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The main goal of this research is the development of a hybrid genetic fuzzy system (GFS), composed by
the fuzzy inductive reasoning (FIR) methodology and a genetic algorithm (GA) that is responsible of
learning the fuzzy partitions needed in the recode process of FIR. A partition includes the number of
fuzzy sets (classes) per variable and the membership function of each class. The resulting GFS is applied
to two real problems, i.e. the estimation of the maintenance cost of medium voltage lines in Spanish
towns and the prediction of ozone levels in Austria. The results obtained in each application are compared
with some of the most popular classical statistical modeling methods, neural networks and other hybrid
evolutionary data analysis techniques.
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1. Introduction

Fuzzy systems have demonstrated their ability to solve different kinds of problems like

control (Driankov et al. 1993, Leondes 1999), modeling (Pedrycz 1996) or classification (Chi

et al. 1996, Vapnik 1998, Kuncheva 2000), and have been successfully applied to a wide

range of applications, i.e. signal and image processing (Chi et al. 1996, Sattar and Tay 1999,

Suzuki et al. 2001), risk assessment (Leondes 1999), information retrieval (Miyamoto 1989,

Chen et al. 2001), industrial applications (Hirota and Sugeno 1995, Leondes 1999, Dote and

Ovaska 2001), etc.

In the last decade, there was an increasing interest to include learning in fuzzy systems.

This has been achieved by means of the development of hybrid techniques that include fuzzy

systems together with complementary techniques like neural networks (NNs), evolutionary
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algorithms or probabilistic methods. Neural fuzzy systems (NFSs) and genetic fuzzy systems

(GFSs) are the most successful approaches of hybrid systems within soft computing

techniques (Bonissone 1997, Cordón et al. 2001). NFS and GFS hybridize the approximate

reasoning method of fuzzy systems with the learning capabilities of NNs and evolutionary

algorithms, respectively.

There are numerous studies on both subjects. However, neuro-fuzzy systems (Jang et al.

1997) have been used in a larger number of applications, in particular in the industrial area.

This paper is focused on GFSs (Cordón et al. 2001) and, therefore, we review here some of

those results that are more related to the work presented in this research.

In Cordón et al. (2004), the authors present an excellent overview of the research done in

the last 10 years in the field of GFSs. As described in the paper, the most prominent types of

GFSs are genetic fuzzy rule based systems (GFRBSs), whose genetic processes learn or tune

different components of a fuzzy rule base system, i.e. scaling functions (Gudwin et al. 1998,

Magdalena 1999, Hoffmann 2001), membership functions (Herrera et al. 1995, Gürocak

1999, Hoffmann 2001, Casillas et al. 2005), rule bases (Ishibuchi et al. 1999, González and

Pérez 2001, Hoffmann 2001, Camargo et al. 2004, Carmona et al. 2004, Del Jesús et al.

2004) or knowledge bases (Heider and Drabe 1997, Hoffmann and Pfister 1997, Camargo

et al. 2004, Pomares et al. 2004). In Gudwin et al. (1998) the use of contextual

transformation functions to adjust membership functions is introduced. The fine tuning of

membership functions is critical when evaluating the effectiveness of fuzzy systems in

control, modeling or classification problems. Linear context adaptation is simple and fast, but

the membership functions obtained are uniformly distributed. Non-linear context adaptation

is more computationally expensive, but the membership functions can be stretched or

expanded to best represent concepts in real environments, e.g. higher sensitivity in extreme

classes or in middle classes. In that work a genetic algorithm (GA) was used to find a non-

linear transformation function given the base membership functions and a set of data

available from the application studied. In Magdalena (1999), the author proposed a GA to

learn the rule base and the gain and sensitivity of fuzzy logic controllers by means of scaling

functions. Hoffmann (2001) describes two applications of GFSs, an evolutionary strategy

that tunes the scaling and membership functions of a fuzzy cart-pole balancing controller and

a GA that learns the fuzzy control rules for an obstacle-avoidance behavior of a mobile robot.

