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Gene Ontology Database
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Abstract—Current tools and techniques devoted to examine the
content of large databases are often hampered by their inability
to support searches based on criteria that are meaningful to
their users. These shortcomings are particularly evident in data
banks storing representations of structural data such as biological
networks. Conceptual clustering techniques have demonstrated
to be appropriate for uncovering relationships between features
that characterize objects in structural data. However, typical con-
ceptual clustering approaches normally recover the most obvious
relations, but fail to discover the less frequent but more informative
underlying data associations. The combination of evolutionary
algorithms with multiobjective and multimodal optimization
techniques constitutes a suitable tool for solving this problem.
We propose a novel conceptual clustering methodology termed
evolutionary multiobjective conceptual clustering (EMO-CC), re-
lying on the NSGA-II multiobjective (MO) genetic algorithm. We
apply this methodology to identify conceptual models in struc-
tural databases generated from gene ontologies. These models
can explain and predict phenotypes in the immunoinflammatory
response problem, similar to those provided by gene expression or
other genetic markers. The analysis of these results reveals that
our approach uncovers cohesive clusters, even those comprising a
small number of observations explained by several features, which
allows describing objects and their interactions from different
perspectives and at different levels of detail.

Index Terms—Conceptual clustering, database annotation, evo-
lutionary algorithms (EAs), gene expression profiles, gene ontology
(GO), knowledge discovery, multiobjective (MO) optimization.
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I. INTRODUCTION

T HE INCREASED availability of repositories containing
representations of complex objects in spatial databases,

such as satellite maps, or temporal databases, including
microarray time series, regulatory networks, or metabolic
pathways, permits access to vast amounts of data where these
objects may be observed [1]–[3]. However, the underlying
object representations used in these databases are typically
based on computational convenience of database implementers
and their tendency to increase the amount of stored data [4].
Current tools and techniques devoted to examine the contents
of these large databases are often hampered by their inability
to support searches based on criteria that are meaningful to
the users of those repositories. In particular, and in spite of
the recent renewed interest in knowledge discovery techniques
(or data mining), there is a potential dearth of data analysis
methods intended to facilitate the understanding of the repre-
sented objects and related systems by their most representative
features and those relationships derived from these features
(i.e., structural data [5]). Plain databases cannot deal with this
structural information. For example, images often stored in
spatial databases are composed of small pieces of geometrical
objects (e.g., triangles or squares) that encode complex rela-
tionships between them, including nested or composite relative
locations [e.g., square on triangle, Fig. 1 (a1)–(a2)]. These types
of relationships normally exceed the simple presence/absence
of the underlying elements (e.g., triangle and square). Indeed,
plain data are difficult to generalize into more abstract concepts
(e.g., object on triangle) resulting from frequent patterns found
in the database [Fig. 1 (d2)].

Structural data, in contrast to plain data, can be viewed as
a graph containing nodes representing objects. Subgraph parti-
tions of the dataset are termed substructures [5] [Fig. 1(b)–(d)].
Each object in a substructure is described by its most repre-
sentative features, which are encoded as nodes linked to other
nodes by edges corresponding to their relationships. Conceptual
clustering techniques have been successfully applied to struc-
tural data to uncover concepts that explain underlying objects
by searching through a predefined space of potential hypoth-
esis (i.e., substructures that represent associations of features)
for those that best fits the training examples [6].

The formulation of conceptual clustering as a search problem,
in a graph-based structure, would result, however, in the gen-
eration of many substructures with small extent, as it is easier
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Fig. 1. Differentiating plain and structural databases: example of geometrical observations. (a) Plain codification of two observations as typical transactions en-
coding a presence/absence relationship between data. (b) and (c) Structural codification also encoding positional relationships. (b1)–(c1) Tree-graphs corresponding
to computational representations in a structural database. (b2)–(c2) Geometrical interpretation of the represented observations. The color-coded parts of the trees
show repeated instances that generate substructures. (d) A generalized substructure learned from (b)–(c) that cannot be encoded by (a).

to explain or model smaller data subsets than those that con-
stitute a significant portion of the dataset. For this reason, any
successful methodology should also consider additional criteria
to extract better defined concepts based on the complexity of the
substructure being explained, the number of retrieved substruc-
tures, and their diversity [5], [7]–[9]. These are conflicting cri-
teria that can be approached as an optimization problem, close
in spirit to minimum description length (MDL) methods [10],
which are based on the aggregation of the various objectives
into a global measure of cluster quality. The basic challenge
with this approach is the potential bias caused by weighting
the objectives [7], [11], which always derives from the conver-
gence to solutions corresponding to single or limited regions
of the search space. This problem is noteworthy because typ-
ical data mining approaches, particularly in computational bi-
ology, tend to emphasize consensus or most frequent patterns
[12]. These consensus patterns often conceal rather than reveal
novel and useful knowledge about the problem, retrieving only
already known or irrelevant information that discourages the use
of computational methods [13], [14]. Consequently, there is a
need for new methods that can provide even less frequent but
more descriptive substructures that reflect problem descriptions
from different angles [15].

In this paper, we propose a conceptual clustering method-
ology termed EMO-CC for evolutionary multiobjective concep-
tual clustering that uses multiobjective and multimodal opti-
mization techniques to retrieve meaningful substructures from
structural databases. The EMO-CC methodology uses an effi-

cient search process based on evolutionary algorithms (EAs)
[16]–[18] relying on the NSGA-II algorithm [19], which in-
spects large data spaces that otherwise would be intractable. In-
deed, it explores hierarchically organized databases, which can
contain data defined at different levels of specificity. EMO-CC
identifies optimal clusters corresponding to different substruc-
tures lying in the Pareto optimal frontier [7], [17]. This frontier
is composed of a collection of multiobjective optima in the sense
that their solutions are not worse than any other substructure
for the objectives being considered (i.e., nondominated) [17].
This approach is less biased than aggregating various objectives
into a weighted function. The clusters obtained by EMO-CC are
composed of solutions belonging to different neighborhoods,
where each cluster represents a local optimum in a multimodal
problem [20]. The methodology optimizes the number of sub-
structures being retrieved based on a flexible compression of the
database and provides annotations for the uncovered substruc-
tures [5]. Finally, EMO-CC applies an unsupervised classifica-
tion approach to predict new members of previously discovered
substructures [6].

We apply EMO-CC to the discovery of meaningful substruc-
tures containing genes sharing common sets of features (i.e., GO
terms) in the gene ontology (GO) database [3], which is com-
posed of biological processes, cellular components and molec-
ular functions defined at different levels of specificity. These
substructures can explain/predict gene expression profiles. We
consider gene profiles that reflect differences in gene expression
over time, treatment and patient, corresponding to an inflam-
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matory response study performed on human volunteers treated
with intravenous endotoxin compared to a placebo [21]. Under-
standing the inflammation process is critical because the body
uses inflammation to protect itself from an infection or an in-
jury (e.g., crashes, massive bleeding, or a serious burn) which,
in extreme cases (e.g., car accidents or gun shootings), can lead
to massive organ malfunction and death. Moreover, the majority
of the deaths are caused due to these problems [21].

To validate our approach, we perform a two-way analysis:
1) we evaluate the performance of our proposal using standard
metrics for evolutionary multiobjective algorithms and 2) we
use biological information from gene expression measured
from blood samples by Affymetrix microarrays to indepen-
dently explain and summarize the obtained results. Indeed, we
perform comparisons between EMO-CC and well-known con-
ceptual clustering and bioinformatic techniques. The obtained
results suggest that EMO-CC is a useful tool for extracting
novel biological information that provides insights into the
analysis of gene expression data.

This work is organized as follows. Section II presents our
preliminaries, including descriptions of conceptual clustering
and unsupervised methods; characterization of the GO project,
and a brief summary of multiobjective optimization techniques.
Section III describes the EMO-CC methodology. Section IV
introduces the inflammatory response problem and the gene
expression profiles. Section V shows the results obtained by
EMO-CC applied to the GO database and compares these
results with four other methods: two of them are clustering
approaches, while the other two are state-of-the-art GO tools.
Finally, Section VI concludes with the discussion.

II. PRELIMINARIES

In this section, we provide the methodological and problem
background used in this work. First, we briefly supply a general
framework for conceptual clustering algorithms, and introduce
two methods used to mine structural databases. These methods
include the SUBDUE conceptual clustering method [22] and
the APRIORI unsupervised method [23]. Second, we describe
the GO project and its structural database, and introduce two
state-of-the-art GO methods: FatiGO [24] and Onto-Express
(OE) [25]. These four methods are selected to be compared with
our approach. We also provide a brief survey of evolutionary and
multiobjective optimization. Finally, we characterize the multi-
objective optimization problem and define a set of metrics used
to evaluate the quality of the results obtained by EMO-CC in
comparison with the other methods.

A. Conceptual Clustering

Cluster analysis, or simply clustering, is a data mining tech-
nique often used to identify various groupings or taxonomies
in databases [26]. Most existing methods for clustering are de-
signed for plain feature-value data. However, sometimes we
need to represent structural data that do not only contain descrip-
tions of individual observations, but also relationships between
these observations [5]. Therefore, mining structural databases
entails addressing both the uncertainty of which observations
should be placed together, as well as which distinct relationships
among features best characterize different sets of observations
[6]. This is more problematic since, a priori, we do not know

which features are meaningful for a given relationship. Typical
clustering techniques are not designed to deal with this [27],
even when combined with global feature extraction methods
such as principal component analysis or stepwise descendant
methods [28], [29]. In contrast, conceptual clustering techniques
have been successfully applied to structural databases to un-
cover concepts that are embedded in subsets of structural data
or substructures [5].

While most machine learning techniques applied directly
or indirectly to structural databases exhibit methodological
differences, they share a five-step framework, even though they
use distinct metrics, heuristics, or probability interpretations
[5], [30].

• Database representation. Structural data can be viewed
as a graph containing nodes representing features, linked
to other nodes by edges corresponding to their relations.
A substructure consists of a subgraph of structural data,
which represents an object or concept embedded in the
data [5]. These data can be efficiently organized by taking
advantage of a naturally occurring structure over the
feature space, which consists of a general to specific
ordering of possible substructures (i.e., a direct acyclic
graph (DAG) [31]).

• Structure learning. This process consists of searching
through the DAG space for potential substructures, and
returning either the best one found or an optimal sample of
them. If the number of substructures is superexponential
in the number of nodes, different heuristic methods can
be applied for this learning process (e.g., greedy [32], hill
climbing [32], and genetic algorithms [33]).

