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Abstract

In 1989 Hornik as well as Funahashi established that multilayer feedforward networks without the squashing function in the output layer
are universal approximators. This result has been often used improperly because it has been applied to multilayer feedforward networks with
the squashing function in the output layer. In this paper, we will prove that also this kind of neural networks are universal approximators, i.e.
they are capable of approximating any Borel measurable function from one finite dimensional space ihto én¢)desired degree of
accuracy, provided sufficiently many hidden units are availabl2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction 2. Strictly increasing squashing function

Since Hornik’s and Funahashi’s papers (Funahashi, 1989; The idea of the proof of the following theorem is to use
Hornik, Stinchcombe & White, 1989) established the Hornik’s and Funahashi’s results in order to prove that
universal approximation capability of multilayer feedfor- ¢~ oF can be approximated by a feedforward network with-
ward networks without the squashing function in the output out the squashing function in the output layer to any degree
layer, many papers (Bissessur & Naguib, 1995; Han, Xiu, of accuracy, where is the squashing function of the output
Wang, Chen & Tan, 1997; Leyva, Martinez-Salamero, layer. Then, from the continuity @ we conclude thaf can
Jammes, Marpinard & Guinjoan, 1997; Moody & Antsaklis, be approximated by the same network wiifas the squash-
1996; Sietsma & Dow, 1991; Spall & Cristion, 1997) cite ing function of the output layer. We begin with definitions
this result to justify that multilayer feedforward networks and notations.
with the squashing function in the output layer are capable
of approximating any continuous functiof on (0,1).

Nevertheless, this has not been proved until now. We estab-Definition 1. A function ¢ : R — [0,1] is a squashing
lish this result in this paper. In other works (Attali and function if it is non-decreasing, lipn.. ¢(A) =1, and
Pages, 1997; Cardaliaguet and Euvrard, 1992; Hornik, lim,_,_ . ¢(A) = 0.

1991; Hornik, 1993; Kurkova, 1995; Leshno, Liu, Pinkus

& Shocken, 1993; Meltser, Shoham & Manevitz, 1997), the

universal approximation capability is also studied but a Theorem 1. LetF be any Borel measurable or continuous
linear function is always considered in the output layer. function from KC R" on (0,1)™, and let¢ be any strictly

In the next section, it is proved that multilayer feedfor- increasing continuous squashing function. Then, for any
ward networks with strictly increasing squashing functionin € >0 there exists a multilayer feedforward network N
the output layer are capable of approximating any contin- with the sgquashing function in the output layer and with
uous functiorF on (0,1)". In Section 3, the multilayer feed-  only one hidden layer such that
forward networks with non-monotone, continuous, non-
constant activation function in the output layer are studied.
Finally, some conclusions are commented on.

N —FX || <e VxeEK.

Proof (theorem 1). As ¢ is continuous and strictly
* Corresponding author. increasing, there exis ~* and it is continuous. Then, let
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G be defined by

G(X) = (¢ "oF(X)1, ...  oF (X))

ThenG is a continuous function frork on R™.
On the other hand, a8 is continuous orK, G(K) is a
compact. LeK’ = [a, b] be the interval defined by

a=min{GX);/x € K,i=1--m} — 1,

b= max{Gx)i/x € K,i =1--m} + 1.

Then, asp is uniformly continuous on every compact, there
exists aé > 0 such that

lp(y) — (2] < €
Let

2

As G is a continuous function fror on R™, there exists a
multilayer feedforward network’ without the squashing
function in the output layer and with only one hidden layer
such that

if ly—2 <8 andy,ze K'.
6 ifé=1

1 otherwise

IN'(¢) — GX)|| = maX<i=m|N'(¥) — G(x)| < &,
Vx € K,

hence, takindN as the neural networlK’ with the squashing
function in the output, we have

INX) — FOOl| = maX<i=m|NOJ; — F(X)|
= MaX<i=m| $(N'(X)) — H(GON)| < €,
Vx € K,
since
a=GX); —1=GX;— & <NX; <GX); + &

=GX); +1=h,

a=0GX; —1<GX); <GX);+1=h,
and
IN'(x); — G(x);| < & = 8.

O

3. Activation function in the output is not monotone

This section exposes that the multilayer feedforward
networks with non-monotone continuous non-constant acti-
vation function(e¢ : ‘R — (0, 1)) in the output layer, where
is strictly monotone in an interval, are capable of approx-
imating a linear transformatiofl of any functionF on
(0,1)™. The definition of the transformatioh depends on
the activation functior, and is valid for approximating any
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function F with a neural network that uses the activation
function ¢ in the output layer.

Definition 2. Let us consider a continuous non-constant
function¢ : ‘R — (0, 1) that is strictly monotone in an inter-
val [a, b]. Two cases:

1. Let us suppose thap is strictly increasing in[a, b],
¢(@) =uand ¢(b) = v with 0 < u < v < 1. Hence, we
can define the transformatioh: (0,1) — (u + 6;, v —

0,) as:
1-(@u+6)

T =~

X+ (U+ 6y),
where g(a + 6g) = u+ 6;, (b — 6y) = v — 6; and 6,
0, > 0.

. If ¢ is strictly decreasing irfa, b] then ¢(a) = v and
¢(b) = u. Hence, we can define the transformatibn
0,1) = (u+ 64, v-01). Now, @@+ 6y)=v-— 06y,
(P(b - 00) =u-+ 61.

The definition of the functioff depends on the valuesand
v. These values are established by the activation fungtion

Corollary 1. Let F be any Borel measurable or continu-
ous function from KC R" on (0,1)™, let ¢ be any non-
monotone continuous non-constant activation function that
is strictly monotone in an interval [a,b], and let T be the
linear transformation associated with according to Defi-
nition 2. Then, for any > 0 there exists a multilayer feed-
forward network N with activation functioa in the output
layer and with only one hidden layer such that

NGO — (ToF)X)| <e  VxEK.

Proof (corollary 1). Without loss of generality, let us
suppose thap is strictly increasing irfa, b], ¢(a) = u and
¢(b) =v with 0 <u<v<1 We build the functiong
defined as

X+u—a x<a
p:R—-N X)) = @(X) X € [ab].
X+v—>b X>Db

The function ¢ is continuous, strictly increasing and
B X = @, (X).

As ¢ is continuous and strictly increasing, there exists
@ ! and it is continuous. Then, & be defined by

G(X) = (¢ LoToF(X)q, ... @ LoToF(X)py).

G is a continuous function fror on R™.
On the other hand, &S is continuous onK, G(K) is com-
pact. By definition, (TeF)(X) € (u+ 64, v — 6;) Vx € K.
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Therefore, G(x)y € @+ 6y, b— 6y), ie. GXx); € networks with the squashing function in the output layer
[ablVxEK,i=1,..m correctly.

Then, as¢ is uniformly continuous on every compact, The second result establishes that the neural networks
there exists & > 0 such that with non-monotone activation function (but strictly mono-

tone inside an interval) in the output layer are capable of

() — ¢ < e itly—4 <& andy,z€ [a.b] approximating the linear transformation of any measurable

Let 8 = minimum{@,, 1, 5}. function. The majority of the non-monotone activation
As G is a continuous function fror{ onR™, there exists functions used in different works are strictly monotone
a multilayer feedforward networlN’ without activation inside an interval. Hence, the second result is important in

function in the output layer and with only one hidden practice.
layer such that

[N'(%) — GX)|| = maX<i=m/N'(X); — G| < &,
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