Casillas et al. (2005) presents a genetic tuning process for jointly fitting the fuzzy rule

symbolic representations and the meaning of the involved membership functions. The good

performance of this proposal mainly lies in the tuning approach performed at two different

levels of significance. In Herrera et al. (1995) and Gürocak (1999), genetic-algorithm-based

methods are described to alter the shapes of the fuzzy sets by shifting their peak location. In

these studies, it is assumed that the rule base and the fuzzy sets are already defined. The

research presented in Ishibuchi et al. (1999) and González and Pérez (2001) deals with the

automatic generation of fuzzy if-then rules by means of genetic methods. In Ishibuchi et al.

(1999) fuzzy if-then rules are obtained for pattern classification problems. This work uses

fixed membership functions and therefore, no tuning mechanism is applied to them. In

González and Pérez (2001) different search strategies (GAs, simulated annealing and hill-

climbing) are analyzed to find the best fuzzy rules that describe the system under study. In

Del Jesús et al. (2004) an Adaboost algorithm for the same task is proposed. Another strategy

is identifying fuzzy modes from certainty degrees, as studied in Carmona et al. (2004).

Hoffmann and Pfister (1997) and Heider and Drabe (1997) present two genetic perspectives

J. Acosta et al.704
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for the learning of fuzzy knowledge bases. In Heider and Drabe (1997) a cascaded GA is

introduced with the idea of splitting the fuzzy system design process into optimization of the

structure and of the parameters. This algorithm is tested on a fuzzy controller design task. In

Pomares et al. (2004) a novel approach to achieve global learning in fuzzy controllers is

proposed.

Although the largest number of research efforts have been reported on GFRBSs, other

kinds of GFSs, like genetic fuzzy NNs (Russo 1998, Chung et al. 2000, Alpaydin et al. 2002)

and genetic fuzzy clustering algorithms (Hall et al. 1994, Van Le 1995, Yuan et al. 1995),

have also been developed with successful results.

In the research presented in this paper we propose a new GFS to improve the fuzzy

inductive reasoning (FIR) methodology. FIR is an inductive modeling and prediction

methodology that has been applied to different kinds of problems (e.g. control, biomedicine,

ecology), usually obtaining good results (Mugica and Cellier 1994, Nebot et al. 1996, 2001).

In these studies, default values have been used to determine the number of classes and the

associated membership functions. The default value for the number of classes’ parameter for

each system variable is three and the equal frequency partition (EFP) is used as the default

method to obtain the membership functions of the classes. The EFP method consists in

distributing the system data into a predefined number of classes maintaining the same

number of occurrences in each class. However, experience has shown that in some

applications, i.e. mainly biomedical and ecological, the determination of the parameters

needed in the discretization step of FIR becomes significant for the identification of a good

model that captures systems behavior in an accurate way. Therefore, the automatic

determination of a good partition in the FIR methodology is an interesting and useful

alternative to the use of heuristics and/or default values. This is, precisely, the main

contribution of this paper, i.e. the design and development of a GFS composed by the FIR

methodology and a GA that determines FIR recode (or fuzzification) parameters.

The GFS developed is used for model identification of two real problems, i.e. estimating

the maintenance cost of medium voltage lines in Spanish towns and prediction of ozone

levels in Austria. The results obtained with the new method are compared with the ones

obtained by other methodologies in the same applications, i.e. NNs, genetic programming,

genetic fuzzy rule base systems, linear models, etc. The material covered in this paper can be

found in more depth in the PhD dissertation (Acosta 2006).

The FIR methodology is presented in Section 2. The GFS proposed is described in

Section 3. Section 4 presents the applications studied and the discussion of the obtained

results. Finally, the conclusions of this research are given.

2. Fuzzy inductive reasoning methodology

The conceptualization of the FIR methodology arises of the general system problem solving

approach (GSPS) proposed by Klir and Elias (2002). This methodology of modeling and

simulation is based on systems behavior rather that on structural knowledge. It is able to

obtain good qualitative relations between the variables that compose the system and to infer

future behavior of that system. It has the ability to describe systems that cannot easily be

described by classical mathematics (e.g. differential equations), i.e. systems for which the

underlying physical laws are not well understood. FIR is composed of four main processes,

Learning fuzzy partitions in FIR methodology 705
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namely: recode, optimal mask, prediction and regeneration. Figure 1 describes the processes

of the FIR methodology. FIR methodology is currently implemented as a Matlab toolbox,

called Visual-FIR.

