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Abstract

In the field of classification problems, we often encounter classes with a very different percentage of patterns between them,
classes with a high pattern percentage and classes with a low pattern percentage. These problems receive the name of “classification
problems with imbalanced data-sets”. In this paper we study the behaviour of fuzzy rule based classification systems in the framework
of imbalanced data-sets, focusing on the synergy with the preprocessing mechanisms of instances and the configuration of fuzzy rule
based classification systems. We will analyse the necessity of applying a preprocessing step to deal with the problem of imbalanced
data-sets. Regarding the components of the fuzzy rule base classification system, we are interested in the granularity of the fuzzy
partitions, the use of distinct conjunction operators, the application of some approaches to compute the rule weights and the use of
different fuzzy reasoning methods.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Recently the imbalanced data-set problem has demanded more attention in the field of machine learning research
[5]. This problem occurs when the number of instances of one class is much lower than the instances of the other
classes. This problem is extremely important since it appears in many real application areas. Some applications in this
field are the detection of oil spills from satellite images [28], identification of power distribution fault causes [47] and
prediction of pre-term births [17].

Most classifiers generally perform poorly on imbalanced data-sets because they are designed to minimize the
global error rate [27], and in this manner they tend to classify almost all instances as negative (i.e., the majority
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class). Here resides the main problem for imbalanced data-sets, because the minority class may be the most important
one, since it can define the concept of interest, while the other class(es) represent(s) the counterpart of that
concept.

In this paper we study the performance of Fuzzy Rule Based Classification Systems (FRBCSs) [23] in the field of
imbalanced data-sets. We are interested in two main aspects:

• The preprocessing approaches that can be used for balancing the data and its cooperation with FRBCSs.
• The components and configuration of FRBCSs that perform better in the framework of imbalanced data-sets.

Studying the specialized literature, there are few works that study the use of fuzzy classifiers for the imbalanced
data-set problem. Some of these apply approximate fuzzy systems without linguistic rules [37–39], while others present
three different learning proposals: one using fuzzy decision tree classifiers [10], the other based on the extraction of
fuzzy rules using fuzzy graphs and genetic algorithms [35], and the last based on an enumeration algorithm, called the
E-Algorithm [47].

None of the enumerated approaches employ a preprocessing step in order to balance the training data before the
learning phase, and only the E-Algorithm uses a linguistic approach. This paper proposes a novel study of linguistic
FRBCSs in the field of imbalanced data-sets.

We want to analyse the synergy of the linguistic FRBCSs with some preprocessing methods because these are very
useful when dealing with the imbalanced data-set problem [2]. Specifically, we will perform an experimental study
using different approaches including under-sampling, over-sampling and hybrid methods.

Regarding the components of the FRBCS we will study the effect of the granularity in the fuzzy partitions and we
will locate the best-performing configurations of conjunction operators, rule weights and fuzzy reasoning methods
(FRMs). We will use triangular membership functions for the fuzzy partitions. We will compare the minimum vs.
product T-norm for the conjunction operator, the winning rule mechanism vs. a voting procedure based on additive
combination for the FRM and for the rule weight systems we will analyse the certainty factor (CF) [7], the penalized
certainty factor (P-CF) [26] and the Mansoori rule weight system [30].

To do this we will use a simple rule base (RB) obtained using the Chi et al.’s method [6] that extends the well-known
Wang and Mendel’s method [40] to classification problems.

We have considered 33 data-sets from the UCI repository with different imbalance ratios (IRs). Data-sets with more
than two classes have been modified by taking one against the others or by contrasting one class with another. To
evaluate our results we have applied the geometric mean metric [1] which aims to maximize the accuracy of both
classes. We have also made use of some non-parametric tests [11] for statistical comparisons of the results of our
classifiers.

Finally, we will analyse the behaviour of the best combination of components under different IR levels, comparing
our results with the C4.5 decision tree which performs well with this kind of problem [2]. We will also include in this
analysis a linguistic FRBCS generated by a common approach [24–26], and a new one, the E-Algorithm [47], which
is an extension of the previous method to generate an RB adapted to imbalanced data-sets.

The rest of this paper is organized as follows: in Section 2 we introduce the imbalanced data-set problem, discussing
the evaluation metric used in this work and introducing some preprocessing techniques for imbalanced data-sets. In
Section 3 we present the FRBCS, first explaining the type of fuzzy rules used and the different FRMs and rule weighting
approaches, next presenting the different fuzzy rule learning algorithms used in this work. In Section 4 we show the
experimental study carried out on the behaviour of FRBCSs in imbalanced data-sets. In Section 5 we compare the
performance of FRBCSs and the E-Algorithm with C4.5 in order to validate our results in different imbalance degrees.
Section 6 contains the lessons learned in this work and future proposals on the topic. Finally, in Section 7 we indicate
some conclusions about the study done. Additionally we include an appendix with the description of the non-parametric
tests used in our study.

2. Imbalanced data-sets

In this Section we will first introduce the imbalanced data-set problem. Then we will present the evaluation metric
for this kind of classification problem. Finally, we will show some preprocessing techniques that are commonly applied
to the problem of imbalanced data-sets.



2380 A. Fernández et al. / Fuzzy Sets and Systems 159 (2008) 2378–2398

Table 1
Confusion matrix for a two-class problem

Positive prediction Negative prediction

Positive class True positive (TP) False negative (FN)
Negative class False positive (FP) True negative (TN)

2.1. The problem of imbalanced data-sets

The imbalanced data-set problem in classification domains occurs when the number of instances which represents
one class is much smaller than that of the other classes. Some authors have named this problem “data-sets with rare
classes” [41].

This phenomenon is growing in importance since it appears in most of the real domains of classification such as
fraud detection [14], text-classification [49] or medical diagnosis [3].

As we have mentioned, the classical machine learning algorithms might be biased towards the majority class and
thus poorly predict the minority class examples.

To solve the problem of imbalanced data-sets there are two main types of solutions:

(1) Solutions at the data level [2,4,18]: This kind of solution consists of balancing the class distribution by over-
sampling the minority class (positive instances) or under-sampling the majority class (negative instances).

(2) Solutions at the algorithmic level: In this case we may adjust our method by modifying the cost per class [32],
adjusting the probability estimation in the leaves of a decision tree (establishing a bias towards the positive class)
[43], or learning from just one class [33] (“recognition based learning”) instead of learning from two classes
(“discrimination based learning”).

We focus on the two-class imbalanced data-sets, where there is only one positive and one negative class. We consider
the positive class as the one with the lowest number of examples and the negative class the one with the highest
number of examples. In order to deal with the class imbalance problem we analyse the cooperation of some instance
preprocessing methods.

Some authors disregard the class distribution in imbalanced data-sets. In this work we use the IR [31], defined as the
ratio of the number of instances of the majority class and the minority class, to classify the different data-sets according
to their IR.

2.2. Evaluation in imbalanced domains

The most straightforward way to evaluate the performance of classifiers is the analysis based on the confusion matrix.
Table 1 illustrates a confusion matrix for a two-class problem. From this table it is possible to extract a number of
widely used metrics for measuring the performance of learning systems, such as error rate (1) and accuracy (2).

Err = FP + FN

TP + FN + FP + TN
, (1)

Acc = TP + TN

TP + FN + FP + TN
= 1 − Err. (2)

In [42] it is shown that the error rate of classification rules generated for the minority class is 2 or 3 times greater than
the rules identifying the examples of the majority class. Moreover, it is less probable that the minority class examples
will be predicted than the majority ones. Therefore, in the ambit of imbalanced problems some metrics more accurate
than the error rate are considered. Specifically, from Table 1 four performance metrics can be derived that directly
measure the classification performance of positive and negative classes independently:

• True positive rate TPrate: TP/(TP + FN) is the percentage of positive cases correctly classified as belonging to the
positive class.

