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Abstract

In 1989 Hornik as well as Funahashi established that multilayer feedforward networks without the squashing function in the output layer
are universal approximators. This result has been often used improperly because it has been applied to multilayer feedforward networks with
the squashing function in the output layer. In this paper, we will prove that also this kind of neural networks are universal approximators, i.e.
they are capable of approximating any Borel measurable function from one finite dimensional space into (0,1)n to any desired degree of
accuracy, provided sufficiently many hidden units are available.q 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Since Hornik’s and Funahashi’s papers (Funahashi, 1989;
Hornik, Stinchcombe & White, 1989) established the
universal approximation capability of multilayer feedfor-
ward networks without the squashing function in the output
layer, many papers (Bissessur & Naguib, 1995; Han, Xiu,
Wang, Chen & Tan, 1997; Leyva, Martinez-Salamero,
Jammes, Marpinard & Guinjoan, 1997; Moody & Antsaklis,
1996; Sietsma & Dow, 1991; Spall & Cristion, 1997) cite
this result to justify that multilayer feedforward networks
with the squashing function in the output layer are capable
of approximating any continuous functionF on (0,1)n.
Nevertheless, this has not been proved until now. We estab-
lish this result in this paper. In other works (Attali and
Pages, 1997; Cardaliaguet and Euvrard, 1992; Hornik,
1991; Hornik, 1993; Kurkova, 1995; Leshno, Liu, Pinkus
& Shocken, 1993; Meltser, Shoham & Manevitz, 1997), the
universal approximation capability is also studied but a
linear function is always considered in the output layer.

In the next section, it is proved that multilayer feedfor-
ward networks with strictly increasing squashing function in
the output layer are capable of approximating any contin-
uous functionF on (0,1)m. In Section 3, the multilayer feed-
forward networks with non-monotone, continuous, non-
constant activation function in the output layer are studied.
Finally, some conclusions are commented on.

2. Strictly increasing squashing function

The idea of the proof of the following theorem is to use
Hornik’s and Funahashi’s results in order to prove that
f21+F can be approximated by a feedforward network with-
out the squashing function in the output layer to any degree
of accuracy, wheref is the squashing function of the output
layer. Then, from the continuity off we conclude thatF can
be approximated by the same network withf as the squash-
ing function of the output layer. We begin with definitions
and notations.

Definition 1. A function f : R! �0;1� is a squashing
function if it is non-decreasing, liml!∞ f�l� � 1; and
liml!2 ∞ f�l� � 0:

Theorem 1. Let F be any Borel measurable or continuous
function from K, R

n on �0;1�m; and letf be any strictly
increasing continuous squashing function. Then, for any
e . 0 there exists a multilayer feedforward network N
with the squashing function in the output layer and with
only one hidden layer such that

iN�x�2 F�x� i , e ;x [ K:

Proof (theorem 1). As f is continuous and strictly
increasing, there existsf21 and it is continuous. Then, let
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G be defined by

G�x� � �f21+F�x�1;…;f21+F�x�m�:
ThenG is a continuous function fromK on R

m
:

On the other hand, asG is continuous onK, G�K� is a
compact. LetK 0 � �a;b� be the interval defined by

a� min{G�x�i =x [ K; i � 1…m} 2 1;

b� max{G�x�i =x [ K; i � 1…m} 1 1:

Then, asf is uniformly continuous on every compact, there
exists ad . 0 such that

uf�y�2 f�z�u , e; if uy 2 zu , d andy; z [ K 0:

Let

d 0 �
d if d # 1

1 otherwise

(
:

As G is a continuous function fromK on R
m
; there exists a

multilayer feedforward networkN0 without the squashing
function in the output layer and with only one hidden layer
such that

iN 0�x�2 G�x�i � maxl#i#muN 0�x�2 G�x�i u , d 0;

;x [ K;

hence, takingN as the neural networkN0 with the squashing
function in the output, we have

iN�x�2 F�x�i � maxl#i#muN�x�i 2 F�x�i u
� maxl#i#muf�N 0�x�i�2 f��G�x�i�u , e;

;x [ K;

since

a # G�x�i 2 1 # G�x�i 2 d 0 , N 0�x�i , G�x�i 1 d 0

# G�x�i 1 1 # b;

a # G�x�i 2 1 , G�x�i , G�x�i 1 1 # b;

and

uN 0�x�i 2 G�x�i u , d 0 # d:

A

3. Activation function in the output is not monotone

This section exposes that the multilayer feedforward
networks with non-monotone continuous non-constant acti-
vation function�w : R! �0; 1�� in the output layer, wherew
is strictly monotone in an interval, are capable of approx-
imating a linear transformationT of any function F on
�0;1�m: The definition of the transformationT depends on
the activation functionw , and is valid for approximating any

function F with a neural network that uses the activation
functionw in the output layer.