The recode process converts quantitative data stemming from the system into fuzzy data,

i.e. qualitative triples. The first element of the triple is the class value, the second element is

the fuzzy membership value and the third element is the side value. The side element

indicates whether the qualitative value is to the left or to the right of the peak value of the

associated membership function (figure 2).

The side value, that is not commonly used in fuzzy logic, is responsible for preserving, in

the qualitative triple, the complete knowledge that had been contained in the original

quantitative value. The result of the recode process are three matrices of identical size named

qualitative data matrices, one containing the class values, the second storing the membership

information and the third recording the side values. Each column represents one of the

observed variables and each row denotes one time point, i.e. one recording of all variables or

one recorded state.

The optimal mask process is responsible for finding causal and temporal relations between

variables and therefore for obtaining the best model that represents the system. A FIR model

is composed by a structure, called mask and a pattern rule base, named behavior matrix. A

mask denotes a dynamic relationship among qualitative variables. An example of a mask is

presented in equation (1).

u1 u2 u3 u4 y1

t2 2dt 21 0 0 22 0

t2 dt 0 0 0 0 23

t 0 24 0 0 þ1

ð1Þ

Figure 1. Fuzzy inductive reasoning (FIR) scheme.

J. Acosta et al.706
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Each negative element in the mask is called an m-input (mask input). It denotes a causal

relation with the output, i.e. it influences the output up to a certain degree. The enumeration

of the m-inputs is immaterial and has no relevance. The single positive value denotes the

output. The mask of equation (1) contains four m-inputs. In position notation, it can be

written as (1, 4, 10, 12, 15), enumerating the mask cells from left to right and from top to

bottom. In this example, the first and second m-inputs, i1 and i2, correspond to the input

variables u1 and u4 two sampling intervals back, whereas the third m-input, i3, refers to the

output variable y1 one sampling interval into the past, etc.

The optimal mask process evaluates all possible masks and concludes which one has the

highest prediction power by means of the quality of the mask Q, based on an entropy

measure. The mask with the maximum Q value is the optimal mask. Once the best mask has

been identified, it can be applied to the qualitative data obtained from the system, resulting in

a particular pattern rule base.

Once the FIR model is available, the prediction system can take place using the FIR

inference engine. This process is called prediction. FIR inference engine is a specialization of

the k-nearest neighbor rule, commonly used in the pattern recognition field. Regeneration is

the inverse process of recode. It allows converting the qualitative predicted output into

quantitative values that can then be used as inputs to an external quantitative model. For a

deeper and more detailed insight into the FIR methodology, the reader is referred to (Nebot

1994, Cellier et al. 1996).

3. Genetic algorithm for learning FIR fuzzy partitions

GAs are search and optimization techniques based on formalization of natural genetics

(Holland 1975, Michalewicz 1996). The main aspects to be considered in the implementation

of a GA are: (1) genetic representation, (2) initial gene pool, (3) fitness or objective function,

(4) genetic operators and (5) genetic parameters. These points are highly important to

achieve a good performance of the algorithm.

3.1 Genetic representation

In order to define a useful chromosome codification, it is necessary to go deeply into the

recode process of the FIR methodology.

The most common shapes for the membership functions in FIR are triangular or gaussian

(default). Figure 2 illustrates the process of recode (or fuzzification) by means of an example.

As mentioned earlier, a quantitative value is recoded into a qualitative triple, i.e. the class,

membership and side values.

In figure 2 a temperature of 23 degrees centigrade would hence be recoded into the class

“normal” with a side value “right” and a fuzzy membership value of 0.755. Most fuzzy

inference approaches preserve the total knowledge by associating with each quantitative data

value multiple fuzzy rules consisting of tuples of class and membership values. They would

thus represent the temperature of 23 degrees centigrade as being “normal” with likelihood

0.755 and being “warm” with likelihood 0.20. FIR accomplishes the same by associating

with each quantitative data value a single fuzzy rule consisting of a qualitative triple. Then, in

FIR methodology the tails of the membership functions are discarded and only the parts of

Learning fuzzy partitions in FIR methodology 707
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the membership functions in the range [0.5–1] are used. The point where two neighboring

classes match with a membership value of 0.5 is named landmark. In the example of figure 2

the membership function of the class Normal is defined by landmarks {13, 27}, being this

pair the temperature values that specify the limits between the class Normal and its adjacent

classes, Fresh and Warm, respectively.

