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Are Artificial Neural Networks Black Boxes?
J. M. Beńıtez, J. L. Castro, and I. Requena

Abstract—Artificial neural networks are efficient computing
models which have shown their strengths in solving hard prob-
lems in artificial intelligence. They have also been shown to
be universal approximators. Notwithstanding, one of the ma-
jor criticisms is their being black boxes, since no satisfactory
explanation of their behavior has been offered. In this paper,
we provide such an interpretation of neural networks so that
they will no longer be seen as black boxes. This is stated af-
ter establishing the equality between a certain class of neural
nets and fuzzy rule-based systems. This interpretation is built
with fuzzy rules using a new fuzzy logic operator which is
defined after introducing the concept off -duality. In addition,
this interpretation offers an automated knowledge acquisition
procedure.

Index Terms—Equality between neural nets and fuzzy rule-
based systems,f -duality, fuzzy additive systems, interpretation
of neural nets, i-or operator.

I. INTRODUCTION

A RTIFICIAL neural networks (ANN’s) are well-known
massively parallel computing models which have exhib-

ited excellent behavior in the resolution of complex artificial
intelligence problems. However, many researchers refuse to
use them because of their shortcoming of being “black boxes,”
that is, determining why an ANN makes a particular decision is
a difficult task. This is a significant weakness, for without the
ability to produce comprehensible decisions, it is hard to trust
the reliability of networks addressing real-world problems.

On the other hand, fuzzy rule-based systems (FRBS’s),
developed using fuzzy logic, have become a field of active
research during the last few years. These algorithms have
proved their strengths in tasks such as the control of complex
systems, producing fuzzy control. But fuzzy set theory also
provides an excellent way of modeling knowledge.

The relation between both worlds (ANN’s and FRBS’s)
has been extensively studied. Indeed, this is a close relation
since equivalence results have been obtained. However, all
of these results are approximative. In this paper, we go one
step further by establishing not just the equivalence but the
equality between some kinds of ANN’s and FRBS’s that
use comprehensible fuzzy rules. This connection yields two
immediate and important conclusions. First, we can apply
what has been discovered for one of the models to the
other. Second, we can translate the knowledge embedded
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Fig. 1. Multilayer neural network.

in the neural network into a more cognitively acceptable
language, fuzzy rules. In other words, we obtain an un-
derstandable interpretation of neural nets. We are mainly
concerned in explaining how an ANN works, not just using
a neural net as a tool to translate the knowledge under-
lying a data set into rules. Nevertheless, the interpretation
leads to a method for extracting rules from an ANN. Rule-
extraction from ANN’s constitutes a large and growing area
of research [1]–[5].

This paper is organized as follows. Section II is devoted
to describing the kind of ANN’s we consider, and Section
III introduces FRBS’s. Next, we present the main (equality)
result linking both models. In Section V, the concept of-
duality and some immediate properties are presented. This
is a crucial concept on which we define the interactive-
or operator, which enables us to offer an interpretation of
ANN’s based on fuzzy rules, as explained in Section VI. This
interpretation is illustrated with a simple sample. We finish
the paper by discussing conclusions and stating final remarks.
Proofs of results presented throughout the paper are found in
the Appendix.

II. A RTIFICIAL NEURAL NETWORKS

Many different models of neural nets have been proposed
[6], [7], however, multilayered feedforward ANN’s are es-
pecially interesting since they are the most common. In
these nets, neurons are arranged in layers and there are only
connections between neurons in one layer to the following.
Let us consider an ANN with input, hidden, and output
layers. Let us suppose that the net hasinput neurons

, hidden neurons , and output
neurons . Let be the bias for neuron . Let

be the weight of the connection from neuronto neuron
and, the weight of the connection from neuron to

neuron . Fig. 1 shows the general layout of these nets. The
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Fig. 2. Logistic functionfA(x) = 1=(1 + e�x).

function the net calculates is

with

where and are activation functions, which are usually
continuous, bounded, nondecreasing, nonlinear functions. The
usual choice is the logistic function: ,
whose graph is shown in Fig. 2. Linear functions, even the
identity, are also common for .