• Cluster evaluation. The substructure quality is measured
by optimizing several criteria, including complexity, where
harboring more features always increases the inferential
power; support, where a large coverage of the dataset pro-
duces good generality; and diversity, where minimal over-
lapping between clusters generates more distinct clusters
and descriptions from different angles [6]. The basic chal-
lenge with this approach consists of fixing the potential
bias and inflexibility caused by combining these criteria in
a weighted sum formula [7], [10].

• Database compression. The database compression pro-
vides simple representations of the objects in a database.
This procedure is often done by selecting the best sub-
structures and replacing their instances by single vertices.
However, it may be the case that these summarized sub-
structures need to be decompressed or recompressed when
they are combined with different or independent data
sources [22].

• Inference. New observations can be predicted from pre-
viously learned substructures by using classifiers that opti-
mize their matching based on distance [34] or probabilistic
metrics [6]. When designed for labeled data, the approach
is referred to as supervised learning (as opposed to unsu-
pervised learning) [6].

Here, we exemplify two different methods, one originally de-
signed to work with structural databases.

1) SUBDUE: This method [22] is a typical example of a
conceptual clustering approach that finds repeated substructures
in databases represented as graphs. SUBDUE starts by looking
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Fig. 2. The GO project ontology. The GO database is composed of three subontologies, which are shown at different colors starting from the root node
GO:0003673: Biological process (BP), molecular function (MF), and cellular component (CC).

for the substructure that best compresses the graph using the
MDL principle [10], which states that the best description of a
dataset is the one that minimizes the description length of the
entire dataset. After finding the first substructure, SUBDUE
compresses the graph and iterates repeating the same process.
SUBDUE uses a computationally constrained beam search
strategy to find substructures. The algorithm starts with a single
vertex as the initial substructure and at each iteration expands
it, using new instances, to explore possible extension edges and
potentially generate new substructures. This substructures are
recursively considered for expansion.

2) APRIORI: This method uses a classic algorithm for
learning association rules [23]. It is designed to operate on
databases containing transactions (e.g., collections of items
bought by customers, or items of a website access). The
algorithm attempts to find subsets of items (e.g., sets of re-
tail transactions of each listing individual items purchased)
shared by at least a minimum number of observations. This
approach is similar to the computation of biclusters, as it allows
simultaneous clusterings of features and transactions [35].
APRIORI uses a bottom-up approach, where frequent subsets
are extended one item at a time and evaluated by their sup-
porting observations. The algorithm terminates when no further
successful extensions are found. APRIORI uses breadth-first
search and a hash tree structure to efficiently search for the
best substructures. This algorithm was originally designed to
work with plain data, and here adapted to manage structural
databases.

B. The Gene Ontology (GO) Project

The GO project [3] stores one of the most powerful character-
izations of genes. It uses three structured vocabularies (i.e., on-
tologies) to describe gene products in terms of their associated
biological processes, cellular components and molecular func-
tions in a species-independent manner [3]. The GO terms are or-
ganized as hierarchical networks, where each level corresponds
to a different specificity definition of such terms (i.e., higher
level terms are more general than lower level terms, Fig. 2).

From the computational point-of-view, these networks are or-
ganized as structures termed DAGs, which are one way routed
graphs that can be represented as trees.

There are many tools developed to extract relevant GO terms
from a group of given genes. We select two of the most repre-
sentative GO clustering methods for comparison with our ap-
proach: FatiGO [24] and OE [25].

1) FatiGO: This method carries out a clustering process that
assigns a ranking of GO terms to a query, which is often com-
posed of coexpressed genes. GO terms are related to human,
mouse, rat, arabidopsis, fly, worm and yeast genes, and proteins.
FatiGO implements Fisher’s exact test for 2 2 contingency ta-
bles to compare two groups of genes and to extract a list of GO
terms whose distribution among the groups is significantly dif-
ferent. The results of the test are corrected for multiple-testing
to obtain an adjusted p-value. These results are displayed in
HTML and text format, which includes a tree representation of
GO terms associated with the query and the number of genes
annotated with a specific GO term [24].

2) Onto-Express (OE): This method maps queries based on
coregulated genes into functional profiles, each one built based
on individual GO terms. The significance of functional profiles
is calculated by using the binomial distribution for each func-
tional category, which allows distinctions between significant
biological processes and random events [25].

C. Evolutionary and Multiobjective (MO) Optimization

Evolutionary algorithms (EAs) [17] are often used to solve
knowledge discovery or data mining problems. Several EAs
have been successfully applied in classical clustering problems
including hard and fuzzy c-means functional optimization [36]
and estimation of optimal number of clusters [37]. Moreover,
genetic algorithms in combination with multiobjective opti-
mization techniques have been used for selecting features in
an unsupervised fashion [38] and for developing multiclassi-
fiers [39]. Linguistic and association rules also incorporated
evolutionary techniques for their optimization and searching
processes [40], [41]. Indeed, biclustering techniques, often
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used in bioinformatics [42], use an appropriate combination of
EAs and multiobjective optimization [43].

We incorporate some of the former features successfully ap-
plied to knowledge discovery to develop a novel evolutionary
method focused on conceptual clustering data. Here, we de-
scribe the multiobjective optimization problem and the general
notation used throughout this work.

1) Notation: Let us consider, without loss of generality, a
multiobjective minimization problem with decision variables
(parameters) and objectives

(1)

where is called the decision vector, is the parameter
space, is the objective vector, is the objective space, and

are the objective functions. A decision vector
is said to dominate a decision vector (also written as

) if, and only if

(2)

It is also customary to write any of the following:
• if and only if and , or ;
• is nondominated by ;
• belongs to a Pareto-optimal set, if it is not dominated

by .
2) Evaluation Metrics: We evaluate the performance of MO

algorithms by applying a set of metrics that analyze the objective
space of solutions [18], [44], [45]. We also use two alternative
metrics to perform pairwise comparisons between algorithms
[9], [45].

Given a set of pairwise nondominated decision vectors
; a Pareto-optimal set ; the sets of objec-

tive vectors that correspond to and , respectively; a neigh-
borhood parameter (to be chosen appropriately); and a
distance metric , we define the following metrics.

• The function evaluates the distribution of the solutions
in combination with the number of nondominated solutions

(3)
• The function evaluates the extent of the front de-

scribed by

(4)

Finally, we use two other binary metrics for comparing two
Pareto sets.

• The metric [45] measures the dominance rela-
tionship between the set of nondominated solutions

on another set of nondominated solutions . The
value means that all solutions in are
dominated by solutions in . The opposite,

, represents the situation where none of the solutions in
are covered by the set . Note that both

Fig. 3. The EMO-CC methodology. The different steps of EMO-CC are devel-
oped based on the typical phases of a conceptual clustering method. The dashed
box represents the search and evaluation iterative process carried out by the mul-
tiobjective EA.

and have to be considered, since is
not necessarily equal to

(5)

• The metric [9] compares two sets of
nondominated solutions and provides the number of so-
lutions of neither equal nor dominated by any
member of . Once again, both and

must be calculated

(6)

There is a clear difference between the metric and the
previous metric . The former metric counts the number of
novel solutions belonging to a Pareto set that are not included
in the other, while the latter shows the dominance relationship
between two sets of solutions. These metrics are applied and
customized for the biological problem in Section IV.

III. METHODOLOGY: EVOLUTIONARY MULTIOBJECTIVE

CONCEPTUAL CLUSTERING (EMO-CC)

In this section, we describe the EMO-CC methodology in
terms of each of the steps of the conceptual clustering frame-
work previously introduced (Fig. 3).

A. Graph-Based Database Representation (STEP 1)

The input of the EMO-CC methodology is a graph-based
database, which includes feature-values that usually map to
nodes, and relationships between them that map to edges. For
example, given a database corresponding to a geometrical
domain [Fig. 1(b)–(c)], the nodes of the graph correspond to
geometric properties, (e.g., circle), while the edges of the graph
correspond to the relationships between them (e.g., on).
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Fig. 4. The EMO-CC structure learning procedure based on the NSGA-II al-
gorithm [19] corresponding to the iterative process of STEPS 2 and 3.

B. Evolutionary Multiobjective Structure Learning (STEP 2)

The main objective of EMO-CC is to identify optimal sub-
structures in a structural database by searching in the feature
space using an efficient multiobjective EA. To do so, we apply
an evolutionary search on the space of a graph-represented
database relying on a multiobjective EA termed nondominated
Sorting GA-II (NSGA-II) developed by Deb et al. [19], [46]. A
short description provided by Deb et al. [19] is the following.

The step-by-step procedure shows that NSGA-II algorithm is
simple and straightforward. First, a combined population

is formed. The population is of size . Then, the
population is sorted according to nondomination. Since all
previous and current population members are included in ,
elitism is ensured. Now, solutions belonging to the best non-
dominated set are of best solutions in the combined popu-
lation and must be emphasized more than any other solution in
the combined population. If the size of is smaller then ,
we definitely choose all members of the set for the new pop-
ulation . The remaining members of the population
are chosen from subsequent nondominated fronts in the order of
their ranking. Thus, solutions from the set are chosen next,
followed by solutions from the set , and so on. This procedure
is continued until no more sets can be accommodated. Say that
the set is the last nondominated set beyond which no other
set can be accommodated. In general, the count of solutions in
all sets from to would be larger than the population size.
To choose exactly population members, we sort the solutions
of the last front using the crowded-comparison operator
in descending order and choose the best solutions needed to fill
all population slots. The NSGA-II procedure is also shown in
Fig. 4. The new population of size is now used for se-
lection, crossover, and mutation to create a new population
of size . It is important to note that we use a binary tournament
selection operator but the selection criterion is now based on the
crowded-comparison operator . Since this operator requires
both the rank and crowded distance of each solution in the pop-
ulation, we calculate these quantities while forming the popula-
tion , as shown in the above algorithm.

Fig. 5. Example of an EMO-CC chromosome. This representation encodes
each node and each edge of the tree with a tag, which corresponds to the type
of feature being described. We show node-tags using different colors (e.g.,
blue, white, yellow) and edge-tags using different line styles (e.g., solid, dotted,
dashed). Each node and edge also has an associated tag-value that indicates the
value of such feature (e.g., node 1, edge 3).

