoning (Klir & Yuan, 1995;
Zadeh, 1965). It has found successful applications in a wide
variety of fields, such as automatic control, data classifica-
tion, decision analysis, expert systems, robotics, pattern
recognition and forecasting, to name a few.

Each of the fuzzy systems described below used four
fuzzy labels for each input, resulting in 16 fuzzy rules for
each model.

4.4.1. Adaptive neuro-fuzzy inference system

Adaptive neuro-fuzzy inference systems (Jang, 1993) are
a special flavour of fuzzy rule based systems (FRBS) with
an adaptation procedure which automatically tunes its
parameters. It uses TSK-type rules of the form



Table 1
Experimental results using classical Time Series methods and Soft
Computing methods over the transformed testing data

Method RMSE Theil’s U

Naive 0.0918 0.3233
Holt–Winters 0.1102 0.3881
ARMA(2,0) 0.1029 0.3625
MLP 0.0918 0.3234
GRNN 0.0903 0.3181
HyFIS 0.0912 0.3211
NEFPROX 0.0895 0.3162
ANFIS 0.0882 0.3107
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If x1 is A and x2 is B then pðx1; x2Þ ð6Þ
which are trained by a hybrid learning algorithm. The ante-
cedent parameters are trained by a gradient descent variant
while the consequent linear parameters are trained by the
least squares method.

4.4.2. Hybrid neuro-fuzzy inference system (HyFIS)
As the ANFIS model described above, HyFIS (Kim &

Kasabov, 1999) is a FRBS and a neural network. It
employs Mamdani-type fuzzy rules of the form

If x1 is A and x2 is B then y is C ð7Þ
which are tuned in a two-stage algorithm. The first stage
deals with structure learning and sets the number and con-
figuration of fuzzy rules. The second stage, based on gradi-
ent descent as well, fine-tunes the parameters of the system
to better model the training data supplied to it.

4.4.3. Neuro-fuzzy function approximation (NEFPROX)

NEFPROX (Nauck & Kruse, 1999) is a Mamdani-type
FRBS with a neural structure as the one used by ANFIS or
HyFIS. It is closely related to NEFCLASS and NEFCON,
and as well it has a two-stage learning algorithm, which
fixes the structure of the FRBS on its first stage and then
fine-tunes the parameters of the system via a heuristic pro-
cedure inspired in the gradient descent method.
5. Results and discussion

Results for the first analysis mentioned in Section 3,
which deals with overall performance, are summarized in
Table 1. As can be easily seen, the neural and neuro-fuzzy
models yielded much better results than the classical
approaches as well as than the naive predictor. Concretely,
ANFIS and NEFPROX produced the lower RMSEs,
being the former the best. The results of the Theil’s U sta-
tistic are coherent with the ones of the RMSE, showing
that all the models are suitable for this task (all of them
show values under 1).
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Fig. 4. Values for 2003: expected and for
It is worth mentioning that the naive predictor behaved
quite better than the Holt and Winters and the ARMA
approaches. The complexity of the series, which is clearly
composed by several regimes (increasing, decreasing, zero
regime, . . .), makes it very difficult to model it completely
by a single linear model, whilst the naive model is totally
regime-dependent. This also highlights as well that the Soft
Computing-based models have an inherent capability to
model multiple-regime processes.

Fig. 4 shows both the original 2003 data and the fore-
casts obtained by using the trained ANFIS and NEF-
PROX. It is noticeable how both systems manage to
model the general behaviour of the data, including sudden
rises and falls. NEFPROX, especially, manages to predict
the peaks of the series considerably well. Notwithstanding,
a close look at these graphs shows that the predicted values
sometimes have a 1–2 days delay with respect to the origi-
nal data. This may be explained by the fact that no exoge-
nous variables (such as temperature, humidity, etc) have
been used, and the highly chaotic behaviour of the series
is hard to model without that information. In any case, this
phenomenon is consistent with other author’s results (Alba
et al., 2002; Dı́az de la Guardia et al., 2003).

Once the first analysis was done, we considered the error
obtained in each of the intervals mentioned in Section 3. To
properly understand these results, the distribution of the
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testing data over the intervals must be stated: out of the 363
examples available, 321 were on the low interval, 14 on the
medium interval and 28 on the high interval. This is a first
hint showing that more attention should be payed to the
selection of the thresholds defining the intervals.

The error values for this second experiment are shown in
Table 2, where we can see that the lowest values of RMSE
are obtained on the low interval for all models. The justifi-
cation for the use of the Theil’s U becomes clear now, as
well as the need for carefully choosing error measures
which are scale free: the values of the Theil’s U contradict
those of the RMSE, throwing on every case very bad
results.

The explanation to this apparent contradiction is given
by several joint facts. On the one hand, we know that in
the first interval the majority of data are zero, and this
leads the RMSE to very low values on every model. On
the other hand, in this interval the series under study is con-
sidered to be noisy, because of some natural phenomena
occurring just before and after the main polinisation per-
iod: the long distance pollen transportation from more
meridional zones which causes the presence of grains in
zones where the flowering has not started (Dı́az de la Guar-
dia et al., 2004), the late deposition process, which causes
the presence of grains weeks after the polinisation period
and the so called resuspension of grains, which as well
affects the pollen counts once the polinisation period has
finished.
Table 2
Experimental results obtained by all the models on each transformed
interval