One of the most interesting properties of the ANN’s is that
they are universal approximators, that is, they can approximate
to any desired degree of accuracy any real-valued continuous
function or one with a countable number of discontinuities
between two compact sets. In [8], this result is shown for
feedforward ANN’s with a single hidden layer and a sufficient
number of units in it whose activation function is continuous
and nonlinear, and taking the identity as activation function for
output units. This result establishes that we can successfully
use ANN’s for learning and faithfully reproducing a system’s
behavior from a sufficiently large set of samples. The result
has increased the already widespread use of ANN’s.

However, many people refuse to use ANN’s because of their
most criticized feature: there is no satisfactory interpretation
of their behavior. ANN’s are devices working as black boxes:
they capture “hidden” relations between inputs and outputs
with a highly accurate approximation, but no definitive answer
is offered for the question of how they work.

III. FUZZY RULE-BASED SYSTEMS

Rules, in general, represent in a natural way causality
relationships between inputs and outputs of a system, cor-
responding to the usual linguistic construction “IFa set of
conditions is satisfied,THEN a set of consequences is in-
ferred.” Fuzzy logic [9], [10] provides a natural tool to model
and process uncertainty, hence, fuzzy rules have the additional

Fig. 3. Structure of a fuzzy rule-based system.

advantage over classical production rules of allowing a suit-
able management of vague and uncertain knowledge. They
represent knowledge using linguistic labels instead of numeric
values, thus, they are more understandable for humans and
may be easily interpreted.

Systems using fuzzy rules are termed FRBS’s [11], [12].
These systems map-dimensional spaces into -dimensional
spaces. As depicted in Fig. 3, they are composed of four parts:
fuzzifier, knowledge base, inference engine, and defuzzifier.

The fuzzifier converts real valued inputs into fuzzy values
(usually, in singleton fuzzy sets).

The knowledge base includes the fuzzy rule base and the
database. Fuzzy rules have the form

If is and is and and is

then is

where are the inputs, is the output and
, and are linguistic labels. Membership

functions of these linguistic terms are contained in the
database.

The inference engine calculates fuzzy output from fuzzy
inputs by applying a fuzzy implication function. Finally, the
defuzzifier yields a real-value output from the inferred fuzzy
output.

The most successful application of FRBS’s is fuzzy control,
which is devoted to the management of complex systems,
which are very hard to model using classical mathematics.
Yet they have some additional interesting properties, the
most important being universal approximation. In [13]–[15],
it is demonstrated that wide classes of fuzzy controllers are
universal approximators. One of these is the class of fuzzy
additive systems (FAS’s) [15], which employ rules with the
following expression, known as TSK rules [16]:

If is and is and and is

then is

where is a linear function on the inputs. In
FAS’s, the inference engine works as follows: For each rule,
the fuzzified inputs are matched against the corresponding
antecedents in the premises giving the rule’s firing strength
(or weight). It is obtained as the-norm (usually the minimum
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operator) of the membership degrees on the rule if-part. The
overall value for output is calculated as the weighted sum
of relevant rule outputs. Let us suppose a system withinputs,

outputs, and multiinput single output (MISO) fuzzy rules,
having of them for th output. Then is computed as

where is the firing strength of th rule for th output.
FAS’s are very similar to the more common Sugeno systems.
The only difference between them is the way they obtain the
output: while FAS’s output is a single weighted sum, Sugeno
systems’ output is a weighted average.

When the activation functions in an ANN are continuous,
the function the net calculates is continuous. So an ANN can
be approximated by an FRBS. And conversely, an ANN can
approximate a continuous FRBS. Thus, it is easy to check that
the ANN’s and FRBS’s we have described are equivalent. We
study this relation in depth in the following section.

IV. A RTIFICIAL NEURAL NETWORKS

ARE FUZZY RULE-BASED SYSTEMS

The equivalence between ANN’s and FRBS’s has been
studied by different authors [17], [18]. Most of their results
establish the equivalence through an approximation process.
But this process works in such a way that if a sufficiently high
degree of accuracy is required, the number of rules needed
to approximate the ANN or the number of neurons needed to
approximate the FRBS becomes too high. Hence, it is just a
purely theoretical solution.

However, Jang and Sun’s work [18] is different. They give
an equivalence result between radial basis function networks
and fuzzy additive systems. In fact, it is an equality relation
that only requires a finite number of rules or neurons. Here,
considering a different and more frequently used ANN model,
we provide a similar result.