The components of the EMO-CC structure learning process
are described as follows:

1) Chromosome Representation: EMO-CC encodes only
feasible substructures in each chromosome. We implement chro-
mosomes as trees, which is the typical representation used in
genetic programming (GP) [47]. The GP evolutionary approach
and its multiobjective variants [48], [49] have been widely used
to solve many different real-world problems, including system
identification [50], information retrieval [51], [52], or data
mining [53], achieving successful results. This chromosome rep-
resentationencodeseachnodeandeachedgeof the treewitha tag,
describing the type of feature, and an associated tag-value that
indicates the value of such feature (Fig. 5). The initial population
consistsofa setofchromosomes, eachonegeneratedbychoosing
a random observation from the input database and representing
it as a subtree. The set of all nondominated chromosomes of the
final population represents an optimal partition of the given data.

2) Genetic Operators: EMO-CC applies crossover and mu-
tation operators with a given probability over the chromosomes
composing the GP population. The crossover operator is per-
formed by swapping two random subtrees, which is a classical
choice in GP. The mutation operators used in our GP implemen-
tation are also classical and straightforward.

• Delete a leaf, where a random leaf of the tree is selected
and deleted along with the edge that connects it to the tree.

• Change a node, where a random node is selected and re-
placed by another node belonging to the set of nodes con-
strained by the same tag.

• Add a leaf, where a random leaf is created and connected
to the tree by a new edge.

Each type of node has associated a different tag in the chro-
mosome representation that constrains crossover and mutation
operators (e.g., in Fig. 5 blue nodes are only allowed to be com-
pared with other blue nodes, and solid edges with other solid
edges). Therefore, the crossover operation can be applied if, and
only if, the root of both exchanged subtrees has the same tag,
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thus allowing to maintain feasible offspring chromosomes. This
particular chromosome representation with constraints is known
as type-based GP [47].

3) Selection: EMO-CC employs a crowded binary tour-
nament selection operator [17], [19] preserving the diversity
among nondominated solution. Assuming that every individual
in the population has two attributes: nondomination rank
and crowding distance , the crowded operator is
defined as

(7)

where the quantity serves as an estimate of the
perimeter of the cuboid formed by using the nearest neighbors
as the vertices (call this the crowding distance) and
specifies the level of nondomination of the solution (e.g., level
0 for nondominated solutions, level 1 for solutions dominated
by only one solution). That is, between two solutions with
differing nondomination ranks, we prefer the solution with the
lower (i.e., better) rank. Otherwise, if both solutions belong to
the same front, then we prefer the solution that is located in a
lesser crowded region. See [19] for a complete description.

4) Fitness Functions: We consider that good substructures
are those that maximize the complexity and the support objec-
tives. On the one hand, the complexity of a substructure is
associated with its size (i.e., the number of nodes and edges that
compose the substructure), which corresponds to the size of the
tree represented in the chromosome

(8)

On the other hand, the support of a substructure is calculated as
the number of database instances that occur in the substructure

(9)

where an instance of a substructure occurs in an observation of
the dataset if the instance tree is a subtree of the observation
tree. These are conflicting objectives since the more complex
the substructure, the smaller its support [7], [8].

C. Pareto Nondominance Substructure Evaluation (STEP 3)

We evaluate the quality of the substructures based on a multi-
objective strategy that retrieves cohesive and well supported so-
lutions [7], [17]. Indeed, we use a multimodal optimization ap-
proach to uncover diverse results [54]. To do so, we search for
a set of solutions that are nondominated, based on their com-
plexity and support, in the sense that there is no other solu-
tion that is superior in all of the objectives (i.e., Pareto optimal
front) in a neighborhood [17]. Therefore, optimal solutions cor-
responding to different search spaces do not compete among
each other. We implement this multimodal strategy using niches
[7], [8], which are groups of substructures covering a common
set of instances. The scope of a niche is calculated by using the
Jaccard’s index [55]

(10)

where and are substructures.

Fig. 6. Validating and compressing substructures. (a) We evaluate the ability
of a substructure to describe an independent class by using the probability of in-
tersection (red: high; green: low) among their recognized instances. This metric
slightly differs from the size of the intersection (size of the circle), and allows
identification of more cohesive relationships. (b) A class can be explained and
summarized by more than one substructure, which are then compressed and
become indistinguishable for the given class. However, other substructures re-
main as diverse explanations of the same class (e.g., substructures 3 and 5, both
of which describe class #20).

Consequently, we reformulate the dominance criterion,
where a substructure dominates another substructure

(11)

with and being the observed functions that measure the
complexity and support of the substructures, respectively; and

is the niche size. This is the less biased initializa-
tion value, which is calculated as a tradeoff between redundant
and smaller number of accepted substructures [7]. The use of
this modified dominance criterion means that they cover dif-
ferent instances in the same class (i.e., that they are largely
nonoverlapping).

D. Context-Dependent Database Compression (STEP 4)

EMO-CC identifies diverse but nonredundant substructures
that explain classes derived from additional information. This
constitutes a compression process [22] based on circumstantial
queries that allows flexible and context dependent summariza-
tion of the substructures. This step is divided into two processes.
1) Validating substructures, where we reevaluate the quality of
the substructures identified by a conceptual clustering method
by their ability to explain a set of classes derived from an inde-
pendent experiment. We use the hypergeometric measurement
in a test that represents the probability of observing at least
instances from a specific class , derived from an independent
experiment, within an identified substructure of size [56]

(12)

where is the total number of instances in , and is the total
number of instances in the database. The lower the probability of
intersection , the better the quality of the cluster intersection,
and thus, the greater the confidence in the detected substruc-
ture (Fig. 6). This approach differs from supervised learning
methods, which are just focused on learning substructures based
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Fig. 7. Context-dependent database compression algorithm. The quality of ex-
plaining an external class by a set of substructures � is evaluated by using a sta-
tistical test based on the hypergeometric measure ����. Irrelevant substructures
are filtered (3–4) and relevant substructures are compressed (5–12) to provide
more clear and understandable explanations.

on their ability of discriminating among output classes. 2) Fil-
tering and compressing validated substructures, where we se-
lect substructures that explain independent classes with a signif-
icant [27] [Fig. 7, (3)]. Then, we compress a set of substruc-
tures if they can explain the same phenomena by applying the
nondominance relationship to the subset of instances covered
by each substructure [(11), Fig. 7, (4–12)]. The nondominance
relationship needs to be recalculated (i.e., both specificity and
sensitivity objectives) since some of the instances covered by
each substructure do not belong to the given class, thus, we re-
move them from the set. These compressed substructures can be
indistinguishable for a specific class in a particular experiment,
but they can be reversed and regrouped in a different fashion
under another experimental conditions.

E. Unsupervised Inference Process (STEP 5)

The EMO-CC methodology classifies new instances based on
a set of optimal substructures resulting from previous steps of
the algorithm. We use a -nearest neighbor unsupervised classi-
fier to explain new instances by their similarity with one or more
substructures. Thus, we classify a query observation based on
a set of substructures previously learned as follows:

(13)

where represents the degree of matching between an observa-
tion and a substructures . The degree of matching is equal
to the substructure complexity (8), where can belong to one
or more substructures with a different membership degree [34].

IV. THE INFLAMMATORY RESPONSE PROBLEM

The host’s response to trauma and burns is a collection of bi-
ological and pathological processes that depends critically upon
the regulation of the human immuno-inflammatory response.
No single research center or small group of centers have the
resources to delineate the integrated response of this complete
biological system, which involves multiple molecular and ge-
netic interactions that vary in time. This study, in part carried out
at the Cellular Injury and Adaptation Laboratory, Washington
University School of Medicine, is a piece of a large-scale re-
search project devoted to profile leukocyte gene expression and
plasma proteins of burn and trauma patients [21]. Prior to initi-
ating studies in actual patients, it was proposed that the human
endotoxin model could serve as a starting point and test bed for
these subsequent studies. Our proposal will help to promote the
identification of significant relationships, which regulate the in-
tegration of this complex biological system, with the expecta-
tion that this understanding will ultimately impact the treatment
of hospitalized patients.

We analyzed 48 GeneChips HG-U133A v2.0 from
Affymetrix, Inc., derived from samples taken from human
blood of eight patients: four treated with intravenous endotoxin
(i.e., patients 1–4) and four with a placebo (i.e., patients 5–8),
and expression retrieved over time at hours 0, 2, 4, 6, 9, and
24. The analysis is performed in three steps: 1) we identify
1770 significantly expressed genes that change their expression
using a very sensitive approach that combines several statistical
methods (e.g., t-tests, permutation tests, analysis of variance
and repeated measures ANOVA) [57], [58], which is a rea-
sonable number of genes for a general-purpose inflammation
process [21]; 2) we arrange the expression levels of the ex-
tracted genes by linking patient 1 hr 0, hr 2, hr 4, hr 6, hr 24,
patient 2 hr 0, hr 2, hr 4, hr 6, hr 24, patient 3 hr 0, hr 2, hr 4, hr
6, hr 24, patient 4 hr 0, hr 2, hr 4, hr 6, hr 24 (control expression
is arranged in a similar fashion); and 3) we separately cluster
treated and control prearranged expression levels into profiles
and identify 24 pairwise differential profiles that change over
time, treatment, or patient [58] (Fig. 8). For example, differ-
ential gene expression among treatment (e.g., Fig. 8, row: 1
column: 1, row: 1 column: 2) and patients (e.g., Fig. 8, row: 1
column: 4, row: 3 column: 1) is explicitly illustrated in several
profiles. Using the selected representation, we can distinguish
differential profiles that reveal even subtle biological variabil-
ities that are usually difficult to identify by averaging gene
expression. We use the GO annotations corresponding to these
1770 genes as our input database, which are provided by the
GO project described in Section II-B. These differential profiles
will be used as a reference partition in the subsequent analysis
of EMO-CC’s results.

In the following sections, we provide details for the database
representation (STEP 1), and the learning process (STEP 2) of
the EMO-CC methodology (Fig. 3) for the inflammatory re-
sponse problem.

A. Graph-Based Database Representation (STEP 1)

The database representation used for the GO domain can be
viewed as a database containing different features, where each
feature has nested values denoting descriptions at different
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Fig. 8. Gene expression profiles from the inflammatory response problem. We account for eight patients: four treated with intravenous endotoxin (i.e., patients
1–4) and four with a placebo (i.e., patients 5–8), and expression retrieved over time at hours 0, 2, 4, 6, 9 and 24, each one corresponding to different GeneChips
and its replicas. The expression profiles are represented separately for each experimental group (i.e., treatment and control), and patients are arranged individually.
Each profile is represented by 24 time points: patient 1 hr 0,� � �, patient 1 hr 24,� � �, patient 4 hr 0,� � �, patient 4 hr 24 (horizontal axis). The vertical axis corresponds
to the gene expression level. Only expression profiles for the treatment group are shown. Differential gene expression among patients is explicitly illustrated in
several profiles (e.g., row: 1, column: 4, row: 3, column: 1). All of these profiles derived from treated patients have their counterpart in control profiles (here not
shown), from which they are differentiated.