Consequently, the recode or fuzzification parameters of the FIR methodology are the

number of fuzzy sets (classes) or granularity per variable and the membership functions that

define its semantics (identified by the landmarks). These are the parameters that the GA

should optimize. Therefore, each chromosome (C) is composed of two parts:

. Number of classes (C1): The number of linguistic terms for N variables is codified using a

vector of N integers in the range [2–9]. The values of the genes are forced to remain in

this interval, so the genetic operators must observe this requirement.

. Membership functions (C2): The genetic representation chosen takes into account the

number of samples registered for each variable. A specific variable is represented by the

proportion of data samples that contains each class, codified in the range [0–1]. An

example of chromosome representation for a unique variable that has 4 classes could be

(0.3,0.4,0.1,0.2), meaning that the membership function of the first class contains 30% of

the data samples available for this variable and the second, third and fourth membership

functions contain 40, 10 and 20% of the data records, respectively. Of course, the sum of

the proportions for each variable must be 1. The smallest allowed proportion, Vmin, is set

to 0.05 and the largest proportion, Vmax, is defined by Vmax ¼ 1 2 Vmin*(Nlabel 2 1),

where Nlabel is the number of classes of the variable. A clear advantage of this

representation is the facility to compute the landmarks from it. This is done by the

following steps:

(1) The observed trajectory values of each variable are sorted in ascending order.

(2) The sorted vector is then split into segments (as many segments as classes have

been determined for that variable) that contain the proportion of values determined

by the GA solution.

(3) Finally, the landmarks are chosen anywhere between the extreme values of

neighboring segments, i.e. using the arithmetic mean values of neighboring

observed data points in different segments.

Figure 2. FIR recode (or fuzzification) process of ambient temperature variable.

J. Acosta et al.708
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A full chromosome representation, C, is defined by the ensemble of the representations of

the number of classes, C1, and the membership functions, C2, of each system variable.

C ¼ C1C2

If we denote by Ei the number of classes for the variable i, the number of classes

representation for a system of N variables, C1, is defined by:

C1 ¼ ðE1;E2; . . . ;ENÞ

Also, if we denote by Dij the data proportion of the variable i and class j, and C2i the

information of the data proportion for all the classes of the variable i, the membership

representation, C2, for a system of N variables (including inputs and outputs), is defined by:

C2 ¼ ðC21;C22; . . . ;C2NÞ

where,

C2i ¼ ðDil . . .DiEiÞ

Note that each time the number of classes and/or distribution of the landmarks changes due

to the action of the genetic operators, it is mandatory to re-compute the new fuzzy partition.

3.2 Initial gene pool

The initial population is composed by four groups with the same number of individuals each,

except the first one. No repeated chromosomes are allowed. The generation of the initial gene

pool is described next:

(1) In the first group, each chromosome has the same number of classes in all its variables,

and the membership functions are uniformly distributed across the variable working

range (EFP Method).

(2) In the second group, each chromosome has different granularity per variable (different

values in C1 chosen randomly), and the membership functions are uniformly distributed

(EFP Method) as in group one.

(3) In the third group, each chromosome has the same number of classes in all its variables,

and the membership functions are non-uniformly distributed across the variable

working range (the data proportion is generated randomly).

(4) In the last group, each chromosome has a different number of classes per variable, as in

group two, and the membership functions are established in the same way as in the third

group.

The aim of generating the initial population in this way is to achieve an appropriate

diversity. Although GAs have proven to be robust and get good solutions starting from

randomly generated populations (group four), a quick convergence can be obtained using the

knowledge available about the problem to sample the population in a biased way.

Learning fuzzy partitions in FIR methodology 709
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3.3 Fitness or objective function

The evaluation of the chromosomes is done following the next steps:

(1) Decode the information of the chromosome, building the associated fuzzy partition in

the FIR structures.

(2) Execute the optimal mask process of the FIR methodology with the training data set,

using the partition built in the previous step. Therefore, the mask, with the highest

quality measure, associated to that partition is obtained.

(3) Compute the objective function. In this research two objective functions are proposed:

(a) the quality of the optimal mask or (b) the prediction error of a part of the training

data set.

As has been explained earlier, in the model identification stage of the FIR methodology, the

optimal mask (i.e. the best model structure) is identified by means of a quality measure, Q.