• True negative rate TN rate: TN/(FP + TN) is the percentage of negative cases correctly classified as belonging to the
negative class.
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• False positive rate FPrate: FP/(FP + TN) is the percentage of negative cases misclassified as belonging to the
positive class.

• False negative rate FN rate : FN/(TP + FN) is the percentage of positive cases misclassified as belonging to the
negative class.

These four performance measures have the advantage of being independent of class costs and prior probabilities.
The aim of a classifier is to minimize the false positive and negative rates or, similarly, to maximize the true negative
and positive rates.

The metric used in this work is the geometric mean of the true rates [1], which can be defined as

GM = √
acc+ · acc−, (3)

where acc+ means the accuracy in the positive examples (TPrate) and acc− is the accuracy in the negative examples
(TN rate). This metric attempts to maximize the accuracy of each one of the two classes with a good balance.

2.3. Preprocessing imbalanced data-sets

In the specialized literature, we can find some papers for re-sampling techniques from the study point of view of the
effect of the class distribution in classification [43,13] and adaptations of prototype selection methods [46] to deal with
imbalanced data-sets. It has been proved that applying a preprocessing step in order to balance the class distribution is
a positive solution to the problem of imbalanced data-sets [2]. Furthermore, the main advantage of these techniques is
that they are independent of the classifier used.

In this work we evaluate different instance selection methods together with over-sampling and hybrid techniques to
adjust the class distribution in the training data. Specifically we have chosen the methods which have been studied in
[2]. These methods are classified into three groups:

• Under-sampling methods that create a subset of the original data-set by eliminating some of the examples of the
majority class.

• Over-sampling methods that create a superset of the original data-set by replicating some of the examples of the
minority class or creating new ones from the original minority class instances.

• Hybrid methods that combine the two previous methods, eliminating some of the minority class examples expanded
by the over-sampling method in order to eliminate overfitting.

2.3.1. Undersampling methods

• “Condensed nearest neighbour rule” (CNN) [19] is used to find a consistent subset of examples. A subset Ê ⊆ E is
consistent with E if using a one nearest neighbour, Ê correctly classifies the examples in E. An algorithm to create a
subset Ê from E as an under-sampling method is the following [14]: First, randomly draw one majority class example
and all examples from the minority class and put these examples in Ê. Afterwards, use a 1-NN over the examples in
Ê to classify the examples in E. Every misclassified example from E is moved to Ê. It is important to note that this
procedure does not find the smallest consistent subset from E. The idea behind this implementation of a consistent
subset is to eliminate the examples from the majority class that are distant from the decision border, since these sorts
of examples might be considered less relevant for learning.

• “Tomek links” [36] can be defined as follows: given two examples ei and ej belonging to different classes, and
d(ei, ej ) is the distance between ei and ej . A (ei, ej ) pair is called a Tomek link if there is not an example El ,
such that d(ei, el) < d(ei, ej ) or d(ej , el) < d(ei, ej ). If two examples form a Tomek link, then either one of these
examples is noise or both examples are borderline. Tomek links can be used as an under-sampling method or as a
data cleaning method. As an under-sampling method, only examples belonging to the majority class are eliminated,
and as a data cleaning method, examples of both classes are removed.

• “One-sided selection” (OSS) [29] is an under-sampling method resulting from the application of Tomek links followed
by the application of CNN. Tomek links are used as an under-sampling method and remove noisy and borderline
majority class examples. Borderline examples can be considered “unsafe” since a small amount of noise can make
them fall on the wrong side of the decision border. CNN aims to remove examples from the majority class that are
distant from the decision border. The remainder examples, i.e., “safe” majority class examples and all minority class
examples are used for learning.
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• “CNN + Tomek links”: It is similar to the OSS, but the method to find the consistent subset is applied before the
Tomek links.

• “Neighbourhood cleaning rule” (NCL) uses the Wilson’s edited nearest neighbour rule (ENN) [45] to remove
majority class examples. ENN removes any example whose class label differs from the class of at least two of its
three nearest neighbours. NCL modifies the ENN in order to increase the data cleaning. For a two-class problem the
algorithm can be described in the following way: for each example ei in the training set, its three nearest neighbours
are found. If ei belongs to the majority class and the classification given by its three nearest neighbours contradicts the
original class of ei , then ei is removed. If ei belongs to the minority class and its three nearest neighbours misclassify
ei , then the nearest neighbours that belong to the majority class are removed.

• Random under-sampling is a non-heuristic method that aims to balance class distribution through the random
elimination of majority class examples. The major drawback of “random under-sampling” is that this method can
discard potentially useful data that could be important for the induction process.

2.3.2. Over-sampling methods

• Random over-sampling: It is a non-heuristic method that aims to balance class distribution through the random
replication of minority class examples. Several authors agree that “random over-sampling” can increase the likelihood
of occurring overfitting, since it makes exact copies of the minority class examples.

• “Synthetic minority over-sampling technique” (SMOTE) [4] is an over-sampling method. Its main idea is to form
new minority class examples by interpolating between several minority class examples that lie together. Thus, the
overfitting problem is avoided and causes the decision boundaries for the minority class to spread further into the
majority class space.

2.3.3. Hybrid methods: over-sampling + under-sampling

• “SMOTE + Tomek links”: Frequently, class clusters are not well defined since some majority class examples might
be invading the minority class space. The opposite can also be true, since interpolating minority class examples
can expand the minority class clusters, introducing artificial minority class examples too deeply in the majority
class space. Inducing a classifier under such a situation can lead to overfitting. In order to create better-defined
class clusters, we propose applying Tomek links to the over-sampled training set as a data cleaning method. Thus,
instead of removing only the majority class examples that form Tomek links, examples from both classes are
removed.

• “SMOTE + ENN”: The motivation behind this method is similar to SMOTE + Tomek links. ENN tends to remove
more examples than the Tomek links does, so it is expected that it will provide a more in depth data cleaning.
Differently from NCL which is an under-sampling method, ENN is used to remove examples from both classes.
Thus, any example that is misclassified by its three nearest neighbours is removed from the training set.

3. Fuzzy rule based classification systems

Any classification problem consists of m training patterns xp = (xp1, . . . , xpn), p = 1, 2, . . . , m from M classes
where xpi is the ith attribute value (i = 1, 2, . . . , n) of the pth training pattern.

In this work we use fuzzy rules of the following form for our FRBCSs:

Rule Rj : If x1 is Aj1 and . . . and xn is Ajn then Class = Cj with RW j , (4)

where Rj is the label of the jth rule, x = (x1, . . . , xn) is an n-dimensional pattern vector, Aji is an antecedent fuzzy
set, Cj is a class label, and RW j is the rule weight. We use triangular membership functions as antecedent fuzzy sets.

In the following subsections we will introduce the general model of fuzzy reasoning, explaining the different alterna-
tives we have used in the conjunction operator (matching computation) and the FRMs employed, including classification
via the winning rule and via a voting procedure. Then we will explain the use of rule weights for fuzzy rules and the
different types of weights analysed in this work. Next we present the fuzzy rule learning methods used to build the RB:
Chi et al.’s method, Ishibuchi et al.’s approach and the E-Algorithm, an ad hoc approach for FRBCSs in the field of
imbalanced data-sets.
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3.1. Fuzzy reasoning model and rule weights

Considering a new pattern xp = (xp1, . . . , xpn) and an RB composed of L fuzzy rules, the steps of the reasoning
model are the following [7]:

(1) Matching degree: To calculate the strength of activation of the if-part for all rules in the RB with the pattern xp,
using a conjunction operator (usually a T-norm).

�Aj
(xp) = T (�Aj1

(xp1), . . . , �Ajn
(xpn)), j = 1, . . . , L. (5)

In this work, in order to compute the matching degree of the antecedent of the rule with the example we will
use both minimum and product T-norms.