Fig. 9. An example of a chromosome representing a substructure (specificity�
������, support� ������). (a) A tree representation of a substructure, where
the gray boxes are the most specific GO terms, and the levels of the terms in the
GO hierarchy are shown in parenthesis. (b) The list of genes that corresponds
to the substructure.

TABLE I
PARAMETERS FOR THE GO DOMAIN

levels of specificity. Therefore, in identifying which distinct
relationships among features best characterize different sets
of observations, we have to consider, not only the process
of grouping distinct type of features (e.g., biological process
GO:0007165 and GO:0050785, representing a signal transduc-
tion process and an advanced glycation end-product receptor
activity, respectively, and cellular component GO:0016021,
representing an integral to membrane situation), but also
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Fig. 10. Relationship between substructures and observations. (a) Substructure #1 and (b) Substructure #2 both represent an observation (c). In this example,
substructure #2 is more specific than substructure #1 and, therefore, more complex, since the leaf nodes from the former belong to level 5, while those of the latter
belong to level 4. The double frame box corresponds to the root of the GO, the boxes indicate cellular component terms, and the number in parenthesis correspond
to the level of the nodes in the GO hierarchy.

TABLE II
COMPARATIVE EVALUATION OF THE SOLUTIONS IDENTIFIED BY APRIORI, SUBDUE, AND EMO-CC FOR THE GO DOMAIN

BY USING DIFFERENT METRICS: (A) � . (B) � . (C) �. (D) ��

Fig. 11. The Pareto fronts obtained by different methods. Each dot represents a solution with the support given by its value on the � axis, and the specificity given
by its value on the � axis. Nondominated solutions reported by: (a) APRIORI, (b) SUBDUE, and (c) EMO-CC.

defining at which level of specificity they have to be repre-
sented. This is even more problematic since several values of
the same type of feature may be useful for describing a set of
observations, and thus, represented in a substructure [e.g., bio-
logical process GO:0007165 (level 4) and GO:0050785 (level
3)]. Consequently, to address the problem of the multilevel
definition of a feature we redefine an instance as the particular

subset of values that constitutes a prefix tree1 of a database
observation. Then, an instance of a substructure occurs in an
observation of the database if a subgraph of the prefix tree
that represents that instance matches with the observation tree.

1Tree � is a prefix tree of � if � can be obtained from � by appending zero
or more subtrees to some of the nodes in � . Notice that any tree � is a prefix of
itself.
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Fig. 12. Boxplots of (a)� and (b)� metrics for EMO-CC in the GO do-
main. The boxplots show the resulting values for each metric in different runs of
EMO-CC. The smaller the boxes in the boxplot, the more homogeneous results
over ten runs.

The substructure tree contains tagged nodes with the type
of feature (e.g., biological process), its corresponding value
(e.g., GO:0007165), and the edges representing relationships
between features (e.g., is_a).

We use the GO database and compatibilize the terms with de-
scriptions provided by Affymetrix (i.e., the type of microarrays
used in this study [59]), where each observation of the database
has the following features.

• Name: Affymetrix identifier for each gene in HG-U133A
v2.0 set of arrays.

• Biological process: List of biological processes where
a gene product is involved. This list is indexed by a list
of GO codes [e.g., GO:0007067 (mitosis), GO:0008152
(metabolic process)]. The processes are broad biological
goals that are accomplished by ordered assemblies of
molecular functions.

• Molecular function: List of biological functions of gene
products, which are indexed by a list of GO codes
[e.g., GO:0030246 (carbohydrate binding), GO:0016887
(ATPase activity)]. These functions are tasks performed
by individual gene products.

Fig. 13. Boxplots of (a) � and (b)�� for the EMO-CC in the GO domain. The
boxplots show the resulting values for each metric in different runs of EMO-CC.
The smaller the boxes in the boxplot, the more homogeneous results over ten
runs.

TABLE III
CLASS #13 AND SUBSTRUCTURE INTERSECTIONS

• Cellular component: List of cellular components in-
dicating location of gene products, which are indexed
by a list of GO codes [e.g., GO:0005634 (nucleus),
GO:0019012 (virion)]. These components are subcellular
structures, locations, and macromolecular complexes.
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TABLE IV
SUBSTRUCTURES DERIVED FROM THE GO DATABASE BY EMO-CC EXPLAINING CLASS #13 GENE EXPRESSION PROFILE ��� � ���� �� �

B. Multiobjective GP Structure Learning (STEP 2)

The chromosome representation used in the GO domain is a
tree-like structure (Fig. 9). Each node of this tree corresponds to
a GO term, and each edge corresponds to a is_a or part_of
relationship.

The complexity of the substructures in the GO domain is not
linearly dependent on its size (8). This happens because the GO
ontology is composed of terms that can be located at different
levels in the hierarchy. For example, a substructure (substructure
#1) is less specific than another substructure (substructure #2),
if the leaf nodes from the former belong to a lower level (level
4) than the latter (level 5) (Fig. 10). However, by calculating the
complexity as the number of edges plus nodes of each substruc-
ture, the first substructure reaches a higher evaluation value (i.e.,

) than the second (i.e., ). Thus,
we redefine the complexity as specificity, extending the original
objective by including not only the size of the substructure mea-
sured by the number of nodes and edges, but also the accuracy
of the substructure in modeling the covered instances

(14)

where is the number of instances occurring in substructure
, is the number of leaf-nodes in the th instance occurring

in substructure , and is a leaf-node of the th instance
occurring in substructure . The distance between a node
and a substructure is calculated as the number of edges between
the given node and its closest ancestor in the GO hierarchy ap-
pearing in the given substructure. The level of a node is cal-
culated as the length of the shortest path to the root node. For
example, to obtain a all nodes of the instance

must appear in the substructure and their distances to the sub-
structure must be zero.

V. EXPERIMENTS AND ANALYSIS OF RESULTS

The structural database used for the GO domain is composed
of 1770 significantly expressed genes, extracted from the set
of the total genes available in a GeneChip (i.e., approximately
22 000), and their GO associated terms. The population of the
EA is initialized by 50% of randomly chosen subtrees from the-
database, and by another 50% of random trees. This randomiza-
tion procedure is needed to avoid the potential bias introduced
in the search process using only a subset of GO terms instead of
the complete GO database.

We execute EMO-CC ten times with different seeds and a
set of parameters that maximizes the computational perfor-
mance (Table I). We analyze the sensitivity of the parameters,
increasing the population (e.g., from 200 to 800) and changing
the operator probabilities (e.g., crossover from 0.6 to 0.9 and
mutation from 0.1 to 0.3). The similar results obtained by
this analysis suggests that the NSGA-II has a robust behavior.
Then, we used the average of the ten runs to report the results
evaluated by the metrics , , , and .

In the following sections, we show the experimental results
obtained by EMO-CC in the inflammatory response problem
(STEPS 3–5). In the first section (STEP 3), we compare
EMO-CC with two other methods: the conceptual clustering
method SUBDUE [22], and the APRIORI unsupervised method
[60], which is adapted for using structural data. In the second
subsection (STEP 4), we perform a context-dependent database
compression of the learned substructures that can explain gene
expression. Also, we introduce a comparison with two other
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state-of-the-art GO mining methods, FatiGO [24] and OE [25].
Finally, the last section (STEP 5) shows the results obtained
in the inference process, allowing to predict new substructure
members.

A. Pareto Nondominance Clustering Evaluation (STEP 3)

Since both APRIORI and SUBDUE methods are not MO
algorithms, we remove from the final set of solutions of both
methods those solutions that are dominated, to provide a com-
parable set of substructures. For APRIORI, we also transform
the original structural database into a plain repository by adding
all parent terms for each GO term used in the biological applica-
tion. The results for a single run are reported. We show the union
of the results obtained by SUBDUE from three runs, each one
using a different optimization criteria, including: support (i.e.,
the number of instances occurring in a substructure), complexity
(i.e., the size of the substructure calculated as the number of
bits needed to encode the adjacency matrix corresponding to the
graph [22]), and a weighted sum metric that combines the latter
two (i.e., MDL [10]), which is the default option of SUBDUE.
The results obtained by APRIORI and SUBDUE are compared
with each of the Pareto sets found by EMO-CC, when using the
MO evaluation metrics.

The substructures recovered by EMO-CC obtain a better cov-
erage of the Pareto front extent than SUBDUE and APRIORI, as
reported by metric [Table II(a)]. The results also reveal that
EMO-CC obtains the most diverse substructures, as evaluated
by metric [Table II(b)] and illustrated by the Pareto fronts
(Fig. 11). Moreover, EMO-CC obtains robust results when eval-
uated for ten runs (Fig. 12).

In addition, we apply two other metrics, and , to
compare the Pareto sets of the different methods. To do so,
we modify both metrics replacing the classical nondominance
criterion by the one introduced in Section III-C (10) to ac-
count for diversity. The obtained results reveal that there is no
solution found by EMO-CC that is dominated by APRIORI,
and only one solution obtained by SUBDUE dominates a
solution belonging to the EMO-CC Pareto set, as described
by metric [Table II(c) and Fig. 13(a)]. Moreover, EMO-CC
discovers more nondominated solutions than both APRIORI
and SUBDUE, as evaluated by metric [Table II(d) and
Fig. 13(b)]. The difference between the values reported by
the metric from EMO-CC and those from APRIORI
and SUBDUE [i.e., 181.89 and 171.80 versus 1.20 and 1.60
from Table II(d)] suggests that EMO-CC retrieves almost all
solutions identified by the other methods and covers a wide
set of all optimal solutions in the GO domain. Moreover, both
APRIORI and SUBDUE obtain a limited number of nondomi-
nated solutions in comparison with the EMO-CC methodology
(Fig. 11 and Appendix Table VII, available at http://www.iee-
explore.ieee.org). Besides, EMO-CC extracts more diverse
solutions, in the objective space, than those found by APRIORI
and SUBDUE. Particularly, our approach retrieves substruc-
tures of the Pareto optimal front containing few instances but
harboring several features (i.e., cohesive substructures), which
were undetected by the other methods. Moreover, EMO-CC
finds diverse solutions in the variable space due to the niching
strategy used in the nondominance measure (Section III-C).