The quality of a mask is a value between 0 and 1, where 1 indicates the highest quality.

Therefore, the first cost function proposed is 1 2 Q, due to the fact that the algorithm task is to

minimize the cost function.

The second cost function is defined as the prediction error of a portion of the training data

set. The normalized mean square error in percentage (MSE), given in equation (2), is used for

this purpose,

MSE ¼
E½ðyðtÞ2 ŷðtÞÞ2�

VAR½yðtÞ�
100% ð2Þ

where ŷ (t) is the predicted output, y(t) the system output and VAR denotes variance. The

idea is to use a part of the training data set to identify the model and the rest of the data set to

evaluate the prediction performance of that model. It is important to remember that the FIR

model is composed of the optimal mask and the pattern rule base (behavior matrix).

Therefore, both must be generated systematic in the evaluation process of a certain fuzzy

partition when this cost function is used. Moreover, the prediction process of the FIR

methodology needs to be executed to obtain the cost of the evaluated chromosome. Thus, the

computational cost of this evaluation function is considerably higher than the one obtained

with the cost function that only depends on the quality of the mask. However, the prediction

accuracy should be higher. The size of the portion of the training data set used for cost

function evaluation purposes is defined with respect to the size of the whole training data set.

3.4 Genetic operators

Due to the special nature of the chromosomes involved in the optimization process, the

genetic operators become an important aspect of the GA. Since there is a strong relationship

between the two chromosome parts (C1 and C2), it is required that the genetic operators work

cooperatively in C1 and C2 in order to take advantage of the representation used. Taking into

account these aspects, the following operators are considered:

(1) Selection: The selection probability calculation follows linear ranking (Baker 1985).

Chromosomes are sorted in fitness order and selection probability of each chromosome,

ps(Ci), is computed according to its rank (with rank(Cbest) ¼ 1), by using the following

J. Acosta et al.710
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non-increasing assignment function:

psðCiÞ ¼
1

NC
hmax 2 ðhmax 2 hminÞ

rankðCiÞ2 1

NC 2 1

� �
ð3Þ

where NC is the population size and hmin [ [0,1] specifies the expected number of

copies for the worst chromosome (the best one has hmax ¼ 2 2 hmin expected copies).

In the experiments hmin ¼ 0.75. Linear ranking is performed along with stochastic

universal sampling proposed by Baker (1987). This procedure guarantees that the

number of copies of any chromosome is bounded by the floor and by the ceiling of its

expected number of copies. Our reproduction operator includes the elitist selection.

(2) Crossover operator: As regards the recombination process, two different operators are

used according to the two parents implied in the crossing:

. Crossover when both parents have the same granularity per variable: If the two

parents have the same values in C1 (each variable has the same number of classes in

the two parents), the genetic search has located a promising space zone that has to be

adequately exploited. This task is developed by applying the non-uniform arithmetic

crossover operator in C2 and maintaining the sparent C1 values in the offspring. This

crossover operator is proposed in Michalewicz (1996) and works in the way described

subsequently. This operator generates two offspring as a weighted mean of the parent

values. A real value, u, in the range [0–1] is selected randomly and used to compute

the new offspring by means of equation (4).

Ct ¼ u·fatherþ ð12 uÞ·mother C0
t ¼ ð12 uÞ·fatherþ u·mother ð4Þ

An advantage of the crossover operator selected is that it assures the validity of the

offsprings obtained, i.e. the sum of the data proportion for all the classes of each

variable is 1.

. Crossover when the parents encode different granularity: This second case highly

recommends the use of the information encoded by the parents for exploring the search

space in order to discover new promising zones. Hence, when C1 is crossed at a certain

point, the values in C2 corresponding to the crossed variables are also crossed in the

two parents. In this way, a standard crossover operator is applied over the two parts of

the chromosomes. This operator performs as follows: a crossover point p is randomly

generated in C1 and the two parents are crossed at the p-th variable in C1 and C2,

producing two meaningful descendents.