(2) Association degree: To compute the association degree of the pattern xp with the M classes according to each rule
in the RB. When using rules with the form of (4) this association degree only refers to the consequent class of the
rule (i.e., k = Cj ).

bk
j = h(�Aj

(xp), RWk
j ), k = 1, . . . , M, j = 1, . . . , L. (6)

We model function h as the product T-norm in all cases.
(3) Pattern classification soundness degree for all classes: We use an aggregation function that combines the positive

degrees of association calculated in the previous step.

Yk = f (bk
j , j = 1, . . . , L and bk

j > 0), k = 1, . . . , M. (7)

We study the performance of two FRMs for classifying new patterns with the rule set: the winning rule method
(classical approach) and the additive combination method (voting approach). Their expressions are shown below:

(a) Winning rule: Every new pattern is classified as the consequent class of a single winner rule which is
determined as:

Yk = max{bk
j , j = 1, . . . , L and k = Cj )}. (8)

(b) Additive combination: Each fuzzy rule casts a vote for its consequent class. The total strength of the vote for
each class is computed as follows:

Yk =
L∑

j=1;Cj =k

bk
j . (9)

(4) Classification: We apply a decision function F over the soundness degree of the system for the pattern classification
for all classes. This function will determine the class label l corresponding to the maximum value.

F(Y1, . . . , YM) = l such that Yl = {max(Yk), k = 1, . . . , M}. (10)

There are also several methods for determining the rule weight for fuzzy rules [26]. In the specialized literature rule
weights have been used in order to improve the performance of FRBCSs [22], where the most common definition is
the CF [7], named in some papers as “confidence” [26,47]:

CFj =
∑

xp∈ClassCj
�Aj

(xp)∑m
p=1 �Aj

(xp)
. (11)

In [26] another heuristic method for rule weight specification is proposed, called the P-CF:

P -CFj = CFj −
∑

xp /∈ClassCj
�Aj

(xp)∑m
p=1 �Aj

(xp)
. (12)

In addition, in [30], Mansoori et al., using weighting functions, modify the compatibility degree of patterns in order
to improve classification accuracy. Their approach specifies a positive pattern (i.e., pattern with the true class) from the
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covering subspace of each fuzzy rule as a splitting pattern and uses its compatibility grade as a threshold. This pattern
divides the covering subspace of each rule into two distinct subdivisions. All patterns having compatibility grade above
this threshold are positive, so any incoming pattern for this subdivision should be classified as positive.

In order to specify the splitting pattern, we need to rank (in descending order) the training patterns in the covering
subspace of the rule based on their compatibility grade. The last positive pattern before the first negative one is selected
as the splitting pattern and its grade of compatibility is used as the threshold.

When using rule weights, the weighting function for Rj that modifies the degree of association of the pattern xp

with the consequent class of the rule before determining the single winner rule is computed as

M-CF =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�Aj
(xp) · RW j if �Aj

(xp) < nj ,(
pj − nj · RW j

mj − nj

)
· �Aj

(xp) −
(

pj − mj · RW j

mj − nj

)
· nj if nj ��Aj

(xp) < mj ,

RW j · �Aj
(xp) − RW j · mj + pj if �Aj

(xp)�mj ,

(13)

where RW j is the initial rule weight, which in a first approach may take the value 1 (no rule weight). The authors use
a rule weight that, in a two class problem, has the same definition as P-CF. We will compare both methodologies in
order to select the most appropriate one for this work.

Furthermore, in (13) the parameters nj , mj , pj are obtained as

nj = tj

√
2

1 + RW2
j

, (14)

mj = {tj · (RW j + 1) − (RW j − 1)}/
√

2RW2
j + 2, (15)

pj = {tj · (RW j − 1) − (RW j + 1)}/
√

2RW2
j + 2, (16)

where tj is the compatibility grade threshold for Rule Rj . For more details of this proposal please refer to [30].

3.2. Fuzzy rule learning model

In this paper we employ two well-known approaches in order the generate the RB for the FRBCS and a novel model
for imbalanced data-sets. The first approach is the method proposed in [6] that extends Wang and Mendel’s method [40]
to classification problems. The second approach is commonly used by Ishibuchi in his work [24–26], and it generates
all the possible rules in the search space of the problem. The third model is the E-Algorithm [47], which is based on
the scheme used in Ishibuchi et al. approach. In the following we will describe those procedures.

3.2.1. Chi et al. approach
To generate the fuzzy RB this FRBCS design method determines the relationship between the variables of the

problem and establishes an association between the space of the features and the space of the classes by means of the
following steps:

(1) Establishment of the linguistic partitions: Once the domain of variation of each feature Ai is determined, the fuzzy
partitions are computed.

(2) Generation of a fuzzy rule for each example xp = (xp1, . . . , xpn, Cp): To do this is necessary:

(2.1) To compute the matching degree �(xp) of the example to the different fuzzy regions using a conjunction
operator (usually modeled with a minimum or product T-norm).

(2.2) To assign the example xp to the fuzzy region with the greatest membership degree.
(2.3) To generate a rule for the example, whose antecedent is determined by the selected fuzzy region and whose

consequent is the label of class of the example.
(2.4) To compute the rule weight.
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Fig. 1. Four fuzzy partitions for each attribute membership function.

3.2.2. Ishibuchi et al. approach
This method simultaneously uses four fuzzy set partitions for each attribute, as shown in Fig. 1. As a result, each

antecedent attribute is initially associated with 14 fuzzy sets generated by these four partitions as well as a special “do
not care” set (i.e., 15 in total).

The algorithm first enumerates all the possible combinations of antecedent fuzzy sets and then assigns each com-
bination a consequent part to generate a rule. In order to reduce computational demand, only the rules with three or
less antecedent attributes are generated in this approach [26]. The consequent is assigned as the class that obtains the
maximum confidence value, previously defined as (11), given the antecedent fuzzy sets combination. This algorithm
further assigns each rule a weight computed as P-CF (12).

The fuzzy rules generated were divided into M groups according to their consequent classes. Fuzzy rules in each
group were sorted in descending order using a rule selection criterion, specifically the product of confidence (11) and
support (17). The FRBCS is built by choosing the first N fuzzy rules from each group (in this paper, N = 30).

Supj =
∑

xp∈ClassCj
�Aj

(xp)

m
. (17)

3.2.3. E-Algorithm
This approach was proposed by Xu et al. in [47]. It is an extension of Ishibuchi et al. rule generation method (described

in the previous section), adapted for imbalanced data-sets.
The main idea of this algorithm is to normalize the computation of support (17) and confidence (11) measures taking

into account the class percentage and obtaining two new expressions (18) and (19):

Norm-Supj =

∑
xp∈ClassCj

�Aj
(xp)

m/mCj

m
, (18)

Norm-Conf j =

∑
xp∈ClassCj

�Aj
(xp)

m/mCj∑m
p=1 �Aj

(xp)
, (19)

where m is the number of training examples and mCj
is the number of training examples corresponding to class Cj .

The computation of the rule weight is normalized in the following way:

Norm-P -CFj = Norm-Confj −

∑
xp /∈ClassCj

�Aj
(xp)

m/mCj∑m
p=1 �Aj

(xp)
. (20)
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As in Ishibuchi et al. approach, using the product of the normalized support and confidence as the measure, a user-
defined number of rules for each class N, is chosen from the initial rule set (also in this case, N = 30). These rules form
the fuzzy classification RB extracted from the data and are responsible for making decisions in classification tasks.

4. Analysis of FRBCS behaviour: cooperation with preprocessing techniques and study of the components

Our study is oriented towards analyzing the synergy between FRBCSs and preprocessing techniques and to compare
and find the best-performing configurations for FRBCSs in the framework of imbalanced data-sets.