TABLE V
RESULTS OBTAINED FROM THE FATIGO METHOD. (A) BIOLOGICAL PROCESS

(BP). (B) MOLECULAR FUNCTION (MF). (C) CELLULAR COMPONENT (CC)

The examination of the results obtained by APRIORI and
SUBDUE suggests that their deficiencies can be attributed to
(i) the linearization of the database in the APRIORI method,
which constrains the data representation; (ii) the thresholds
used in APRIORI, which discard substructures with few mem-
bers, even if they cohesively share several features; and (iii) the
inflexibility caused by weighting the evaluation objectives in
SUBDUE (i.e., complexity and support) into a single function,
which can constrain the set of solutions to a single or limited
region of the search space.

B. Context-Dependent Database Compression Using Gene
Expression Profiles (STEP 4)

We use 24 gene expression profiles (Fig. 8), which constitute
the independent classes used for validating the substructures de-
tected by the three methods previously described, or, in other
words, which can be explained by these substructures. For ex-
ample, class #13 constitutes a differential gene expression pro-
file that changes between treatment and control gene expression
(Fig. 15). This class is described by several substructures identi-
fied by EMO-CC, including substructure #89, #179, and #256,

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on January 24, 2010 at 07:53 from IEEE Xplore.  Restrictions apply. 



692 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 12, NO. 6, DECEMBER 2008

TABLE VI
RESULTS OBTAINED FROM THE ONTO-EXPRESS (OE) METHOD.

(A) BIOLOGICAL PROCESS (BP). (B) MOLECULAR FUNCTION (MF). (C) CELLULAR COMPONENT (CC)

at different coincidence levels represented by the (12) be-
tween classes and substructures [Fig. 16(c) and Table III,

]. Substructure #89 describes class #13 based on a
cell communication biological process located at the integral to
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Fig. 14. The nondominated solutions obtained by EMO-CC. (a)–(c) Each subplot shows nondominated solutions in different neighborhoods, which do not compete
with each other, as a consequence of the multimodal policy followed by EMO-CC.

the plasma membrane or, in a more general case, at the integral
to membrane cellular component (Table IV). A slightly different
description is provided by substructure #256, which includes a
cellular physiological process (Table IV). A different example
is given by substructure #179, which describes an apoptosis
process (i.e., a form of programed cell death) located at the in-
tegral to plasma membrane (Table IV). Significantly, these de-
scriptions are based on different types of features (e.g., biolog-
ical process and cellular components) that belong to different
levels of the GO hierarchy (e.g., level 6 or level 4). These di-
verse substructures are optimal in the sense that they belong to
the Pareto optimal set composed of specific and sensitive de-
scriptions (Fig. 11).

We compare the performance of EMO-CC for extracting bio-
logically valid substructures with APRIORI and SUBDUE. We
have already seen that EMO-CC subsumes those solutions ob-
tained by the other methods and provides novel and diverse op-
timal solutions (i.e., belonging to the Pareto optimal set) by the
evaluation of several quantitative metrics. A qualitative evalua-
tion of these methods reveals that EMO-CC obtains more spe-
cific substructures than the other methods for those substruc-
tures discovered in common. Moreover, the matching among
substructures retrieved by EMO-CC and the independently ob-
tained classes derived from the expression profiles is better than
the one achieved by the other methods. For example, substruc-
ture #5 identified by APRIORI matches with class #15 with a
of , while the corresponding for substructure
#811 retrieved by EMO-CC is (Fig. 16).

We compress those substructures that explain the same ex-
pression profile to provide a summarized description of this
phenomenon. The 24 expression profiles can be explained by
45 substructures of GO terms (Appendix Table VII, available
at http://www.ieeexplore.ieee.org). For example, substructures
#89 and #256, which explain class #13 are compressed because
they are indistinguishable for this class (Table IV). However,
substructure #179 describes it from a very different point-of-
view and it is preserved as a diverse solution. This compression
is dynamic because substructures are regrouped in a context-de-

Fig. 15. Class #13 differential expression profile encodes genes with different
behavior between treatment and control, with a similar pattern among patients.
(a) Gene expression corresponding to treated patients. (b) Gene expression from
patients belonging to the control group.
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Fig. 16. Description of gene expression profiles that are explained by GO substructures. Each intersection is represented by a circle, where the size corresponds to
the number of elements in common between a class and a substructure, and the color illustrates the probability of intersection (green: low, red: high). (a) APRIORI.
(b) SUBDUE. (c) A subset of all EMO-CC intersections. The complete graph is shown in the Appendix (Fig. 21, available at http://www.ieeexplore.ieee.org).

pendent fashion, where the context corresponds to an explained
class, and a different classification can produce a distinct sub-
structure association (e.g., substructures #89 and #256 are in-
distinguishable for class #13, while it may not be the case for
other classes of microarray or clinical experiments). An emer-
gent property of current explanations provided by the substruc-
tures retrieved by EMO-CC consists of their usefulness for dif-
ferentiating even subtle expression patterns (Fig. 17). Notably,
this classification is performed based on external information
provided by the GO database, instead of the levels of expression.

In addition to previous methods, we also compared the per-
formance of EMO-CC with two other state-of-the-art methods
typically used for GO analysis. To do so, we investigate FatiGO
and OE by running them three times to extract the GO terms

associated with genes expressed in the inflammatory response
problem. This happens because both methods need separate runs
for each type of feature [i.e., biological process (BP), molecular
function (MF), cellular component (CC)]. Indeed, FatiGO needs
the specification of a predefined level of the GO hierarchy, thus,
we used the default level 3. Both methods organize their results
by a ranked percentage of matching between a query, which in
this case corresponds to the class #13 gene expression profile,
and the retrieved GO terms (Tables V and VI). To standardize
the between GO terms and the query set, we recalculate it for
all methods by using the relevant GO occurrences in the 1770
genes with significant expression for the inflammatory problem.

The best ranked result provided by FatiGO for the BP on-
tology is the term GO:0007154 cell communication, which
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Fig. 17. Compressed substructures that explain class #13 expression profile (Fig. 8, row: 3 column: 3). Class #13 is explained by seven substructures (color-coded
subgraphs show compression of substructures from Table IV). These substructures are arranged by parental order in the GO database and compressed, dissecting
similar expression patterns based on independent information provided by GO.

achieves a of (Table V). EMO-CC identifies
two substructures containing this term (Table IV): substructure
#89, containing terms GO:0007154 cell communication and
GO:0016021 integral to membrane; and substructure #256, con-
taining terms GO:0007154 cell communication, GO:0050875
cellular physiological process and GO:0016021 integral to
membrane. Both substructures explain class #13 but with more
accurate : and , respectively. In-
deed, the second ranked solution for the BP ontology obtained
by FatiGO is the term GO:0050789 regulation of biological
process with a of 0.46. EMO-CC uncovers two substruc-

tures including this term: substructure #469, containing terms
GO:0050789 regulation of BP and GO:0007154 cell commu-
nication; and substructure #34, containing terms GO:0050789
regulation of biological process and GO:00016020 membrane.
Both of them with a , suggesting better explana-
tions than the ones provided by FatiGO. The analysis of the
ranked terms in MF and CC ontologies presents similar results.

The most relevant solutions obtained by OE for the BP
ontology is the term GO:0006955 immune response, which
achieves a of (Table VI). EMO-CC achieves sim-
ilar results with substructure #250. Indeed, EMO-CC identifies
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Fig. 18. Example of a novel annotation uncovered by EMO-CC (dashed lines) based on substructure #380. The tree represents the GO hierarchy with the three
subontologies as the main branches (GO:0008150 “biological process,” GO:0003674 “molecular function,” and GO:0005575 “cellular component”). This annota-
tion include GO terms from different subontologies and defined at different levels of specificity.

three other nondominated substructures that include several GO
terms: substructure #536, containing terms GO:0007165 signal
transduction and GO:0016021 integral to membrane; substruc-
ture #759, containing terms GO:0007165 signal transduction
and GO:0005887 integral to plasma membrane; and substruc-
ture #380, containing terms GO:0007165 signal transduction,
GO:0050875 cellular physiological process and GO:0016021
integral to membrane. All of these substructures are better
explanations than the single term recovered by OE achieving
a of , , and ,
respectively. Curiously, OE retrieves the term GO:0006954
inflammatory response, which is pertinent for this study, with
a of 0.62 for substructure #13. In addition to this weak
explanation, EMO-CC finds that this term in conjunction with
term GO:0005622 intracellular accurately explain class #17
with a of . Again, we obtain similar results for
the other ontologies considered in this study.

Summarizing, EMO-CC discovers substructures com-
posed of different subontologies defined at distinct levels
of specificity (Fig. 14 and Appendix Table VII, available at
http://www.ieeexplore.ieee.org). Neither FatiGO nor OE are
able to provide a comprehensive strategy to encode this infor-
mation in their solutions. Instead, they report an exhaustive
lists of all individual terms at each of the levels queried by
the user. Moreover, these methods supply individual results
that always conceal relevant relationships between them. For
example, OE reports two solutions that explain substructure
#13 consisting of term GO:0007242 intracellular signaling
cascade and term GO:0007165 signal transduction, but missed
the parental relationship between them (Table VI). In contrast,
EMO-CC provides optimal and diverse substructures within
an appropriate inclusive order that can explain independent
experiments (Fig. 17).

The substructures identified by EMO-CC can be considered
new annotations (Fig. 18 and Table IV). These annotations in-
clude different types of features defined at distinct hierarchi-
cally organized levels of specificity, which can be used to un-
cover new members to the underlying substructures based on
the similarity with the corresponding GO terms. Consequently,

this guideline can be used to indirectly classify new members of
an expression class, as we will see in the next section.

Finally, we validate the GO substructures obtained by
EMO-CC using a high-quality hand-curated database termed
Ingenuity Pathways Knowledge Base [61], which is, at the
moment, a gold-standard for metabolic pathways. We queried
this database with the web-based entry tool developed by
Ingenuity Pathways Analysis (IPA) [61]. For example, by using
the list of genes from class #13, the best description identified
by IPA (score 45, focus genes 21) functionally corresponds
to an inflammatory network Inflammatory Disease (Appendix
Table VIII and Appendix Fig. 22, available at http://www.iee-
explore.ieee.org). Moreover, Inflammatory Disease is the
prevalent function of this network with p-values between

(Appendix Table IX, available
at http://www.ieeexplore.ieee.org), suggesting that class #13
and the EMO-CC substructures that explain it constitute a
meaningful biological association.