Let us look at an example in order to clarify the crossover application. Let

Ct ¼ ðE1 . . . ;Ep;Epþ1; . . . ;EN ;C21; . . . ;C2p;C2pþ1; . . . ;C2NÞ

C0
t ¼ ðE0

1; . . . ;E
0
p;E

0
pþ1; . . . ;E

0
N ;C

0
21; . . . ;C

0
2p;C

0
2pþ1; . . . ;C

0
2NÞ

be the individuals to be crossed at point p. The two resulting offspring are:

Ct ¼ ðE1; . . . ;Ep;E
0
pþ1; . . . ;E

0
N ;C21; . . . ;C2p;C

0
2pþ1; . . . ;C

0
2NÞ

C0
t ¼ ðE0

1; . . . ;E
0
p;Epþ1; . . . ;EN ;C

0
21; . . . ;C

0
2p;C2pþ1; . . . ;C2NÞ

Hence, the complete recombination process will allow the GA to follow an

adequate exploration and exploitation rate in the genetic search. Notice that C2i

Learning fuzzy partitions in FIR methodology 711
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“travels” together with its associated granularity, Ei, guaranteeing the preservation of

the fundamental requirements of the chosen representation.

(3) Mutation operator: Due to the nature of the values stored in the two parts of the

chromosome, two different operators are considered. A brief description of them is

given below.

. Mutation on C1: The mutation operator selected for C1 is similar to the one proposed

by Thrift (1991). In this case, if a mutation on a gene belonging to the first part of the

chromosome is going to be performed, a local modification is done by changing the

number of classes of the variable to the immediately upper or lower (the decision is

made randomly). When the value to be changed is the minimum (2) or the maximum

(9), the only possible change is done, i.e. increase or decrease by one the granularity,

respectively. Once a new value is selected, a uniform fuzzy partition for this variable is

stored in its corresponding zone of C2.

. Mutation on C2: Since both parts are based on a real coding scheme, the mutation

operator selected for C2 is also similar to the one proposed by Thrift (1991). Here, the

data proportion associated to the gene of the selected chromosome is increased or

decreased (the decision is made randomly) by a factor in-between the range

[Vmin . . .MAX] set, also, randomly, where MAX ¼ 0.5 2 Vmin(Nlabel 2 1). Remem-

ber that Nlabel is the number of classes of the variable. The other proportions of the

same variable are adjusted in order to maintain the addition to 1. When the value to be

changed plus the factor get out of the limits of the range [Vmin . . .Vmax], the only

possible change is done, i.e. increase or decrease by the proportion factor, respectively.

3.5 Genetic parameters

The values of the probabilities have been established according to Grefenstette (1986). Each

application subsection presents the values of the parameters used in the GA.

4. Applications

4.1 Electrical distribution network models

The problem of estimating the maintenance cost of the electric network becomes difficult

when we deal with medium and low voltage lines. Maintenance cost depends among other

factors on the total length of electrical line each company owns and on its kind, i.e. high,

medium and low voltage (Cordón et al. 1999). To justify the distribution expenses of the

companies, models of the length of the line are used. Although high voltage lines can be

easily measured, this is not the case for medium and low voltage lines. These lines are

contained in cities and villages, and it is very difficult and expensive to measure them, due to

the fact that they have been installed incrementally, according to local electrical needs at

each moment. Therefore, it is necessary to handle the problem from the modeling

perspective.

We were provided with 1059 data samples of Spanish towns (Cordón et al. 1998, 1999).

Four characteristics of each town are the input variables, i.e. the sum of the lengths of all

streets in the town (SLS) in km, the total area of the town (TA) in km2, the area that

is occupied by buildings (AB) in km2 and the energy supply to the town (ES) in MWh.

J. Acosta et al.712
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The maintenance cost of the medium voltage line (MC) in millions of pesetas is the output

variable.

In the previous studies (Cordón et al. 1998, 1999), the available data was divided into the

training set (first 847 towns) and the test set (last 212 towns), corresponding to 80 and 20% of

the whole data set, respectively. The same data distribution is used in the present study in

order to compare the results obtained in an accurate way. For the same reason, the medium

square error (SE) used in Cordón et al. (1999) and described in equation (5) is used for the

computation of each model prediction error.

SE ¼
1

2N

XN
i¼1

ðyiðtÞ2 ŷiðtÞÞ
2 ð5Þ

where, ŷ(t) is the predicted output, y(t) the system output, and N is the number of samples.