In this paper, we show that building an FRBS that calculates
exactly the same functionas an ANN like those employed by
Hornik et al. [8], not just approximated but the same, is trivial.
We need no results requiring an unbounded number of rules.
The basic ideas were already indicated in [19].

Theorem 1: Let be a three-layer feedforward neural
network with a logistic activation function in hidden neurons
and identity in output neurons. Then there exists a fuzzy
additive system that calculates the same function as the net
does.

Proof: We provide a constructive proof. To describe the
fuzzy system we only need to give the rule base. We employ
TSK type rules. A fuzzy rule per pair of neurons (hidden,
output), , is added

If is then (1)

where is a fuzzy set on whose membership function is
simply the activation function of hidden neurons.

Fig. 4. Membership function for “approximately greater than 2.2.”

Since this is a fuzzy additive system, the firing strength for
rule , , is , and the system output
is the vector whose components are given by

(2)

By (1) and (2), one can easily check that each output
of the fuzzy system is exactly the same as the corresponding
output for the network.

A couple of remarks can be noted. First, we use simple rules
“If is , then ” where and are new variables
obtained by a single change of variable in theinputs. Second,
the fuzzy set may be understood as “greater than approxi-
mately ,” where is a positive real number obtained from a
preestablished-cut. Since the logistic function can reach zero
and one only asymptotically, the usual convention in neural
literature is to consider activation levels of 0.1 and 0.9, for
total absence of activation and full activation, respectively.
Thus we can set an-cut for and interpret the fuzzy
set with as membership function (see Fig. 4) as “greater
than approximately 2.2” since .

By considering the stated fuzzy rule set, the inference
method, and the identity function for , we have shown
the existence of a system based on fuzzy rules that calculates
exactly the same as a neural net with a total approximation
degree. This is the theoretical aspect of the result: since the
equivalence-by-approximation was already proven we have
established theequality between ANN’s and FRBS’s.

Two important conclusions may be drawn from the equiv-
alence between ANN’s and FRBS’s. On the one hand, ev-
erything discovered for one of the models may be applied
to the other. On the other hand, the knowledge an ANN
encodes into its synaptic weights may be expressed in a
more comprehensible form for humans, thus making it more
transparent and easier to interpret. This leads to a couple of
interesting ideas, an interpretation of ANN’s is possible, as
well as a method for automatic knowledge acquisition.

The rules used in the system are fuzzy ones. They have a
clear meaning for a mathematician. Nevertheless, we intend to
go one step further and provide fuzzy rules that can be easily
interpreted. Hence, we proceed to find such a decomposition
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of the premise of rules so that we might rewrite them as

If is is is

then (3)

where is a logic connective and are fuzzy sets obtained
from , the weights, , and the biases .

The first approach would be to try a decomposition of the
obtained rules to the most common and simple fuzzy rule type,
that is, rules with AND joining the antecedents. Clearly, this
should be the ideal situation, but this decomposition is not
possible. It is easy to check the negative answer. Fuzzy rules
may be seen as fuzzy relations. The decomposition we are
trying means that the relation corresponding to each rule (1)
must be expressed as a composition of relations. But Yager
[20] showed that this is not possible in every case. As to the
OR connective, a similar problem arises. So a different type
of connective must be considered.

The solution comes from the concept of-duality, which we
define in the next section. This concept implies very powerful
representation properties and leads to a fuzzy logic operator
that enables us to write more comprehensible and suitable
fuzzy rules to describe the knowledge embedded in an artificial
neural network.

V. -DUALITY AND INTERACTIVE-OR

We now introduce the concept of-duality, which will be
used to define a logical operator that enables us to give a
proper interpretation of ANN.

Proposition 1: Let be a bijective function and
let be a binary operation defined in the domain of, .
Then there is one and only one operation,, defined in the
range of , , verifying

(4)

Definition 1: Let be a bijective function and let be an
operation defined in the domain of. The operation whose
existence is proven in the preceding proposition is called the

-dual of .
Lemma 1: If is the -dual of then is the -dual

of .
Now, let us consider the operation in and the logistic

function . The latter is a bijective function from to (0,
1). Thus we have the following.