C. Unsupervised Classifier Inference Process (STEP 5)

The EMO-CC methodology classifies new instances by their
similarity with one or more substructures using a -nearest
neighbor unsupervised classifier. We evaluate the performance
of the proposed inference process by the following procedure:
1) we perform a holdout of our original dataset in two subsets:
training data and test data, with 80% and 20% of the original
dataset, respectively, selected randomly without reposition [62]
and apply STEPS 2 and 3 to the training data; 2) for each gene
in the test set we use its GO annotation to calculate its member-
ship to the set of substructures identified in 1) using (13) and
select the substructure with the highest membership value as
the best prediction; and 3) we test the accuracy of the inference
process by: (3.1) identifying the expression class explained
by the selected substructure; (3.2) calculating its centroid as a
weighted average of the expression values of its members [34];
and (3.3) computing the Pearson correlation (PC) [63] between
the expression of the predicted gene and the centroid of (3.2).

We illustrate this process by: 1) evaluating the gene
203107_x_at from the test set [Fig. 19(a)]; 2) calculating its
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Fig. 19. The EMO-CC inference process. The new observation classified by
EMO-CC is color-coded in red within the inferred substructure, while the cen-
troid of the substructure is color-coded in blue. Expression of the substruc-
tures that classify (a) gene 203107_x_at, (b) gene 208982_at, (c) gene
216316_x_at, and (d) gene 211676_x_at.

membership to the set of the previously identified substructures.
Since the obtained substructures are not disjointed, a given
observation may belong to more than one substructure [e.g.,
probe set 203107_x_at has a membership degree greater
than zero in substructure #2 (0.24), #8 (0.25), #16 (0.63), #28
(0.68), #33 (0.70), #34 (0.76), and #127 (0.91)]. Therefore, we
select the maximum value among the different memberships,
classifying the target probe set into substructure #127. Then,
we test the accuracy of the predictions by (3.2) calculating the
centroid corresponding to substructure #127 [Fig. 19(a)], which
is a cohesive profile with very similar expression pattern of
its members. Afterwards, in (3.3), we calculate the correlation
between the gene 203107_x_at and the former centroid

and evaluate the prediction as a positive matching.
Similar results are observed with other genes in the test set
[Fig. 19(b)–(d)].

We evaluate the complete test set by considering substruc-
tures with at least GO terms, where ranges between 1 and
4. Our results indicate that 70% of the successful predictions
can be achieved by using four GO terms [Fig. 20(a)], showing
that the performance increases as the number of GO terms in-
creases. However, this monotonic process is not conserved when
the specificity of a given substructure is improved. For example,
by increasing the specificity values of the former substructures
from 0.5 to 0.9, we cannot observe an improvement in the pre-
diction performance [Fig. 20(b)]. These results suggest that ap-
proaches that widely explore GO database in the complete fea-
ture space (i.e. all GO terms from biological process, molec-
ular function and cellular component) can be appropriate for de-
scribing and predicting gene expression patterns.

The proposed testing process indicates a strategy to predict
gene expression patterns based on an independent source of
data such as GO terms. However, several classification errors re-
sult from ambiguous annotation terms or too general categories,
as well as missing information in the GO database rather than
misclassifications [64]. Many of these problems will be solved
when the GO database becomes more accurately curated.

VI. CONCLUSION

Unlike typical clustering techniques, conceptual clustering
methods have been successfully applied to structural informa-
tion in order to reveal hidden concepts by searching through
a predefined space of potential hypothesis. However, the for-
mulation of the search problem in a structural database would
often result in a conflicting paradigm. On the one hand, gener-
ating a large number of substructures, each containing a very
small number of instances that share many features, makes it
hard to find commonalities among similar observations. On the
other hand, generating a small number of substructures, where
their members share a limited number of features, would fail
to discriminate between similar members. Therefore, any suc-
cessful methodology should also consider more adequate trade-
offs among different criteria to evaluate substructures that un-
cover meaningful concepts always hidden in large datasets.

A. EMO-CC Methodology

Several characteristics distinguish EMO-CC from other con-
ceptual clustering methods.
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Fig. 20. Performance of the EMO-CC inference process evaluated by consid-
ering substructures with different number of terms defined at distinct speci-
ficity levels. (a) Accuracy of the inference process evaluating the test set, where
substructures contain 1–4 GO terms. (b) Accuracy of the EMO-CC inference
process evaluating the test set, where substructures contain only one term with
specificity levels from 0.5 to 0.9.

• EMO-CC searches for all optimal solutions among mul-
tiple criteria (i.e., Pareto optimality) [17], which avoids the
biases that might result from using any specific weighting
scheme [10]. This allows the detection of cohesive substruc-
tures even those comprising a small number of instances
that would remain undetected by methods that emphasize
the support of a substructure [23]. We showed that the
EMO-CC algorithm, by using a multiobjective approach,
obtains more diverse Pareto optimal sets and dominates
most of the substructures provided by the other methods.

• EMO-CC has a multimodal nature that allows alternative
descriptions of a system by providing several adequate so-
lutions [7], [17], thus recovering locally optimal targets
that could be meaningful [15], [65]. This differentiates
EMO-CC from methods that are focused on a single op-
timum [24].

• EMO-CC performs a local feature selection for each sub-
structure, because not every feature is relevant for every

substructure [28], and a priori, we do not know which fea-
tures are meaningful for a given set of instances. This is in
contrast to approaches that filter or reduce features for all
possible clusters [29].

• EMO-CC allows gene membership to more than one sub-
structure by using a flexible classifier [34], [57], [66], thus
explicitly treating the substructures as hypotheses that can
be tested and refined [6]. This distinguishes EMO-CC from
other approaches that prematurely force instances into dis-
joint clusters [67].

Finally, EMO-CC is applicable to a wide set of domains,
being easy to customize to particular problem, and may be an
appropriate technique to uncover rare and unknown patterns in
structural databases. Particularly, this guideline can be easily ex-
tended to more complex networks comprising protein–protein
or different regulatory interactions [1], [2]. Indeed, EMO-CC
efficiently searches the feature space in acceptable run times,
while computational times of exhaustive search algorithms are
intractable.

B. GO and Structural Database Domains

Again, several characteristics distinguish EMO-CC from
other approaches typically used in GO databases.

• EMO-CC uses a multivariate and multilevel approach,
where substructures are discovered based on several types
of hierarchical features. For example, substructures iden-
tified in the GO database include features or terms derived
from different information sources (e.g., cellular compo-
nents or biological processes). Moreover, each feature is
defined at a different specificity level in a graph-based
structure. This guideline distinguishes our methodology
from other approaches, like FatiGO [24] and OE [25],
where each type of feature is individually treated, and the
specificity level is selected a priori.

• EMO-CC considers gene expression as one independent
feature, thereby allowing classification of genes even
in the absence of its expression. This approach differs
from supervised learning methods that group features
and instances based on a explicitly defined dependent
class. Instead, EMO-CC uses an unsupervised strategy
that compresses similar groups of substructures based in
their ability to describe independent classes derived from
different experimental conditions (e.g., microarray expres-
sion, or chip-on-chip binding occupancy). This approach
changes according to the experimental class, thus differing
from fixed approaches that use an irreversible database
compression [22]. Sometimes, expression-dependent char-
acterizations only allows a relatively crude classification of
genes into a limited number of classes, which can conceal
rather than reveal novel interesting profiles [15].

• EMO-CC uses a simple classification procedure that allows
to predict gene expression patterns based on an indepen-
dent set of features like GO terms. Although the prediction
accuracy increases when substructures with more features
(i.e., GO terms) are considered, it does not change when
the complexity of these features is improved. Curiously, the
specificity of the ontologies is the center of the current de-
bates about their applicability [68]. Therefore, approaches
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like EMO-CC, that emphasize wide searches in the fea-
ture space can be appropriate for describing and predicting
gene expression patterns. However, methods that focus on
one type of feature cannot improve their results even if they
add more levels to the analysis.

C. Biological Domain

We investigated the inflammatory response problem by
means of a study performed on human volunteers treated with
intravenous endotoxin compared to a placebo. Understanding
this problem is critical because the majority of deaths are
caused due to inflammatory diseases [21]. The response to
inflammation is a complex problem that considers gene profiles
that reflect differences in gene expression over time, treatment,
and patient. Most state-of-the-art methods can normally recover
the most obvious relations, but fail to discover the less frequent
but more informative underlying data associations.

We showed that EMO-CC produces annotations that explain
coexpressed genes and can be used to make predictions by using
an independent source of information. We demonstrated that
these annotations are biologically meaningful because they rep-
resent inflammatory regulatory networks.

ACKNOWLEDGMENT

The authors thank C. del Val, C. Previti, H. Huang, and
A. Polpitiya for useful suggestions.

REFERENCES

[1] V. Siripurapu, J. Meth, N. Kobayashi, and M. Hamaguchi, “Dbc2
significantly influences cell-cycle, apoptosis, cytoskeleton and mem-
brane-trafficking pathways,” J. Molecular Biol., vol. 346, no. 1, pp.
83–89, 2005.

[2] A. Nikitin, S. Egorov, N. Daraselia, and I. Mazo, “Pathway studio—
The analysis and navigation of molecular networks,” Bioinformatics,
vol. 19, no. 16, pp. 2155–2157, 2003.

[3] T. G. O. Consortium, “Gene ontology: Tool for the unification of bi-
ology,” Nature Genet., vol. 25, pp. 25–29, 2000.

[4] G. Schuler, J. Epstein, H. Ohkawa, and J. Kans, “Entrez: Molecular
biology database and retrieval system,” Methods Enzymol., vol. 266,
pp. 141–162, 1996.

[5] D. Cook, L. Holder, S. Su, R. Maglothin, and I. Jonyer, “Structural
mining of molecular biology data,” IEEE Eng. Med. Biol., Special Issue
on Advances in Genomics, vol. 4, no. 20, pp. 67–74, 2001.

[6] T. Mitchell, Machine Learning. New York: McGraw-Hill, 1997.
[7] E. Ruspini and I. Zwir, “Automated generation of qualitative represen-

tations of complex object by hybrid soft-computing methods,” in Pat-
tern Recognition: From Classical to Modern Approaches, S. Pal and A.
Pal, Eds. Singapore: World Scientific Company, 2001, pp. 453–474.

[8] I. Zwir, R. Romero-Zaliz, and E. Ruspini, “Automated biological se-
quence description by genetic multiobjective generalized clustering,”
in Techniques in Bioinformatics and Medical Informatics, F. Valafar,
Ed., 2002, vol. 980, pp. 65–82.