In this study we have considered 33 data-sets from UCI with different IR: from low imbalance to highly imbalanced
data-sets. Table 2 summarizes the data employed in this study and shows, for each data-set, the number of examples
(#Ex.), number of attributes (#Atts.), class name of each class (minority and majority), class attribute distribution and
IR. This table is ordered according to the IR, from low to high imbalance.

In order to develop our study we use a five fold cross validation approach, that is, five partitions for training and
test sets, 80% for training and 20% for testing, where the five test data-sets form the whole set. For each data-set we
consider the average results of the five partitions.

Table 2
Data-sets summary descriptions

Data-set #Ex. #Atts. Class (min., maj.) %Class (min., maj.) IR

Data-sets with low imbalance (1.5–3 IR)
Glass2 214 9 (build-window-non_float-proc, remainder) (35.51, 64.49) 1.82
EcoliCP-IM 220 7 (im, cp) (35.00, 65.00) 1.86
Wisconsin 683 9 (malignant, benign) (35.00, 65.00) 1.86
Pima 768 8 (tested-positive, tested-negative) (34.84, 66.16) 1.90
Iris1 150 4 (Iris-Setosa, remainder) (33.33, 66.67) 2.00
Glass1 214 9 (build-window-float-proc, remainder) (32.71, 67.29) 2.06
Yeast2 1484 8 (NUC, remainder) (28.91, 71.09) 2.46
Vehicle2 846 18 (Saab, remainder) (28.37, 71.63) 2.52
Vehicle3 846 18 (bus, remainder) (28.37, 71.63) 2.52
Vehicle4 846 18 (Opel, remainder) (28.37, 71.63) 2.52
Haberman 306 3 (Die, Survive) (27.42, 73.58) 2.68

Data-sets with medium imbalance (3–9 IR)
GlassNW 214 9 (non-window glass, remainder) (23.83, 76.17) 3.19
Vehicle1 846 18 (van, remainder) (23.64, 76.36) 3.23
Ecoli2 336 7 (im, remainder) (22.92, 77.08) 3.36
New-thyroid3 215 5 (hypo, remainder) (16.89, 83.11) 4.92
New-thyroid2 215 5 (hyper, remainder) (16.28, 83.72) 5.14
Ecoli3 336 7 (pp, remainder) (15.48, 84.52) 5.46
Segment1 2308 19 (brickface, remainder) (14.26, 85.74) 6.01
Glass7 214 9 (headlamps, remainder) (13.55, 86.45) 6.38
Yeast4 1484 8 (ME3, remainder) (10.98, 89.02) 8.11
Ecoli4 336 7 (iMU, remainder) (10.88, 89.12) 8.19
Page-blocks 5472 10 (remainder, text) (10.23, 89.77) 8.77

Data-sets with high imbalance (higher than 9 IR)
Vowel0 988 13 (hid, remainder) (9.01, 90.99) 10.10
Glass3 214 9 (Ve-win-float-proc, remainder) (8.78, 91.22) 10.39
Ecoli5 336 7 (om, remainder) (6.74, 93.26) 13.84
Glass5 214 9 (containers, remainder) (6.07, 93.93) 15.47
Abalone9-18 731 8 (18, 9) (5.65, 94.25) 16.68
Glass6 214 9 (tableware, remainder) (4.20, 95.80) 22.81
YeastCYT-POX 482 8 (POX, CYT) (4.15, 95.85) 23.10
Yeast5 1484 8 (ME2, remainder) (3.43, 96.57) 28.41
Yeast6 1484 8 (ME1, remainder) (2.96, 97.04) 32.78
Yeast7 1484 8 (EXC, remainder) (2.49, 97.51) 39.16
Abalone19 4174 8 (19, remainder) (0.77, 99.23) 128.87
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Table 3
Average results for FRBCSs with the different preprocessing mechanisms

Balance method GMTr GMTst

None 75.81 ± 26.23 61.94 ± 28.52
CNNRb 72.27 ± 20.27 61.54 ± 23.09
Tomek links 79.83 ± 24.34 67.00 ± 26.25
OSS 68.70 ± 20.41 59.81 ± 23.18
CNN-Tomek links 57.10 ± 23.64 50.41 ± 22.95
NCL 80.17 ± 23.63 67.70 ± 26.20
Random under-sampling 84.71 ± 11.36 75.16 ± 15.46
Random over-sampling 90.67 ± 9.69 78.36 ± 15.45
SMOTE 90.24 ± 9.96 79.57 ± 14.74
SMOTE-Tomek links 88.76 ± 11.27 79.03 ± 15.08
SMOTE-ENN 88.79 ± 10.77 78.97 ± 15.08

Table 4
Wilcoxon’s test for the preprocessing mechanisms

Comparison R+ R− Hypothesis for � = 0.1

SMOTE vs. None 545.5 15.5 Rejected for SMOTE

Statistical analysis needs to be performed in order to find significant differences among the results obtained by the
methods studied. We consider the use of non-parametric tests, according to the recommendations made in [11], where
a set of simple, safe and robust non-parametric tests for statistical comparisons of classifiers is presented. For pair wise
comparison we will use Wilcoxon’s signed-ranks test [44,34], and for multiple comparison we will employ different
approaches, including Friedman’s test [15,16], Iman and Davenport’s test [21] and Holm’s method [20]. In all cases
we will use 0.10 as level of confidence (�). A wider description of these tests is presented in the Appendix.

This study is divided into four parts: first we will analyse the use of preprocessing for imbalanced problems using
the mechanisms shown in Section 2.3. Then we will select a representative preprocessing method to study the influence
of the granularity applied to the linguistic partitions. Next we will study the Mansoori rule weight system approaches.
Finally, with a fixed number of labels per variable, we will analyse the effect of the different possibilities for conjunction
operators, rule weights and FRMs introduced in Section 3.1.

4.1. Preprocessing approach

The first objective in this study is to determine the synergy between preprocessing mechanisms and FRBCSs.
After a previous study we have selected as a good FRBCS model the use of the product T-norm as conjunction

operator, together with the P-CF approach for the rule weight and FRM of the winning rule. We will study this model
carefully in the last part of this section, but it will help us to analyse the preprocessing mechanisms of instances.

In Table 3 we present the average results for the different preprocessing approaches with the 33 selected imbalanced
data-sets where the name “None” indicates that we do not apply a preprocessing method (we use the original training
data-set). The test best result is stressed in boldface.

Our results clearly show that in almost all cases preprocessing is necessary in order to improve the behaviour of
FRBCSs. Specifically we can see that the over-sampling and hybrid methods achieve better performance in practice.
We have found a type of mechanism, the SMOTE preprocessing family, that is very good as a preprocessing technique,
in both the basic and hybrid approaches.

In Table 4 we show Wilcoxon’s test in order to compare the results using the SMOTE preprocessing mechanism with
the results using the original data-sets, where R+ is the sum of the ranks corresponding to the SMOTE approach and
R− is the sum of the ranks corresponding to “no preprocessing” (original data-sets). The critical value associated with
Nds = 33 and p = 0.1, which can be found in the T Wilcoxon distribution (see [48, Table B.12]), is equal to 187.

It is statistically proved that the performance of the FRBCS is increased when using SMOTE rather than the original
data-set, because the null hypothesis associated to Wilcoxon’s signed-ranks test is rejected when comparing both
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Table 5
Average results for FRBCSs varying the number of fuzzy labels

Number of labels GMTr GMTst

5 90.24 ± 9.96 79.57 ± 14.74
7 93.26 ± 7.64 73.54 ± 17.55

SMOTE method is used as preprocessing mechanism.

Table 6
Wilcoxon’s test for the granularity of the fuzzy partitions

Comparison R+ R− Hypothesis for � = 0.1

5 Labels vs. 7 labels 505 56 Rejected for 5 labels

average results, due to the fact that the minimum ranking T (R− in this case) is lower than the critical value defined
above.

For the remainder of our experiments we will use the SMOTE preprocessing mechanism as representative of the
over-sampling methods.