Lemma 2: The -dual of + is , defined as

(5)

Definition 2: We call the operator defined in the previous
lemma theinteractive-or operator, -or.

We proceed by studying some of the straightforward prop-
erties of the -or operator in the following.

Lemma 3: Let be the -dual of +. Then verifies the
following.

1) is commutative.
2) is associative.
3) There exists a neutral elementfor . It is .

4) Existence of inverse elements.
such that . .

Corollary 1: Let be the -dual of +. Then is
an abelian group.

Lemma 4: The -dual of + extends easily to arguments

(6)

By writing instead of
we abuse the notation, but this does not cause any problem as

is both associative and commutative.
Lemma 5: The -dual of +, , verifies the following.

1)
.

2)
.

3) is strictly increasing in every argument.

From a purely mathematical point of view, the operator
interactive-or has some interesting and undoubtedly elegant
properties. This operator endows (0, 1) with a fine group
structure having nice symmetries like being the neutral
element and being the inverse of .

The operator we have just defined works on (0, 1) and hence,
can be seen as a fuzzy logic operator, that is, an operator
that takes several truth values corresponding to different
propositions and produces an overall truth value.1 This value
is obtained as an aggregation whose result increases with the
inputs.

But the most interesting point about interactive-or is that it
has a natural interpretation. This meaningfulness is supported
by the clear logical interpretation of properties stated in
Lemmas 3 and 5. It can be best exposed through an example.

Let us consider the evaluation of a scientific paper. In order
to decide whether accepting it for publication or not, the editor
sends it to, say, two reviewers. After an in-depth examination,
each one assigns the paper a number in (0, 1), reflecting his/her
opinion as to whether to accept or reject the paper. The closer
the number is to one, the better the opinion. The editor makes
the final decision. This decision may be modeled using the
interactive-or. Let us see why. Since both reviewers’ criterion
is equally good, both receive the same consideration, hence
the symmetry. If one of the referees has no clear opinion, he
will be neutral and will give a 0.5. The final decision would be
made from the other referee’s evaluation. Here, the role of the
neutral element for-or, namely 0.5, is obvious. In case the
examinators’ opinions are opposed, the more emphasized one,
that is, the closer to one of the extremes, would prevail. This
conforms to the behavior in limits as indicated in Lemma 5.
However, if the opinions are opposed but of equal “strength,”
they would provide little help to the editor, who would be
confused. In other words, the overall evaluation of the referees
would be 0.5. This is explained by the inverse elements.

We can find, -or applicability in many other situations: the
quality of game developed by two tennis players in a double

1Obviously, we refer to a fuzzy logic in which membership values belong
to (0, 1) instead of the more common [0, 1].
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Fig. 5. Regions defining the behavior ofi-or.

tennis match, the evaluation of students, the role of forward
and goalkeeper in a soccer match, etc.

In addition, the -or operator can model situations in which
more than two elements are involved. It also covers, by using
weights, cases where the importance of some factors is higher
than others.

The interactive-or operator is an hybrid between both a-
norm and a -conorm. To understand this, see Fig. 5, where
the unit square is divided into four quadrangular regions: A,
B, C, and D. The -or works as a very conservative-norm
(i.e., lesser than most of them) in A region; it works as a
very conservative-conorm (i.e., greater than most of them)
in region D, which is the dual of the-norm in A; and in
regions B and C a continuous transition from a-norm to a
-conorm, or vice versa, takes place.

To give the reader a clearer idea of-or behavior, we include
Figs. 6 and 7. They represent the surfaces defined by-or
and min, respectively, when applied to two triangular fuzzy
sets. The aspect of the surfaces suggests that when it comes
to model nonlinear surfaces,-or is much more suitable than
linear minimum. We feel that the nonlinear behavior of-
or can be shaped to fit a nonlinear surface easier than min,
where only the interpolation of several rules would provide
the approximating behavior.

To end this section, we observe that, from Proposition 1, it
is straightforward that many new operators may be obtained
by considering different activation functions () or different
aggregating operators (+). Properties of these new operators
depend mainly on those from the originating aggregating
operator and, in a second place, on the activation function.
What you can take for granted is that whenever you have
a bijective function you get the structure of the original set
duplicated on the image set. Hence, you find in the image set
operators with the same operations than those defined in the
original set. This opens a new and interesting line of research,
which is under development.