[9] R. Romero-Zaliz, I. Zwir, and E. Ruspini, “Generalized Analysis of
Promoters (GAP): A method for DNA sequence description,” in Ap-
plications of Multi-Objective Evolutionary Algorithms. Singapore:
World Scientific, 2004, pp. 427–450.

[10] J. Rissanen, Stochastic Complexity in Statistical Inquiry Theory. Sin-
gapore: World Scientific, 1989.

[11] E. Ruspini and I. Zwir, “Automated qualitative description of measure-
ments,” in Proc. 16th IEEE Instrum. Measure. Technol. Conf., Venice,
Italy, 1999, vol. 2, pp. 1086–1091.

[12] I. Zwir, H. Huang, and E. Groisman, “Analysis of differentially-regu-
lated genes within a regulatory network by GPS genome navigation,”
Bioinformatics, vol. 21, no. 22, pp. 4073–4083, Nov. 2005.

[13] L. McCue, W. Thompson, C. Carmack, M. P. Ryan, J. S. Liu, V. Der-
byshire, and C. E. Lawrence, “Phylogenetic footprinting of transcrip-
tion factor binding sites in proteobacterial genomes,” Nucleic Acids
Res, vol. 29, pp. 774–782, 2001.

[14] A. Martinez-Antonio and J. Collado-Vides, “Identifying global regu-
lators in transcriptional regulatory networks in bacteria,” Curr. Opin.
Microbiol., vol. 6, pp. 482–489, 2003.

[15] I. Zwir, D. Shin, D. A. Kato, K. Nishino, T. Kunihiko, F. Solomon,
J. Hare, H. Huang, and E. Groisman, “Dissecting the PhoP regulatory
network of Escherichia coli and Salmonella enterica,” PNAS, vol. 102,
no. 8, pp. 2862–2867, 2005.

[16] , T. Back, D. Fogel, and Z. Michalewicz, Eds., Handbook of Evolu-
tionary Computation. Bristol, U.K.: IOP Publishing, 1997.

[17] K. Deb, Multi-Objective Optimization Using Evolutionary Algo-
rithms. New York: Wiley, 2001.

[18] C. Coello-Coello, D. V. Veldhuizen, and G. Lamont, Evolutionary
Algorithms for Solving Multi-Objective Problems, ser. Genetic Algo-
rithms and Evolutionary Computation. Norwell, MA: Kluwer, 2002.

[19] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol.
Comput., vol. 6, pp. 182–197, 2002.

[20] J. Dróo, A. Pétrowski, E. Taillard, and A. Chatterjee, Metaheuristics for
Hard Optimization: Methods and Case Studies. New York: Springer,
2005.

[21] S. Calvano, W. Xiao, D. Richards, R. Felciano, H. Baker, R. Cho,
R. Chen, B. Brownstein, J. Cobb, T. S.K., C. Miller-Graziano, L.
Moldawer, M. Mindrinos, R. Davis, R. Tompkins, and S. Lowry, L.
S. C. R. ProgramInflamm, and H. R. to Injury, “A network-based
analysis of systemic inflammation in humans,” Nature, vol. 437, no.
7061, pp. 1032–1037, 2005.

[22] I. Jonyer, D. J. Cook, and L. B. Holder, “Discovery and evaluation of
graph-based hierarchical conceptual clusters,” J. Mach. Learn. Res.,
vol. 2, pp. 19–43, 2001.

[23] R. Agrawal and J. Shafer, “Parallel mining of association rules,” IEEE
Trans. Knowl. Data Eng., vol. 8, pp. 962–969, 1996.

[24] F. Al-Shahrour, R. Díaz-Uriarte, and J. Dopazo, “Fatigo: A web tool
for finding significant associations of gene ontology terms with groups
of genes,” Bioinformatics, vol. 20, pp. 578–580, 2004.

[25] P. Khatri, P. Bhavsar, G. Bawa, and S. Draghici, “Onto-tools: An
ensemble of web-accessible, ontology-based tools for the functional
design and interpretation of high-throughput gene expression experi-
ments,” Nucleic Acids Research, vol. 32, pp. 449–456, 2004.

[26] R. Duda, P. Hart, and D. Stork, Pattern Classification, 2 ed. New
York: Wiley, 2000.

[27] G. Der and B. Everitt, A Handbook of Statistical Analyses Using SAS.
London, U.K.: Chapman-Hall, 1996.

[28] H. Liu and H. Motoda, Feature Selection for Knowledge Discovery and
Data Mining. Dordrecht: Kluwer, 1988.

[29] K. Yeung and W. Ruzzo, “Principal component analysis for clustering
gene expression data,” Bioinformatics, vol. 17, pp. 763–774, 2001.

[30] P. Cheeseman and R. W. Oldfors, Selecting Models From Data.
Berlin, Germany: Springer-Verlag, 1994.

[31] A. Aho, J. Hopcroft, E. John, and J. Ullman, Data Structures and Al-
gorithms, ser. Addison-Wesley Series in Computer Science and Infor-
mation Processing. Reading, MA: Addison-Wesley, 1983.

[32] D. M. Chickering, “Optimal structure identification with greedy
search,” J. Mach. Learn. Res., vol. 3, pp. 507–554, 2003.

[33] P. Larranaga, M. Poza, Y. Yurramendi, R. H. Murga, and C. M. H. Kui-
jpers, “Structure learning of Bayesian networks by genetic algorithms:
A performance analysis of control parameters,” IEEE J. Pattern Anal.
Mach. Intell., vol. 18, pp. 912–926, 1996.

[34] J. Bezdek, “Fuzzy clustering,” in Handbook of Fuzzy Computation, E.
Ruspini, P. Bonissone, and W. Pedrycz, Eds. College Park, MD: In-
stitute of Physics Press, 1998, pp. f6.1:1–f6.6:19.

[35] G. Grothaus, A. Mufti, and T. Murali, “Automatic layout and visualiza-
tion of biclusters,” Algorithms Molecular Biology, vol. 1, no. 15, 2006.

[36] L. Hall, I. Ozyurt, and J. Bezdek, “Clustering with a genetically
optimized approach,” IEEE Trans. Evol. Comput., vol. 3, no. 2, pp.
103–112, 1999.

[37] S. Pan and K. Cheng, “Evolution-based tabu search approach to auto-
matic clustering,” IEEE Trans. Syst., Man, Cybern. Part C: Applica-
tions and Reviews, vol. 37, no. 5, pp. 827–838, 2007.

[38] J. Handl and J. Knowles, “An evolutionary approach to multiobjective
clustering,” IEEE Trans. Evol. Comput., vol. 11, no. 1, pp. 56–76, Feb.
2007.

[39] M. Morita, R. Sabourin, F. Bortolozzi, and C. Y. Suen, “Unsupervised
feature selection using multi-objective genetic algorithms for hand-
written word recognition,” ICDAR, vol. 02, p. 666, 2003.

[40] P. Delima and G. Yen, “Multiple objective evolutionary algorithm
for temporal linguistic rule extraction,” ISA Trans., vol. 44, no. 2, pp.
315–327, 2005.

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on January 24, 2010 at 07:53 from IEEE Xplore.  Restrictions apply. 



700 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 12, NO. 6, DECEMBER 2008

[41] B. Alatas, E. Akin, and A. Karci, “Modenar: Multi-objective differen-
tial evolution algorithm for mining numeric association rules,” Appl.
Soft Comput. J., vol. 8, no. 1, pp. 646–656, 2008.

[42] A. Prelic, S. Bleuler, P. Zimmermann, A. Wille, P. Buhlmann, W.
Gruissem, L. Hennig, L. Thiele, and E. Zitzler, “A systematic compar-
ison and evaluation of biclustering methods for gene expression data,”
Bioinformatics, vol. 22, no. 9, pp. 1122–1129, 2006.

[43] S. Mitra and H. Banka, “Multi-objective evolutionary biclustering of
gene expression data,” Pattern Recogn., vol. 39, no. 12, pp. 2464–2477,
2006.

[44] E. Zitzler and L. Thiele, “Multiobjective evolutionary algorithms: A
comparative case study and the strength Pareto approach,” IEEE Trans.
Evol. Comput., vol. 3, no. 4, pp. 257–271, Nov. 1999.

[45] E. Zitzler, K. Deb, and L. Thiele, “Comparison of multiobjective evo-
lutionary algorithms: Empirical results,” Evol. Comput., vol. 8, no. 2,
pp. 173–195, 2000.

[46] K. Deb and A. R. Reddy, “Reliable classification of two-class cancer
data using evolutionary algorithms,” BioSystems, vol. 72, no. 1–2, pp.
111–129, Nov. 2003.

[47] J. Koza, Genetic Programming: On the Programming of Computers by
Means of Natural Selection. Cambridge, MA: MIT Press, 1992.

[48] M. Oltean and C. Grosan, “Using traceless genetic programming for
solving multi-objective optimization problems,” J. Experimental and
Theoretical Artif. Intell., vol. 19, no. 3, pp. 227–248, 2007.

[49] Y. Zhang and P. Rockett, “Feature extraction using multi-objective ge-
netic programming,” Studies in Computational Intelligence, vol. 16,
pp. 75–99, 2006.

[50] K. Rodriguez-Vazquez, C. Fonseca, and P. Fleming, “Multiobjective
genetic programming: A nonlinear system identification application,”
in Proc. Late Breaking Papers at the 1997 Genetic Programming Conf.,
J. Koza, Ed., Stanford, CA, Jul. 13–16, 1997, pp. 207–212, Stanford
Univ..

[51] O. Cordón, E. Herrera-Viedma, and M. Luque, “Evolutionary learning
of Boolean queries by multiobjective genetic programming,” in Proc.
7th International Conference on Parallel Problem Solving from Nature
(PPSN-VII), Granada, Spain, 2002, vol. 2439, Lecture Notes in Com-
puter Science, pp. 710–719.

[52] O. Cordón, E. Herrera-Viedma, and M. Luque, “Improving the learning
of Boolean queries by means of a multiobjective IQBE evolutionary
algorithm,” Inf. Process. Manage., vol. 42, no. 3, pp. 615–632, 2006.

[53] M. Wong and K. Leung, Data Mining Using Grammar-Based Genetic
Programming and Applications. Norwell, MA: Kluwer, 2000.

[54] J. Horn and N. Nafpliotis, Multiobjective optimization using the niched
Pareto genetic algorithm Urbana, IL, Tech. Rep. IlliGAl Rep. 93005,
1993.

[55] P. Jaccard, “The distribution of flora in the alpine zone,” The New Phy-
tologist, vol. 11, no. 2, pp. 37–50, 1912.