4.2. Analysis of the granularity of the fuzzy partitions

We focus now on the granularity of the fuzzy labels, determining the behaviour of the FRBCS when modifying
the number of fuzzy subspaces per variable. Specifically, we will analyse the performance when using 5 and 7 labels
respectively, as these are the two granularity levels most commonly employed in the specialized literature.

As in the preprocessing study, we will use the same pre-selected configuration of FRBCS, with product T-norm for
the conjunction operator, P-CF for the rule weight and the winning rule as FRM.

In Table 5 we show the average results for the 33 data-sets, using SMOTE as the preprocessing mechanism in both
the five and seven fuzzy partitions per variable.

In Table 5 it is empirically shown that a high number of labels produces over-fitting, that is, the test results are
significantly worse than the training ones when we use 7 labels per variable.

Wilcoxon’s signed-ranks test, shown in Table 6, where R+ is the sum of the ranks corresponding to the FRBCS
results with 5 labels and R− is the sum of the ranks corresponding to the FRBCS results with 7 labels, confirms our
conclusion because clearly the critical value (187 for Nds = 33 and � = 0.1) is higher than the minimum ranking T
(R− in this case).

For this reason, we will only employ 5 labels per variable in the remainder of this section.

4.3. Analysis of the Mansoori rule weight system approaches

In this section we will compare the two approaches of the Mansoori rule weight system [30] presented in Section 3.1,
with RW = 1 and with RW = P-CF. In the case of the conjunction operator and the FRM, we will use the product
T-norm and the winning rule, respectively, because it is the original configuration that the authors use in [30].

We will employ the SMOTE preprocessing method, as suggested by the results of Section 4.1, and 5 labels per
variable in the fuzzy partitions, because it has been shown in Section 4.2 that this achieves a better performance. In
Table 7 we show the average results for the 33 data-sets in each case.

In Table 7 it is shown that the performance achieved with the basic mansoori rule weight system (RW = 1) is much
worse than when using this approach with the P-CF, both in training and test partitions.

Wilcoxon’s signed-ranks test, shown in Table 8, where R+ is the sum of the ranks corresponding to the results for
the Mansoori rule weight system with RW = 1 and R− is the sum of the ranks corresponding to the results for the
Mansoori rule weight system with RW = P-CF, confirms our conclusion because the critical value (187 for Nds = 33
and � = 0.1) is higher than the minimum ranking T (R− in this case).

In accordance with these results, we will employ “RW = P-CF” for the Mansoori rule weight system.
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Table 7
Average results for FRBCSs using the Mansoori rule weight system

Rule weight GMTr GMTst

None (RW = 1) 79.02 ± 18.14 63.74 ± 22.48
P-CF 90.58 ± 10.83 78.08 ± 17.00

SMOTE method is used as preprocessing mechanism.

Table 8
Wilcoxon’s test for the Mansoori rule weight system comparison

Comparison R+ R− Hypothesis for � = 0.1

“RW = 1” vs. “P-CF” 18 543 Rejected for P-CF

Table 9
Comparison of the average results for FRBCSs with different T-norms, rule weights and FRMs

Weight Conjunction operator Winning rule GMTr Winning rule GMTst Additive comb. GMTr Additive comb. GMTst

CF Minimum 89.46 ± 10.34 77.90 ± 15.49 88.20 ± 10.76 76.62 ± 17.87
CF Product 90.83 ± 9.68 78.90 ± 14.87 90.77 ± 9.75 78.32 ± 17.00
P-CF Minimum 90.02 ± 9.76 78.71 ± 15.15 89.22 ± 9.63 77.82 ± 15.37
P-CF Product 90.24 ± 9.96 79.57 ± 14.74 90.80 ± 9.72 78.96 ± 15.75
M-CF Minimum 88.75 ± 10.99 76.63 ± 17.57 83.91 ± 15.40 73.59 ± 17.46
M-CF Product 90.58 ± 10.83 78.08 ± 17.00 85.03 ± 16.29 72.75 ± 18.98

Total – 89.98 ± 10.16 78.30 ± 15.67 87.99 ± 12.39 76.34 ± 17.06

SMOTE method is used as preprocessing mechanism.

4.4. Conjunction operators, FRM and rule weights

We will now study the effect of the conjunction operators (minimum and product T-norms) rule weights and FRMs,
fixing SMOTE as the preprocessing mechanism and the number of fuzzy subspaces as 5 labels per variable.

Table 9 shows the experimental results obtained with the different configurations for FRBCSs, and is divided into
two parts using as FRM the winning rule and additive combination, respectively. The following information is shown
by columns:

• The first column “Weight” is the rule weight used in the FRBCS. Following the same notation as in Section 3.1
CF stands for the certainty factor, P-CF stands for the penalized certainty factor and M-CF stands for the Mansoori
weighting system.

• Inside the column “Conjunction operator” we note whether the results correspond to the minimum or product T-norm.
• Finally, in the last four columns the average results for the geometric mean of the true rates in training (GMTr) and

test (GMTst) are shown for each FRM approach. We focus our analysis on the generalization capacity via the test
partition. In this manner, the best test result is stressed in boldface.

In order to compare the results, we will use a multiple comparison test to find the best configuration in each case,
that is, for the FRM of the winning rule and additive combination separately. In Table 10, the results of applying the
Friedman and Iman–Davenport tests are shown in order to see if there are differences in the results. We employ the
�2-distribution with 5 degrees of freedom and the F-distribution with 5 and 160 degrees of freedom for Nds = 33. We
emphasize in bold the highest value between the two values that are being compared, and as the smallest in both cases
corresponds to the value given by the statistic, it informs us of the rejection of the null hypothesis and, in this manner,
Friedman test and Iman–Davenport tests tell us of the existence of significant differences among the observed results
in all data-sets.

According to these results, a post hoc statistical analysis is needed. Tables 11 and 12 show the rankings (computed
using Friedman’s test) of the six different configurations for the FRBCS considered.
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Table 10
Results of Friedman and Iman–Davenport’s tests for comparing performance when using different configurations in the FRBCS for FRM of the
winning rule and additive combination

FRM Friedman Value in �2 Iman–Davenport Value in FF

Winning rule 19.822 9.2364 4.369 1.8836
Additive comb. 14.524 9.2364 3.089 1.8836

Table 11
Rankings obtained through Friedman’s test for FRBCS configuration. FRM of the winning rule

T-norm + rule weight Ranking

Product + P-CF 2.7727
Product + CF 3.0454
Product + M-CF 3.2273
Minimum + P-CF 3.4091
Minimum + CF 4.0606
Minimum + M-CF 4.4848

Table 12
Rankings obtained through Friedman’s test for FRBCS configuration. FRM of additive combination

T-norm + rule weight Ranking

Product + CF 2.8485
Product + P-CF 2.8939
Product + M-CF 3.5606
Minimum + CF 3.5909
Minimum + P-CF 3.8030
Minimum + M-CF 4.3030

Table 13
Holm’s table for the configuration of the FRBCS. FRM of the winning rule (FRBCS with product T-norm and P-CF for the rule weight is the control
method)

i Algorithm z p �/i Hypothesis

5 Minimum + M-CF 3.71742 0.00020 0.0125 R for Product + P-CF
4 Minimum + CF 2.79629 0.00517 0.0167 R for Product + P-CF
3 Minimum + P-CF 1.38170 0.16706 0.025 A
2 Product + M-CF 0.98693 0.32368 0.05 A
1 Product + CF 0.59216 0.55375 0.1 A

In the first case (Table 11) the best ranking is obtained by the FRBCS that uses product T-norm and P-CF for the
rule weight. In the second case (Table 12) the best ranking corresponds to the FRBCS that uses product T-norm and
CF for the rule weight.