VI. I NTERPRETATION OFARTIFICIAL NEURAL NETWORKS

As proposed in Section IV, in order to improve the un-
derstandability of fuzzy rules, we have reformulated them
by decomposing their premises. This section is devoted to
explaining how this decomposition is achieved. To make the
exposition easier to follow, we describe the interpretation in
two steps. First we consider ANN’s without biases. Then we
indicate the role of biases.

Fig. 6. Interactive-or operator.

Fig. 7. Minimum operator.

A. Artificial Neural Networks Without Biases

In this section, we are concerned with ANN’s without
biases, thus rules of the corresponding FAS are a special case
of (1) where . These rules are translated into rules
of form (3), using the -or operator as the logic connective
. In effect, since the logistic is a bijective function, we can

obtain the -dual of +. This operation is , as discussed in
the previous section. The resulting rules are

If is is is

then (7)

And accepting that “ is ” might be interpreted as “
is ,” then we can rewrite them as indicated in (3)

If is is is

then (8)

The are fuzzy sets obtained from and . Their
membership function is given by

Then it is easy to check that

is is is is

Obviously, their interpretation is built out of that of and
modified by the weights . If is positive, then “ is

” can be read as “ is greater than approximately ,”
where is a positive real number obtained from a previously
established -cut (e.g., ). If is negative, then “
is ” can be understood as “ is lower than approximately

.” As to the absolute weight value, when it increases the
proposition becomes crisper and the reference point, ,
becomes smaller. The effect is converse when the absolute
weight value decreases.

Moreover, when the weight is negative, the proposition may
also be expressed in terms of a “greater-than” relationship.
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Fig. 8. A feedforward neural network for the iris plant problem.

This is obtained by writing the negated proposition, “not
is ,” where is the complement of , whose
membership function is

It is easy to check that is a logistic function (see next
Lemma 6). This way, “ is lower than approximately” is
the same that “ is not greater than approximately .”

Lemma 6: Let then
.

These rules provide a meaningful expression to knowledge
extracted from examples by the neural net. Hence, they offer
an interpretation of ANN’s.

One of the most interesting properties of this interpretation
is its independence from the learning algorithm. The training
method employed to obtain the weights does not matter. The
only relevant point is the knowledge the net has learned.

An Example: To illustrate the process, let us consider a sim-
ple example. This is the well-known iris plant problem, whose
data set has been used in results described in many papers and
can be found in a number of artificial intelligence repositories
spread across the Internet. The goal is to recognize the type
of the iris plant to which a given individual belongs. The data
set is composed of 150 instances, equally distributed between
the three classes: 50 for each of the three types of plants:
setosa, versicolor, and virginica. One class is linearly separable
from the other two; while the latter are not linearly separable
from each other. Each instance features four attributes (petal
length, petal width, sepal length, and sepal width), which take
continuous values.

A small adaption of data was necessary. We coded the three
possible classes as three values in (0, 1): 0.1, 0.5, and 0.9,
respectively. Hence, a single output neuron is required.

In order to obtain three rules, we used the data to train
a feedforward network with four, three, and one neurons in
each layer. The structure of the network is shown in Fig. 8.
Its weights after learning are

By applying the rule building process we obtained the
following rules:

If sepal-lengthis greater than approximately 22.916
-or

sepal-widthis not greater than approximately 137.500
-or

petal-lengthis greater than approximately 14.013-or
petal-widthis greater than approximately 17.886,
then

If sepal-lengthis not greater than approximately
25.882 -or
sepal-widthis not greater than approximately 183.333
-or

petal-lengthis greater than approximately 16.794-or
petal-widthis greater than approximately 104.762,
then

If sepal-lengthis not greater than approximately
4.382 -or
sepal-widthis not greater than approximately 2.631
-or

petal-lengthis greater than approximately 2.450-or
petal-widthis greater than approximately 2.195,
then

To classify a given instance, it is matched against the three
rule premises. Each rule is fired to a certain degree. The
overall output is the sum of theses degrees multiplied by the
rule weight namely

The class the instance is assigned to is chosen as that with the
closest numerical value to.