Method Interval RMSEtest Theil’s U

Naive Low 0.0529 30.75
Medium 0.1764 0.2984
High 0.2482 0.1881

Holt–Winters Low 0.0405 23.52
Medium 0.2911 0.4925
High 0.3102 0.2351

ARMA(2,0) Low 0.0377 21.92
Medium 0.2224 0.3762
High 0.3103 0.2352

MLP Low 0.0454 26.82
Medium 0.1712 0.2896
High 0.2665 0.2025

GRNN Low 0.0427 24.86
Medium 0.1527 0.2584
High 0.2705 0.2055

HyFIS Low 0.0373 21.67
Medium 0.1670 0.2825
High 0.2791 0.2115

NEFPROX Low 0.0445 25.96
Medium 0.1656 0.2801
High 0.2607 0.1976

ANFIS Low 0.0406 23.59
Medium 0.1567 0.2652
High 0.2641 0.2001
Another definitive argument to justify the bad results
shown for the Theil’s U statistic can be obtained by remem-
bering its definition (Section 3). Obviously a no-change
model will produce very good overall results when predict-
ing these values composed mostly of zeros, and this will
consequently rise the value of the statistic for any other
model.

At first sight, it may be surprising that the neural and
neuro-fuzzy models obtain worst results than the linear
model ARMA on this interval, whose values are mostly
zeroes. This fact is explained by considering that those Soft
Computing models are based on families of functions that
asymptotically tend to zero (logistic, Gaussian, . . .) and this
makes it difficult for them to obtain an absolute zero in the
outputs. In fact, many applications of neural networks use
to rescale the data to the interval [0.1,0.9] to avoid this
effect.

Notwithstanding, by comparing with the results
obtained by the naive predictor, we can conclude that all
the models are performing fairly well on this low interval.
Besides, it should not be forgotten that a high accuracy
in the prediction within this interval is only of a relative
importance, given the fact that any value included in it
would normally not cause any effects on the allergic
population.

The values obtained in the medium interval confirm
what was stated above about the two error measures
employed. In this case, the RMSE shows values for all
models which are much worst than those of the first inter-
val, while the values of the Theil’s U are now a lot better
than those obtained for the first interval and show a signi-
ficative improvement from the no-change model.

It must be recalled that the number of data included in
this interval is significantly lower than those of the other
intervals. This is probably affecting the predictive capabil-
ities of all the models and can be considered as a justifica-
tion for the results for this interval being worst than those
obtained in the high interval.

Regarding each model’s results for this interval, we can
see that the best models were GRNN, ANFIS and NEF-
PROX, while all the neural and neuro-fuzzy models showed
an improvement over the classical statistical approaches.

The results obtained in the high interval are somehow
surprising. The naive predictor outperforms any of the
other models, a phenomenon which requires an explana-
tion. By studying how each of the models work we can
again understand this situation. On the one hand we know
that the classical, neural and neuro-fuzzy models are built
and/or trained by using the historical information obtained
from the training set, and that they try to forecast future
values by taking into account that historical information
as well as the recent past of the series. Differently, the naive
predictor uses exclusively the previous day value for pre-
dicting, and does not consider in any case the history of
the series. This fact, which might be considered as one of
the main drawbacks of the naive approach, is in this case
an advantage that justifies its good results.
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As can be seen in the first line of Fig. 3, the annual peaks
of the series show a high volatility (ranging from 400 to
2000 grains/m3). This together with the fairly small amount
of years available (we might say that 11 values do not con-
form a predictable series), indicates that the models that
take into account the whole history of the series tend to
predict peak values that are on the average of the available
years. Considering all this together with the high value of
the peak of the testing year (over 1500 grains/m3) we can
conclude that a naive approach is better in predicting the
peaks of this series.

Having said this, the models obtaining better results are
NEFPROX, ANFIS and MLP. By looking at the Theil’s U

statistic results, we see how in general the models per-
formed better in the third interval than in the second
one. The number of data available on each of them might
explain this result.

6. Conclusions and further work

We have applied five neural and neuro-fuzzy models
(MLP, GRNN, HyFIS, NEFPROX and ANFIS) to the
modelling and prediction of the airborne pollen series in
the city of Granada, Spain. Those models, whose behav-
iour is mainly non-linear, showed significant improve-
ments over the traditional ARMA and Holt–Winter’s
linear approaches. The chaotic component of the series
under study makes the non-linear behaviour of Soft Com-
puting models more appropriate than the linear one,
obtaining better results in all the cases. Concretely, ANFIS
and NEFPROX were the models that reached best overall
results.

Considering intervals in the domain of the data allowed
us to better understand how the models behave, showing
that some models have a better performance depending
on the area. Accordingly, better results are obtained in gen-
eral in the medium and high intervals, while the low interval
is harder to model for all the models. The best models were
HyFIS and ANFIS in the low interval, GRNN and ANFIS
in the medium interval and NEFPROX and ANFIS in the
high interval.

Results from both versions of the experiment suggest
that ANFIS and NEFPROX are the most appropriate
models for the present task.

A few remarks can be done concerning some aspects of
the experiments. On the one hand, the thresholds of the
intervals should be carefully revised attending not only to
symptomatological concerns but as well to statistical crite-
ria. Although current criteria are proposed by practitioners
and allow them to extract useful information from the pre-
dictions, a better choice of the thresholds aiming at a more
even distribution of data amongst intervals would lead to a
significant improvement of the predictions.

Nonetheless, although our results seem good compared
to previous works on the literature (and compared to the
results of the classic approaches), the absence of meteoro-
logical variables in our study allows us to expect further
improvements in the prediction capabilities of future
applications.
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