We now apply Holm’s test to compare the best ranking method in each case with the remaining methods. In order to
show the results of this test, we will present the tables associated with Holm’s procedure, in which all the computations
are shown. Table 13 presents the results for the FRM of the winning rule, while Table 14 shows the results for the FRM
of additive combination.

In these tables the algorithms are ordered with respect to the z-value obtained. Thus, by using the normal distribution,
we can obtain the corresponding p-value associated with each comparison and this can be compared with the associated
�/i in the same row of the table to show whether the associated hypothesis of equal behaviour is rejected in favour of
the best ranking algorithm (marked with an R) or not (marked with an A).

The tests reject the hypothesis of equality of means for the two worst configurations compared with the remain-
ing ones but they do not distinguish any difference among the rest of the configurations for FRBCSs with the best
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Table 14
Holm’s table for the configuration of the FRBCS. FRM of additive combination (FRBCS with product T-norm and CF for the rule weight is the
control method)

i Algorithm z p �/i Hypothesis

5 Minimum + M-CF 3.15817 0.00159 0.0125 R for product + CF
4 Minimum + P-CF 2.07255 0.03821 0.0167 R for product + CF
3 Minimum + CF 1.61198 0.10697 0.025 A
2 Product + M-CF 1.54619 0.12206 0.05 A
1 Product + P-CF 0.09869 0.92138 0.1 A

Table 15
Wilcoxon’s test for the FRBCS configuration

Comparison R+ R− Hypothesis

WR vs. AC 286 275 Accepted

approach in each case. Nevertheless, we can extract some interesting conclusions from the ranking of the different
FRBCS approaches:

(1) Regarding the conjunction operator, we can conclude that very good performance is achieved when using the
product T-norm rather than the minimum T-norm, independently of the rule weight and FRM.

(2) For the rule weight we may emphasize as good configurations the P-CF in the case of the FRM of the winning rule
and the CF in the case of the FRM with additive combination. They have a higher ranking, although statistically
they are similar to the remaining configurations.

Finally we compare the two best approaches for the FRM of the winning rule and additive combination in order
to obtain the best global configuration for FRBCS in imbalanced data-sets. To do this, we will apply a Wilcoxon’s
signed-ranks test (shown in Table 15) to compare the FRBCS with product T-norm, P-CF for the rule weight and FRM
of the winning rule vs. the FRBCS with product T-norm, CF for the rule weight and FRM of additive combination.

We can see that both approaches are statistically equal, because the minimum ranking (the one associated to the
additive combination) is higher than the critical value of Wilcoxon distribution (again 187). Since the FRM of the
winning rule obtains a better ranking than the additive combination, we select as a good model the one based in
FRM of the winning rule, with product T-norm and P-CF for the rule weight. Observing Table 9, we can see that this
configuration obtains the best performance in the average geometric mean of the true ratios (79.57).

5. Analysis of FRBCS behaviour according to the degree of imbalance

In the last part of our study we present a statistical analysis where we compare the selected model for the linguistic
FRBCS based on the Chi et al. rule generation [6] (obtained in the previous section) with an FRBCS based on the
Ishibuchi et al. rule generation [24–26] and with the E-Algorithm [47], an ad hoc procedure for imbalanced data-sets.
We also include C4.5 in this comparison, because it is an algorithm of reference in this area [2].

Until now we have treated the problem of imbalanced data-sets without regard the percentage of positive and negative
instances. However, in this section we use the IR to distinguish between three classes of imbalanced data-sets: data-sets
with a low imbalance when the instances of the positive class are between 25% and 40% of the total instances (IR
between 1.5 and 3), data-sets with a medium imbalance when the number of the positive instances is between 10% and
25% of the total instances (IR between 3 and 9), and data-sets with a high imbalance where there are no more than
10% of positive instances in the whole data-set compared to the negative ones (IR higher than 9).

Following the scheme defined above, this study is shown in Tables 16, 20 and 24, each one focussing on low,
medium and high imbalance, respectively. These tables show the results for FRBCSs obtained with the Chi et al. and
the Ishibuchi et al. rule generation methods using product T-norm, P-CF for the rule weight and FRM of the winning
rule in all cases. We also show the results for the E-Algorithm with the same configuration as the FRBCSs approaches,
and the results for the C4.5 decision tree.
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Table 16
Global comparison of FRBCSs (Chi et al. and Ishibuchi et al.), E-Algorithm and C4.5. Data-sets with low imbalance

Data-set FRBCS-Chi SMOTE pre. FRBCS-Ish SMOTE pre. E-Algorithm no preprocessing C4.5 SMOTE pre.

GMTr GMTst GMTr GMTst GMTr GMTst GMTr GMTst

EcoliCP-IM 98.19 95.56 97.00 96.70 95.16 95.25 99.26 97.95
Haberman 70.86 60.40 64.36 62.65 8.47 4.94 74.00 61.32
Iris1 100.00 98.97 100.00 100.00 100.00 100.00 100.00 98.97
Pima 85.53 66.78 71.31 71.10 55.86 55.01 83.88 71.26
Vehicle3 96.36 87.19 66.28 67.82 46.24 43.83 98.95 94.85
Wisconsin 99.72 43.58 96.17 95.78 96.04 96.01 98.31 95.44
Yeast2 72.75 69.66 51.83 51.41 0.00 0.00 80.34 70.86
Glass1 74.44 63.69 72.22 69.39 0.00 0.00 94.23 78.14
Glass2 77.30 64.91 65.33 59.29 10.24 0.00 89.74 75.11
Vehicle2 91.18 71.88 64.83 64.89 5.93 3.09 95.50 69.28
Vehicle4 90.22 63.13 63.21 63.12 0.00 0.00 94.88 74.34

Average 86.96 71.43 73.87 72.92 37.99 36.19 91.74 80.68
Std. dev 11.35 16.38 16.21 16.67 42.27 43.43 8.72 13.49

Table 17
Rankings obtained through Friedman’s test for FRBCSs (Chi et al. and Ishibuchi et al.), E-Algorithm and C4.5 in data-sets with low imbalance

Method Ranking

C4.5 1.5909
FRBCS-Ishibuchi 2.3182
FRBCS-Chi 2.5909
E-Algorithm 3.5

Table 18
Holm’s table for FRBCSs (Chi et al. and Ishibuchi et al.), E-Algorithm and C4.5 in data-sets with low imbalance. C4.5 is the control method

i Algorithm z p �/i Hypothesis

3 E-Algorithm 3.46804 0.00052 0.03333 Rejected for C4.5
2 FRBCS-Chi 1.81659 0.06928 0.05 Accepted
1 FRBCS-Ishibuchi 1.32116 0.18645 0.1 Accepted

We employ the SMOTE preprocessing method for the FRBCSs (Chi et al. and Ishibuchi et al.) and for C4.5. The
E-Algorithm is always applied without preprocessing.

We also apply Friedman and Iman–Davenport tests in order to detect the possible differences among the FRBCSs
approaches, the E-Algorithm and C4.5 in each case. We employ the �2-distribution with 2 degrees of freedom and the
F-distribution with 2 and 20 degrees of freedom for Nds = 11. If significant differences are found with these tests,
Holm’s post hoc test will be applied in order to find the best configuration.

5.1. Data-sets with low imbalance

This study is shown in Table 16. The p-values computed using Friedman’s test (0.006342) and Iman–Davenport’s test
(0.00258) are lower than our level of confidence � = 0.1, which implies that there are statistical differences among the
results. In this manner, Table 17 shows the rankings (computed using Friedman’s test) of the four algorithms considered.