The somewhat out of range values of rules and is
indicative of a small influence in the network classification
task. To check this extreme we observed the performance
of the FAS using only rule . It was very close to that
obtained using the three rules. To get a definitive confirmation
we proceed to train a multilayered feedforward net with four,
one, and one neurons. And indeed, the new net with a single
hidden neuron managed to learn all the knowledge by reaching
the same performance as the previous bigger network. The rule
extracted from this last net was

If sepal-lengthis not greater than approximately 5.447
-or

sepal-widthis not greater than approximately 4.118
-or

petal-lengthis greater than approximately 3.567-or
petal-widthis greater than approximately 2.61,
then

B. Artificial Neural Networks with Biases

The interpretation of ANN’s without biases offered in the
preceding section can be extended to explain ANN’s whose
hidden neurons have biases. The interpretation is again built
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Fig. 9. Membership function for “approximately greater than 6.2.”

by using the -or operator. Some minor changes have to be
considered when decomposing rules of type (1) into rules of
type (3). Indeed, these changes only affect the definition of the

fuzzy sets, the rules themselves keep their form (3).
First, it is easy to check that

where . In this equality, the first term corresponds
to the fuzzy proposition “ is .” Likewise,

corresponds to proposition “ is .”
The latter expression can also be written as “ is ,”
which, following the interpretation for , can be understood
as “ is greater than approximately .” Hence the
bias term means a sheer translation. Consider the membership
function for the fuzzy set, plotted in Fig. 9, and compare
it with Fig. 4. The former plot is the same than the latter
shifted four units to the left. This gives a clear idea of what
is the purpose of using biases in neural networks. They are
not to be considered as another weight. They have a special
role allowing the neuron to translate the area of influence to
its activation state.

Now, the fuzzy sets has to be redefined for them to
account for both the weight, , and the bias, . Their
membership function is defined by

VII. A M ETHOD FOR KNOWLEDGE ACQUISITION

The interpretation of ANN’s we have proposed translates
knowledge from a cryptic representation (network) into a
human-friendly representation (rules). The powerful advan-
tages of neural nets as their capacity to learn and generalize
may be exploited to extract knowledge from a set of examples.
Now this knowledge may be expressed in terms of fuzzy
rules, which have the advantage of permitting an explanation
for the answer an FRBS gives. So this is a knowledge
acquisition method which captures knowledge from a great
deal of samples and converts it into rules.

The proof for Theorem 1 also provides an automated
procedure for knowledge elicitation. More specifically, it is a
method to extract rules from a network. Many papers dealing
with the subject can be found [2]–[4]. However, what is
new is the logic connective. The-or representation power

is more condensed than classical “and” and “or” connectives.
Moreover, it allows representing information which may not
be expressed with neither “and” nor “or.”

Therefore, in comparison with other methods, ours yields
more complex rules but their number is usually smaller. On
the other hand, once you have trained the network, the method
is very fast. Since the rule building is straightforward, its
computational efficiency is as low as a linear function on the
number of hidden neurons.

However, the method can be improved. Rules are simplified
if their premises are smaller, with less variables. This can be
accomplished by using a feature selection procedure, which
detects what inputs are relevant for each output. We have
proposed in [2] an extension to handle fuzzy information of
the methodology described in [21].

Now, the complete procedure for knowledge acquisition
would be as follows.

1) Apply the feature selection procedure and pick relevant
inputs for each output.

2) For each output:

a) A neural network with only influential inputs, an
appropriate number of hidden units, and one single
output is trained. The training set is derived by
projection from the original set.

b) Extract rules from the network according to the
method presented in the paper. (Proof for Theo-
rem 1 and decomposition of rules as explained in
Section VI.)

VIII. C ONCLUSIONS AND FINAL REMARKS

We have worked on the problem of interpretation of the
most widely known and used model of ANN, the multilayered
perceptron. Our research took into account another well-known
model, the FRBS, which shares with nets the property of being
universal approximators. A connection has been established
between both models. An equivalence relation had previously
been proven by other authors, while we have shown a stronger
relation, equality. This is obtained after a trivial transformation
from a network to a set of fuzzy rules of a particular type.