Definition 2. Let us consider a continuous non-constant
functionw : R! �0;1� that is strictly monotone in an inter-
val �a;b�: Two cases:

1. Let us suppose thatw is strictly increasing in�a;b�;
w�a� � u andw�b� � v with 0 , u , v , 1: Hence, we
can define the transformationT : �0;1� ! �u 1 u1; v 2
u1� as:

T�x� � 1 2 �u 1 u1�
v 2 u1

·x1 �u 1 u1�;

wherew�a 1 u0� � u 1 u1; w�b 2 u0� � v 2 u1 and u0,
u1 . 0:

2. If w is strictly decreasing in�a; b� then w�a� � v and
w�b� � u: Hence, we can define the transformationT :

�0;1� ! �u 1 u1; v-u1�: Now, w�a 1 u0� � v 2 u1;

w�b 2 u0� � u 1 u1:

The definition of the functionT depends on the valuesu and
v. These values are established by the activation functionw .

Corollary 1. Let F be any Borel measurable or continu-
ous function from K, R

n on �0;1�m; let w be any non-
monotone continuous non-constant activation function that
is strictly monotone in an interval [a,b], and let T be the
linear transformation associated withw according to Defi-
nition 2. Then, for anye . 0 there exists a multilayer feed-
forward network N with activation functionw in the output
layer and with only one hidden layer such that

iN�x�2 �T+F��x�i , e ;x [ K:

Proof (corollary 1). Without loss of generality, let us
suppose thatw is strictly increasing in�a;b�; w�a� � u and
w�b� � v with 0 , u , v , 1: We build the function �w
defined as

�w : R! R �w�x� �
x 1 u 2 a x , a

w�x� x [ �a; b�
x 1 v 2 b x . b

8>><>>: :

The function �w is continuous, strictly increasing and
�w �a;b� �x� � w�a;b� �x�:

As �w is continuous and strictly increasing, there exists
�w21 and it is continuous. Then, letG be defined by

G�x� � � �w21+T+F�x�1;…; �w21+T+F�x�m�:
G is a continuous function fromK on R

m
:

On the other hand, asG is continuous onK, G�K� is com-
pact. By definition, �T+F��x� [ �u 1 u1; v 2 u1� ;x [ K:
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Therefore, G�x�i [ �a 1 u0; b 2 u0�; i.e. G�x�i [
�a;b� ;x [ K; i � 1;…;m:

Then, as �w is uniformly continuous on every compact,
there exists ad . 0 such that

u �w�y�2 �w�z�u , e; if uy 2 zu , d andy; z [ �a;b�:
Let d 0 � minimum{u0;1; d} :

As G is a continuous function fromK on R
m
; there exists

a multilayer feedforward networkN0 without activation
function in the output layer and with only one hidden
layer such that

iN 0�x�2 G�x�i � maxl#i#muN 0�x�i 2 G�x�i u , d 0;

;x [ K;

hence, taking�N as the neural networkN0 with activation
function �w in the output, we have

iN 0�x�2 �T+F��x�i � maxl#i#mu �N�x�i 2 �T+F��x�i u
� maxl#i#mu �w�N 0�x�i�2 �w��G�x�i�u , e;

;x [ K;

since

G�x�i [ �a 1 u0;b 2 u0� ) G�x�i [ �a;b�;

a # a 1 u0 2 d 0 # G�x�i 2 d 0 , N 0�x�i , G�x�i 1 d 0

# b 2 u0 1 d 0 # b;) N 0�x�i [ �a;b�;
and

uN 0�x�i 2 G�x�i u , d 0 # d:

Finally, as N 0�x�i [ �a;b� then �N�x�i � �w�N 0�x�i� �
w�N 0�x�i� � N�x�i ; ;x [ K; i � 1;…;m:

Therefore

iN�x�2 �T+F��x�i � i �N�x�2 �T+F��x�i , e ;x [ K:

A

4. Conclusion

The main result of this paper establishes that standard
multilayer feedforward networks are capable of approximat-
ing any measurable function to any desired degree of accu-
racy. It is only a corollary of Hornik’s and Funahashi’s
results, but it is necessary in order to apply the universal
approximation capability to multilayer feedforward

networks with the squashing function in the output layer
correctly.

The second result establishes that the neural networks
with non-monotone activation function (but strictly mono-
tone inside an interval) in the output layer are capable of
approximating the linear transformation of any measurable
function. The majority of the non-monotone activation
functions used in different works are strictly monotone
inside an interval. Hence, the second result is important in
practice.
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