In this kind of data-sets C4.5 is better in ranking, but Holm’s Test (Table 18) only rejects the null hypothesis in the
case of the E-Algorithm. A Wilcoxon’s test (Table 19) is needed in order to confirm that C4.5 is statistically better than
the FRBCS obtained with the Ishibuchi et al. approach, which is the second in ranking.
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Table 19
Wilcoxon’s test in data-sets with low imbalance. R+ corresponds to the FRBCS (Ishibuchi et al. approach) and R− to C4.5

Comparison R+ R− Hypothesis p-Value

FRBCS-Ish vs. C4.5 10 56 Rejected for C4.5 0.041

Table 20
Global comparison of FRBCSs (Chi et al. and Ishibuchi et al.), E-Algorithm and C4.5. Data-sets with medium imbalance

Data-set FRBCS-Chi SMOTE pre. FRBCS-Ish SMOTE pre. E-Algorithm no preprocessing C4.5 SMOTE pre.

GMTr GMTst GMTr GMTst GMTr GMTst GMTr GMTst

Ecoli2 93.78 86.05 85.45 85.71 75.34 77.81 96.28 76.10
GlassNW 98.48 85.94 85.68 88.56 82.08 82.09 99.07 90.13
New-thyroid2 99.58 95.38 90.97 89.02 88.92 88.52 99.21 97.98
New-thyroid3 99.58 96.34 94.34 94.21 88.94 88.57 99.57 96.51
Page-blocks 88.64 87.25 32.41 32.16 64.65 64.51 98.46 94.84
Segment 98.19 95.88 42.61 42.47 95.64 95.33 99.85 99.26
Vehicle1 96.26 84.93 76.54 75.94 44.68 39.07 98.97 91.10
Ecoli3 92.90 87.64 87.23 87.00 71.98 70.35 95.11 91.60
Yeast4 92.01 89.33 79.97 77.06 82.09 81.99 95.64 88.50
Glass7 94.75 91.61 85.78 85.39 80.21 78.54 98.14 88.77
Ecoli4 98.06 78.13 86.42 86.27 90.84 90.23 99.59 83.00

Average 95.66 88.95 77.04 76.71 78.67 77.91 98.17 90.71
Std. dev 3.55 5.54 20.23 20.27 14.42 15.69 1.70 6.78

Table 21
Rankings obtained through Friedman’s test for FRBCSs (Chi et al. and Ishibuchi et al.), E-Algorithm and C4.5 in data-sets with medium imbalance

Method Ranking

C4.5 1.6364
FRBCS-Chi 2.0
FRBCS-Ishibuchi 3.0
E-Algorithm 3.3636

Because of the fact that we are dealing with data-sets with a low imbalance, the low classification rates for the FRBCSs
could be due to the characteristics of the data-sets, not only to the imbalance and overlapping between classes.

In the case of the E-Algorithm, some results in training and test have a 0 value. This is due to the fact that a subset of
rules is selected from the total by means of the product between confidence and support (normalized values). For the
positive class, rules with high confidence have low support, so these rules obtain a low score in the selection process.
The rules selected for the positive class are never fired because they have less weight than the rules of the negative class
(whose support is higher), and all instances of the positive class are classified as negative, resulting in a 0 value for the
geometric mean of the true rates.

5.2. Data-sets with medium imbalance

This study is shown in Table 20. Also in this case the Friedman and Iman–Davenport tests detect significant differences
among the results of the algorithms, with an error value for Friedman’s test of 0.00433238 and 0.0014477 for Iman–
Davenport’s test.

Observing a smaller difference between our selected model for the FRBCS (Chi et al.) and C4.5, we may conclude
that in this case the FRBCS improves its behaviour. We can see the similar ranking value for the FRBCS (Chi et al.)
and C4.5 obtained by Friedman’s test in Table 21. Even Holm’s (Table 22) and Wilcoxon’s tests (Table 23) accept the
null hypothesis when comparing both algorithms, which helps to confirm our conclusion.
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Table 22
Holm’s table for FRBCSs (Chi et al. and Ishibuchi et al.), E-Algorithm and in data-sets with medium imbalance. C4.5 is the control method

i Algorithm z p �/i Hypothesis

3 E-Algorithm 3.13775 0.00170 0.03333 Rejected for C4.5
2 FRBCS-Ishibuchi 2.47717 0.01324 0.05 Rejected for C4.5
1 FRBCS-Chi 0.66058 0.50888 0.1 Accepted

Table 23
Wilcoxon’s test in data-sets with medium imbalance. R+ corresponds to the FRBCS (Chi et al. approach) and R− to C4.5

Comparison R+ R− Hypothesis p-value

FRBCS-Chi vs. C4.5 17 49 Accepted 0.155

Table 24
Global comparison of FRBCSs (Chi et al. and Ishibuchi et al.), E-Algorithm and C4.5. Data-sets with high imbalance

Data-set FRBCS-Chi SMOTE pre. FRBCS-Ish SMOTE pre. E-Algorithm no preprocessing C4.5 SMOTE pre.

GMTr GMTst GMTr GMTst GMTr GMTst GMTr GMTst

Abalone9-18 71.07 66.47 66.42 65.78 39.67 32.29 95.20 53.19
Abalone19 75.99 66.71 66.93 66.09 0.00 0.00 84.31 15.58
Ecoli5 98.12 92.11 89.21 86.92 92.80 92.43 97.67 81.28
Glass3 71.39 49.24 45.25 43.55 27.03 9.87 95.68 33.86
Yeast5 87.94 83.07 75.80 71.36 38.31 32.16 90.76 65.00
Vowel0 99.64 97.87 89.99 89.03 89.84 89.63 99.67 94.74
YeastCYT-POX 82.35 78.76 74.01 72.83 74.01 72.83 90.93 78.23
Glass5 98.87 81.75 87.03 78.27 84.82 83.38 98.42 83.71
Glass6 98.77 64.33 89.88 89.96 80.60 50.61 99.76 86.70
Yeast5 95.40 93.64 94.93 94.94 88.66 88.17 97.75 92.04
Yeast7 89.57 87.73 88.48 88.42 53.82 51.72 92.15 80.38

Average 88.10 78.34 78.90 77.01 60.87 54.83 94.75 69.52
Std. dev 11.26 14.99 14.93 15.09 31.02 33.09 4.77 25.38

The performance of the FRBCS generated by the Ishibuchi et al. approach and the E-Algorithm is poorer than our
selected FRBCS model (obtained by the Chi et al. approach) and C4.5, because of the restriction in the number of valid
fuzzy partitions per rule in high dimensional problems (segment, page-blocks or vehicle). However, the results for the
E-Algorithm are better for this kind of data-set because the values for confidence and support are higher for the rules
of the positive class due to the weighting factor associated with the number of instances of this class. In this manner
the rule weight of these rules is now greater than that of the rules corresponding to the negative class.

5.3. Data-sets with high imbalance

This study is shown in Table 24. The FRBCSs clearly outperform C4.5. We can observe a high overfitting in the
C4.5 algorithm, with a difference of 25 points between the training and test results.

Friedman’s and Iman–Davenport’s tests find significant differences with a p-value of 0.01335 and 0.0074888, re-
spectively, and in this case the FRBCSs obtain a higher ranking as shown in Table 25.