It is interesting to notice that no temporal relation exists between two consecutive samples

of the five system variables, due to the fact that each sample represents a specific town. This

is the first time that FIR methodology is used to deal with a static system. However, this is

solved easily by forbidding temporal relations between the system variables, i.e. masks with

only one row are allowed.

4.1.1 Previous studies. Table 1 contains the SE prediction errors achieved when classical

methods and hybrid evolutionary techniques are used for the same problem (Cordón et al.

1998, 1999). With respect to classical methods, Cordón et al. have considered linear models

fitted by linear least squares, second order polynomial models fitted by nonlinear least

squares, and three-layers perceptron NN (of 4-5-1 neurons). The minimization error

algorithm was the conjugate gradient method. They also studied GFRBSs for the

optimization of three different fuzzy models, i.e. Wang–Mendel (WM), Mamdami and

Takagi–Sugeno-Kang (TSK).

Finally, they used two hybrid algorithms, GA-P and interval GA-P, that combine the

traditional GA with the genetic programming (GP) paradigm (Howeard and D’ 1995). The

interval GA-P is a modified version of the GA-P method that uses interval values instead of

punctual ones. All of the methodologies use the same training and test data sets explained

previously.

The first column of table 1 describes the method evaluated, the second and third columns

show the prediction errors using the SE formula (described in equation (5)), of the training

and test data sets, respectively. As can be seen from this table, the GA-P techniques and fuzzy

Table 1. Prediction errors (SE) obtained by classical methods and hybrid evolutionary techniques, taken from
Cordón et al. (1999). Electrical distribution application.

Method SEtrain SEtest

Linear 1.64.662 36.819
Second-order polynomial 1.03.032 45.332
Three-layer perceptron 4-5-1 86.469 33.105
GA-P 18.168 21.884
Interval GA-P 16.263 18.325
WM fuzzy model 20.318 27.615
Mamdani fuzzy model 19.679 22.591
TSK fuzzy model (a ¼ 0) 25.579 26.450
TSK fuzzy model (a ¼ 0.2) 11.074 11.836

Learning fuzzy partitions in FIR methodology 713
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models outperform again classical linear and non-linear regression methods as well as NNs.

The TSK fuzzy model has obtained the best result. A more detailed discussion of the results

presented in table 1 can be found in (Cordón et al. 1999). These values are taken in this paper

as reference errors to study the performance of the GFS in the same problem.

4.1.2 Fuzzy partitions determination. This section presents the results obtained when the

GFS proposed is evaluated for the problem at hand. Thirty executions are preformed for each

objective function and stop criteria. Table 2 shows the values of the genetic parameters

applied to this problem

The results are presented in two parts, based on the objective function used for the

evaluation of the chromosomes.

4.1.2.1. Objective Function 1 2 Q

Table 3 shows the results obtained when 1 2 Q was used as objective function. The table

is organized as follows. The first column is divided in 2 sections that correspond to the results

obtained using the GFS suggested. In row A the best solution obtained for each stop criteria

are shown, i.e. the solutions with lowest 1 2 Q values. Row B presents the worst solution

obtained for each stop criteria, i.e. highest 1 2 Q values. The second column shows the

number of evaluations made by the GA. The third column indicates the number of classes

(granularity) per variable. The fourth column shows the data proportion for the input

variables (SLS, TA, AB, ES) and the output variable (MC). The number of elements of the

data proportion corresponds to the number of classes per variable obtained in the previous

column. Both, the granularity per variable and the data proportion are the output of the GA,

and they constitute the parameters of the recode process of the FIR methodology. The fifth

column presents the optimal mask, in position notation, encountered by FIR for this fuzzy

partition. The sixth column corresponds to the quality associated to the optimal mask. The

seventh column is the value of the 1 2 Q objective function. The last column shows the

prediction SE obtained for the test data set.

4.1.2.2. Objective Function MSEtrain

Table 4 shows the results obtained when the objective function is defined as the prediction

MSE of a portion of the training data set. The last 20% of the training signal is used for

objective function evaluation and the first 80% of the signal is used to obtain the FIR models

(masks and pattern rule bases). The table is organized like table 3. The only difference is that

the seventh column contains the values of the MSEtrain instead of the 1 2 Q objective

function.