[56] S. Tavazoie, J. Hughes, M. Campbell, R. Cho, and G. Church, “Sys-
tematic determination of genetic network architecture,” Nature Genet.,
vol. 22, no. 3, pp. 281–285, 1999.

[57] A. Gasch and M. Eisen, “Exploring the conditional coregulation of
yeast gene expression through fuzzy k-means clustering,” Genome Bi-
ology, vol. 3, p. RESEARCH0059, 2002.

[58] C. Rubio-Escudero, R. Romero-Zaliz, O. Cordón, O. Harari, C.
del Val, and I. Zwir, “Optimal selection of microarray analysis
methods using a conceptual clustering algorithm,” in Proc. Appli-
cations of Evolutionary Computing: EvoWorkshops 2006: EvoBIO,
EvoCOMNET, EvoHOT, EvoIASP, EvoINTERACTION, EvoMUSART,
and EvoSTOC, F. Rothlauf et al., Ed., Apr. 10–12, 2006, EvoBIO
Contributions, pp. 172–183.

[59] Affymetrix, Microarray Platform Comparisons Affymetrix White
Paper, 2006.

[60] R. Agrawal, T. Imielinski, and A. Swami, “Mining association
rules between sets of items in large databases,” in Proc. 1993 ACM
SIGMOD Int. Conf. Manage. Data, P. Buneman and S. Jajodia,
Eds., Washington, D.C., 1993, pp. 207–216. [Online]. Available:
citeseer.ist.psu.edu/agrawal93mining.html

[61] I. Systems, Ingenuity Pathways Analysis. [Online]. Available: http://
www.ingenuity.com

[62] D. Hand, H. Mannila, and P. Smyth, Principles of Data Mining. Cam-
bridge, MA: MIT Press, 2001, hAN d3 01:1 1.Ex.

[63] K. E. Applegate and P. E. Crewson, “An introduction to biostatistics,”
Radiology, pp. 318–322, 2002.

[64] A. Tanay, R. Sharan, M. Kupiec, and R. Shamir, “Revealing modularity
and organization in the yeast molecular network by integrated analysis
of highly heterogeneous genomewide data,” Genetics, vol. 101, no. 9,
pp. 2981–2986, 2004.

[65] T. Azevedo, R. Lohaus, V. Braun, M. Gumbel, M. Umamaheshwar, P.
Agapow, W. Houthoofd, U. Platzer, G. Borgonie, H. Meinzer, and A.
Leroi, “The simplicity of metazoan cell lineages,” Nature, vol. 433, pp.
152–156, 2005.

[66] O. Cordón, F. Herrera, F. Hoffmann, and L. Magdalena, Genetic
Fuzzy Systems. Evolutionary Tuning and Learning of Fuzzy Knowl-
edge Bases, ser. Advances in Fuzzy Systems—Applications and
Theory. Singapore: World Scientific, 2001, vol. 19.

[67] Z. Qin, L. McCue, W. Thompson, L. Mayerhofer, C. Lawrence, and J.
Liu, “Identification of co-regulated genes through Bayesian clustering
of predicted regulatory binding sites,” Nature Biotechnol., vol. 21, pp.
435–439, 2003.

[68] J. Bard and S. Rhee, “Ontologies in biology: Design, applications and
future challenges,” Nature Reviews Genetics, vol. 5, pp. 213–222, 2004.

Rocío C. Romero-Zaliz was born in 1977 in
Buenos Aires, Argentina. She received the M.Sc.
degree in computer science from the University of
Buenos Aires, Buenos Aires, Argentina, in 2001
and the Ph.D. degree on computer science from the
University of Granada, Granada, Spain, in 2005.

She is currently an Associate Professor with the
Department of Computer Science and Artificial
Intelligence, University of Granada, where she is
a member of M4M Bioinformatics Lab, part of the
Soft Computing and Intelligent Information Systems

Research Group. She has worked in several research projects supported by
the Argentinian and Spanish Government. Her research interests include
bioinformatic tools, machine learning, and evolutionary algorithms.

Cristina Rubio-Escudero received the B.Sc. and
M.Sc. graduate degrees in computer science from
the University of Granada, Granada, Spain, in 2003
and 2005, respectively.

She is an Assistant Teacher with the Department
of Computing Systems and Languages, University of
Sevilla, in the Soft Computing and Intelligent Infor-
mation Systems Research Group. She has worked in
several research projects supported by the Spanish
Government and the European Union. She is coau-
thor of journal papers, book chapters, and conference

papers. Her research interests include gene expression analysis, knowledge dis-
covery, and systems biology.

J. Perren Cobb graduated (cum laude) with a Degree
in medicine from the University of Louisville, School
of Medicine, Louisville, KY, in 1986.

From 1986 to 1994, he completed his residency in
General Surgery at the University of California, San
Francisco. From 1989 to 1992, he was a Fellow in the
Critical Care Medicine Department, NIH, and from
1994 to 1995, he completed a fellowship in the Mul-
tidisciplinary (Surgical) Critical Care Training Pro-
gram at the University of Pittsburgh. He is currently
Professor of Surgery and Associate Professor of Ge-

netics at the Washington University School of Medicine, St. Louis, MO. He spe-
cializes in surgical critical care with research interests in the pathophysiology
of sepsis and injury. He is also the Director of the Cellular Injury and Adapta-
tion Laboratory and the University’s Center for Critical Illness and Health En-
gineering. His investigative work has been supported by the National Institutes
of Health, the American Association for the Surgery of Trauma, the Society of
Critical Care Medicine, and the Barnes-Jewish Hospital Foundation.

Dr. Cobb serves on the Steering Committee of the NIGMS Inflammation and
the Host Response to Injury Program (“Trauma Glue Grant”). An active member
of the Society of Critical Care Medicine (SCMM) and the American Thoracic
Society. He was the Co-Chair of the SCCM Surgical Section Research Com-
mittee, as well as a member of the SCCM Membership Committee. He is a
Fellow in the American College of Surgeons and Past-President of the Associ-
ation for Academic Surgery.

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on January 24, 2010 at 07:53 from IEEE Xplore.  Restrictions apply. 



ROMERO-ZALIZ et al.: A MULTIOBJECTIVE EVOLUTIONARY CONCEPTUAL CLUSTERING METHODOLOGY FOR GENE ANNOTATION 701

Francisco Herrera received the M.Sc. and Ph.D. de-
grees in mathematics from the University of Granada,
Granada, Spain, in 1988 and 1991, respectively.

He is currently a Professor in the Department of
Computer Science and Artificial Intelligence, Uni-
versity of Granada. He has published more than
100 papers in international journals. He is coauthor
of the book Genetic Fuzzy Systems: Evolutionary
Tuning and Learning of Fuzzy Knowledge Bases
(World Scientific, 2001). As edited activities, he
has coedited four international books and coedited

165 special issues in international journals on different soft computing
topics. He currently serves as Area Editor for the Journal on Soft Computing
(area of genetic algorithms and genetic fuzzy systems), and he serves as
member of the Editorial Board of the journals Fuzzy Sets and Systems, the
International Journal of Hybrid Intelligent Systems, the International Journal
of Computational Intelligence Research, the Mediterranean Journal of Arti-
ficial Intelligence, the International Journal of Information Technology and
Intelligent and Computing, Evolutionary Intelligence, and Memetic Compu-
tation. He acts as Associated Editor for the journals Mathware and Soft
Computing, Advances in Fuzzy Systems, and Advances in Computational
Sciences and Technology. His current research interests include computing
with words and decision making, data mining and knowledge discovery, data
preparation, fuzzy rule-based systems, genetic fuzzy systems, knowledge ex-
traction based on evolutionary algorithms, memetic algorithms, and genetic
algorithms.

Óscar Cordón received the M.S. and Ph.D. degrees
in computer science from the University of Granada,
Granada, Spain, in 1994 and 1997, respectively.

He is a Professor with the Department of Com-
puter Science and Artificial Intelligence since 1995
and Associate Professor from 2001 to 2007. Since
2006, he is the Principal Researcher of the Applica-
tions of Fuzzy Logic and Evolutionary Algorithms
Research Unit at the European Centre for Soft Com-
puting, Spain. He has published more than 40 papers
in international journals indexed at the JCR Science

Citation Index and coauthored the book Genetic Fuzzy Systems: Evolutionary
Tuning and Learning of Fuzzy Knowledge Bases (Singapore: World Scientific,
2001). He has coedited six special issues of Information Sciences, Mathware
& Soft Computing, the International Journal of Approximate Reasoning, Fuzzy
Sets and Systems, the IEEE TRANSACTIONS ON FUZZY SYSTEMS, and Applied
Soft Computing, as well as three books. He became Area Editor of the Interna-
tional Journal of Approximate Reasoning in 2005. He has worked on 18 research
projects (as Coordinator of seven of them) supported by the European Commis-
sion, the Spain’s and Andalusian Governments, the University of Granada, and
the Puleva Food S.A. business concerning several aspects of genetic algorithms,
fuzzy systems, genetic fuzzy systems, ant colony optimization and other meta-
heuristics, and e-Learning. His current main research interests are in the fields
of soft computing for forensic anthropology and medical imaging, genetic fuzzy
systems, soft computing and information retrieval, and evolutionary computa-
tion, ant colony optimization, and other metaheuristics.

Dr. Cordón created and Chaired from 2004 to 2007 the Genetic Fuzzy Sys-
tems Task Force within the IEEE CIS Fuzzy Systems Technical Committee,
and was Treasurer of the EUSFLAT Society between 2005 and 2007. He was
General Co-Chairman of the First International Workshop on Genetic Fuzzy
Systems (GFS205), Granada, in March 2005.

Igor Zwir received the M.Sc. degree in computer
science from the University of Buenos Aires, Buenos
Aires, Argentina, in 1997 and the Ph.D. degree in
computer science from the University of Granada,
Granada, Spain, in 2001.

He is currently a Senior Research Scientist at
the University of Granada and at Howard Hughes
Medical Institute, Department of Molecular Micro-
biology, Washington University School of Medicine,
St. Louis, MO. He has been applying all of his
original background in computational intelligence

to system biology and bioinformatics problems for seven years, resulting in
several publications in high-profile interdisciplinary journals His research
interests in the biological field include genetic networks, transcriptional regula-
tion, and gene expression dynamics. He also develops computational methods
based on knowledge discovery based on conceptual clustering and evolutionary
algorithms, genetic fuzzy systems, and control systems.

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on January 24, 2010 at 07:53 from IEEE Xplore.  Restrictions apply. 