Holm’s test (Table 26) rejects the null hypothesis in favour of the Chi et al. FRBCS against the E-Algorithm. When
applying a Wilcoxon test to compare this FRBCS against C4.5 (Table 27), we obtain with a high level of confidence
(specifically the associated error in this comparison is 0.075) that the Chi et al. model outperforms C4.5. In the
same table we make a comparison between the Ishibuchi et al. FRBCS and C4.5, obtaining the same conclusion.
In this manner we have shown the good behaviour of our selected FRBCS model when facing high imbalanced
data-sets.
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Table 25
Rankings obtained through Friedman’s test for FRBCSs (Chi et al. and Ishibuchi et al.), E-Algorithm and C4.5 in data-sets with high imbalance

Method Ranking

FRBCS-Chi 1.6364
FRBCS-Ishibuchi 2.3182
C4.5 2.6364
E-Algorithm 3.4091

Table 26
Holm’s table for FRBCSs (Chi et al. and Ishibuchi et al.), E-Algorithm and C4.5 in data-sets with high imbalance. FRBCS-Chi is the control method

i Algorithm z p �/i Hypothesis

3 E-Algorithm 3.22032 0.00128 0.03333 Rejected for FRBCS-Chi
2 C4.5 1.81659 0.06928 0.05 Accepted
1 FRBCS-Ishibuchi 1.23858 0.21549 0.1 Accepted

Table 27
Wilcoxon’s test in data-sets with high imbalance. R+ corresponds to the first algorithm and R− to the second

Comparison R+ R− Hypothesis p-value

FRBCS-Chi vs. C4.5 53 13 Rejected for FRBCS-Chi 0.075
FRBCS-Ish vs. C4.5 53 13 Rejected for FRBCS-Ish 0.075

We observe that the FRBCSs improve their results in comparison with C4.5 when the IR increases. Of course, both
methods decrease the geometric mean of true rates when using data-sets with a higher IR. Contrasting the results for the
E-Algorithm and the FRBCS obtained with the Ishibuchi et al. approach we have shown that the use of preprocessing
is more effective than adapting the rule generation process for imbalanced data-sets.

6. On the use of linguistic FRBCSs for imbalanced data-sets: lessons learned and future work

We have focused our work on the use of linguistic FRBCSs in the framework of imbalanced data-sets. We have
divided our study into two parts: on the one hand the cooperation of some preprocessing methods of instances and
on the other hand the components of the linguistic FRBCSs, specifically the granularity of the fuzzy partitions, the
conjunction operators, rule weights and FRMs.

We may emphasize five important lessons learned:

(1) The cooperation with preprocessing methods of instances is very positive. We have empirically shown that balancing
the classes before the use of the linguistic FRBCS method clearly improves the classification performance. We have
found a type of mechanism (SMOTE) that provides very good results as a preprocessing technique for FRBCSs.
It helps fuzzy methods to become a very competitive model in high imbalanced domains.
We have also compared the use of a simple FRBCS obtained with the Chi et al. approach [6] and with the Ishibuchi
et al. approach [24–26], using a preprocessing step to balance the training set, against an existing ad hoc fuzzy
algorithm for imbalanced data-sets, the E-Algorithm [47]. The first two approaches perform better than the last,
showing the necessity of a preprocessing step when dealing with imbalanced data-sets.

(2) The analysis of the granularity partitions demonstrates that when increasing the number of fuzzy labels per variable
the FRBCSs tend to overfit on the training data.

(3) We have studied the differences in the application of different conjunction operators, concluding that the product
T-norm is a good choice for computing the matching degree between the antecedent of the rule and the example.

(4) Regarding the most appropriate configuration for rule weight and FRM we have proposed as a good model the
P-CF for the rule weight and the winning rule for the FRM.
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(5) Comparing the performance of FRBCSs in contrast with the well-known algorithm C4.5, the latter obtains good
results when the IR is low or medium, but when this ratio increases then the FRBCSs are more robust to the class
imbalance problem and in data-sets with high imbalance our approach outperforms C4.5.

As future work our intention is to develop effective learning approaches for fuzzy rules extraction that allow us to
learn good RBs for different imbalance degrees. Specifically, we are currently studying two approaches: a Hierarchical
System of Linguistic Rules Learning Methodology [9] and the generation of the Knowledge Base by the Genetic
Learning of the Data Base [8].

7. Concluding remarks

In this work we have considered the problem of imbalanced data-sets in classification using linguistic FRBCSs. We
have studied the cooperation of some preprocessing methods of instances and we have analysed the configuration of
the FRBCS, studying the granularity of the fuzzy partitions, the conjunction operators, the rule weights and the FRMs.

Our results have shown the necessity of using preprocessing methods of instances to improve the balance between
classes before the use of the FRBCS method. Furthermore, when contrasting the use of a linguistic FRBCS specially
built for imbalanced data-sets (the E-Algorithm) with the use of preprocessing techniques, the latter have shown a great
advantage in the classification task of imbalanced data-sets with linguistic FRBCSs.

We have suggested as good components the following ones: the product T-norm as conjunction operator and the
P-CF as rule weight. Regarding the FRM there are few differences, and we have chosen the winning rule approach;
nevertheless, in the design of a learning method both approaches must be analysed.

Finally, we have found that the linguistic FRBCSs perform well against the C4.5 decision tree in the framework of
highly imbalanced data-sets.

Appendix A. On the use of non-parametric tests based on rankings

A non-parametric test is that which uses nominal data or ordinal data or data represented in an ordinal way of ranking.
This does not imply that only them must be used for these types of data. It could be very interesting to transform the
data from real values contained within an interval to ranking based data, in the way as a non-parametric test can be
applied over typical data of parametric test when they do not fulfill the needed conditions imposed by the use of
the test.

In the following, we explain the basic functionality of each non-parametric test used in this study together with the
aim pursued by its use:

• Friedman’s test: It is a non-parametric equivalent of the test of repeated-measures ANOVA. It computes the ranking
of the observed results for algorithm (rj for the algorithm j with k algorithms) for each data-set, assigning to the
best of them the ranking 1, and to the worst the ranking k. Under the null hypothesis, formed from supposing the
results of the algorithms are equivalents and, therefore, their rankings are also similar, Friedman’s statistic

�2
F = 12Nds

k(k + 1)

⎡
⎣∑

j

R2
j − k(k + 1)2

4

⎤
⎦ , (A.1)

is distributed according to �2
F with k−1 degrees of freedom, being Rj = 1

Nds

∑
i r

j
i , and Nds the number of data-sets.

The critical values for Friedman’s statistic coincide with the established in the �2 distribution when Nds > 10 and
k > 5. In a contrary case, the exact values can be seen in [34,48].

• Iman and Davenport’s test [21]: It is a metric derived from Friedman’s statistic given that this last metric produces
a conservative undesirable effect. The statistic is

FF = (Nds − 1)�2
F

Nds(k − 1) − �2
F

, (A.2)

and it is distributed according to a F-distribution with k − 1 and (k − 1)(Nds − 1) degrees of freedom.
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• Holm’s method [20]: This test sequentially checks the hypothesis ordered according to their significance. We will
denote the p-values ordered by p1, p2, . . . , in the way that p1 �p2 � · · · �pk−1. Holm’s method compares each pi

with �/(k − i) starting from the most significant p-value. If p1 is below than �/(k −1), the corresponding hypothesis
is rejected and it let us to compare p2 with �/(k − 2). If the second hypothesis is rejected, we continue with the
process. As soon as a certain hypothesis cannot be rejected, all the remaining hypothesis are maintained as accepted.
The statistic for comparing the i algorithm with the j algorithm is

z = (Ri − Rj )/

√
k(k + 1)

6Nds
. (A.3)

The value of z is used for finding the corresponding probability from the table of the normal distribution, which
is compared with the corresponding value of �.

• Wilcoxon’s signed-rank test: This is the analogous of the paired t-test in non-parametrical statistical procedures;
therefore, it is a pair wise test that aims to detect significant differences between the behaviour of two algorithms.

Let di be the difference between the performance scores of the two classifiers on ith out of Nds data-sets. The
differences are ranked according to their absolute values; average ranks are assigned in case of ties. Let R+ be the
sum of ranks for the data-sets on which the first algorithm outperformed the second, and R− the sum of ranks for
the opposite. Ranks of di = 0 are split evenly among the sums; if there is an odd number of them, one is ignored:

R+ =
∑
di>0

rank(di) + 1

2

∑
di=0

rank(di), (A.4)

R− =
∑
di<0

rank(di) + 1

2

∑
di=0

rank(di). (A.5)

Let T be the smallest of the sums, T = min(R+, R−). If T is less than or equal to the value of the distribution of
Wilcoxon for Nds degrees of freedom [48, Table B.12], the null hypothesis of equality of means is rejected.
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