In the quest for a reformulation of rules that makes them
more human-friendly, we have defined the concept of-
duality. This concept permits us to obtain an operation in a set
induced by an operation in another set by a bijective map. By
applying -duality to the ANN logistic activation function, we
found a fuzzy logic operator, which we have called interactive-
or. This operator enables us to reformulate fuzzy rules into a
more comprehensible form, which can be easily understood.
Then the networks may be seen as FBRS’s. This way, we can
explain clearly the knowledge a net acquires after the learning
process. This constitutes an interpretation of ANN’s, so they
can no longer be considered as black boxes.

Furthermore, the equality result proof yields a method for
knowledge acquisition. Compared to other methods based on
neural networks, this is one of the most efficient, since the
building of the rules is straightforward and its efficiency order
is linear. The quality and complexity of rules generated could
be improved by including a feature selection procedure.
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The concept of -duality is general and could be used to
produce other operators than-or, which could have interesting
applications. This is a promising line of research which will
be the object of future works.

In addition, the same approach described here could be
applied to other models of neural nets, and so produce an
interpretation of those ANN’s.

APPENDIX

PROOF OF RESULTS

A. Proposition 1

Proof: Let . Then we define as follows:

Since is a bijective function, for each there is only
one point in , say , such that . The same holds
for and a certain point , . As is an
operation in then is unique and so is .
Hence, the definition of is all correct.

The uniqueness of the operation is very easy to check. Let
be another operation on such that

Then we have

(9)

This concludes the proposition. However, due to its con-
struction, this operation verifies the very same properties
as does. This implies that copies the structure of onto

and becomes an isomorphism.

B. Lemma 1

Proof: It is trivial.

C. Lemma 2

Proof: Let . Let such that
, . The logistic function is defined as

Hence

(10)

By definition of -dual of + (4)

(11)

From (10) and (11) we have

which leads to

D. Lemma 3

Proof: The pair is an abelian group. Hence, by
Proposition 1, is an abelian group too, and
becomes an isomorphism between both groups. This makes
trivial Lemma 3 and its corollary.

The neuter element for is , namely, 1/2.
The inverse element of is . We can check

this by noting that (see Lemma 6).

E. Lemma 4

Proof: Trivial by associativity of .

F. Lemma 5

Proof:

1) When then and
. Thus, .

2) When then
and hence, .

3) First, we prove the assertion for . Let us consider
with fixed values. The expression for

reduces to

with and being positive constants. Let
with . Then we have and
which implies

This leads to

namely .
Next, by considering commutativity we obtain the

result.
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G. Lemma 6

Proof:
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J. M. Beńıtez received the M.S. degree in computer
science from the University of Granada, Spain, in
1994. He is currently working toward the Ph.D.
degree with a doctoral dissertation on obtaining
fuzzy rules using neural networks.

He is a Professor in the Department of Computer
Science and Artificial Intelligence (DECSAI) of
the University of Granada. His research interests
include neural networks, fuzzy rule-based systems,
artificial intelligence, and software engineering.

Mr. Benı́tez was awarded the 1994 First National
Prize for Computer Science university students.

J. L. Castro received the M.S. degree in 1988
and the Ph.D. degree in 1991, both in mathematics,
from the University of Granada, Spain. His doctoral
dissertation was on logical models for artificial
intelligence.

He is currently a Research Professor in the De-
partment of Computer Science and Artificial Intelli-
gence (DECSAI) at the University of Granada and is
a member of the Group of Approximate Reasoning
in this department. He has published more than
30 papers and is the author of three books on

computer science. His research interests include fuzzy logic, nonclassical
logics, approximate reasoning, knowledge-based systems, neural networks,
and related applications.

Dr. Castro serves as a reviewer for some international journals and
conferences.

I. Requena received the M.S. degree in 1974 and
the Ph.D. degree in 1992, both in mathematics,
from the University of Granada, Spain. His doctoral
dissertation was in neural networks for decision
problems with fuzzy information.

He was a Secondary School Teacher in Spain
from 1975 to 1989. He is currently a Research
Professor in the Department of Computer Science
and Artificial Intelligence (DECSAI) in the Uni-
versity of Granada and is a member of the group
of Approximate Reasoning in this Department. He

has published more than 15 technical papers and has coauthored two books
on computer science and another on mathematics for secondary school. His
research interests include neural networks, fuzzy rules extraction, knowledge-
based systems, and related applications, principally in the economic area.

Dr. Requena serves as a reviewer for some international journals and
conferences.