As expected, the CPU time needed by the GA when the MSEtrain objective function is used

is clearly grater than the time needed when the 1 2 Q is used. For example, the

computational time needed to perform 30 executions for 160000 evaluations when the 1 2 Q

Table 2. Genetic parameters of the GA for the electrical distribution application.

Parameter Value

Population size (# individuals) 50
Crossover probability 0.6
Mutation probability 0.1
Stop criteria (chromosomes evaluations) {5000, 10000, 20000, 40000, 80000, 160000}

J. Acosta et al.714
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Table 3. Results when the FIR methodology enhanced with a GA is used to learn the granularity and the membership functions. 1 2 Q cost function. Electrical distribution application.

# eval Granularity Data proportion Optimal mask Q 1 2 Q SEtest

A 160000 (2,7,2,2,2) SLS:(0.91,0.09) (1,3,4,5) 0.9638 0.0362 2728
TA:(0.14,0.14,0.14,0.14,0.14,0.15,0.15)
AB: (0.94,0.06)
ES:(0.93,0.07)
MC:(0.92,0.08)

80000 (7,6,6,3,2) SLS:(0.12,0.12,0.12,0.12,0.13,0.25,0.14) (3,4,5) 0.9777 0.0223 2759
TA:(0.13,0.13,0.14,0.14,0.33,0.13)
AB: (0.73,0.06,0.06,0.05,0.05,0.05)
ES:(0.83,0.09,0.08)
MC:(0.90,0.10)

40000 (2,5,3,2,2) SLS:(0.91,0.09) (1,3,4,5) 0.9721 0.0279 2729
TA:(0.48,0.12,0.13,0.13,0.14)
AB: (0.88,0.06,0.06)
ES:(0.93,0.07)
MC:(0.92,0.08)

20000 (8,3,6,2,2) SLS:(0.11,0.11,0.11,0.11,0.12,0.18,0.13,0.13) (3,4,5) 0.9559 0.0441 2759
TA:(0.34,0.33,0.33)
AB: (0.74,0.06,0.05,0.05,0.05,0.05)
ES:(0.92,0.08)
MC:(0.90,0.10)

10000 (7,4,3,3,2) SLS:(0.15,0.13,0.13,0.15,0.13,0.17,0.14) (3,4,5) 0.9503 0.0497 5159
TA:(0.25,0.25,0.25,0.25)
AB:(0.48,0.20,0.32)
ES:(0.48,0.19,0.33)
MC:(0.54,0.46)

5000 (2,5,5,2,2) SLS:(0.29,0.71) (3,4,5) 0.9423 0.0577 2759
TA:(0.20,0.20,0.20,0.20,0.20)
AB:(0.62,0.17,0.11,0.05,0.05)
ES:(0.84,0.16)
MC:(0.90,0.10)

B 160000 (9,8,6,2,2) SLS: (0.11,0.11,0.11,0.11,0.11,0.11,0.11,0.11,0.12) (3,4,5) 0.8934 0.1066 5136
TA: (0.11,0.13,0.11,0.11,0.12,0.12,0.18,0.12)
AB: (0.11,0.14,0.19,0.13,0.12,0.31)
ES: (0.46,0.54)
MC: (0.53,0.47)

80000 (2,8,2,2,2) SLS:(0.53,0.47) (1,3,4,5) 0.8979 0.1021 5125
TA:(0.14,0.10,0.16,0.10,0.10,0.10,0.10,0.20)
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TABLE 3 – continued

# eval Granularity Data proportion Optimal mask Q 1 2 Q SEtest

AB: (0.49,0.51)
ES:(0.47,0.53)
MC:(0.54,0.46)

40000 (4,5,5,2,2) SLS:(0.08,0.69,0.14,0.09) (3,4,5) 0.8821 0.1179 5119
TA:(0.33,0.13,0.13,0.3,0.11)
AB: (0.15,0.19,0.21,0.17,0.28)
ES:(0.47,0.53)
MC:(0.48,0.52)

20000 (6,7,8,8,2) SLS:(0.13,0.13,0.14,0.14,0.15,0.31) (3,5) 0.8848 0.1152 2,25,848
TA:(0.14,0.14,0.14,0.14,0.14,0.15,0.15)
AB: (0.08,0.38,0.29,0.05,0.05,0.05,0.05,0.05)
ES:(0.15,0.12,0.12,0.12,0.15,0.13,0.10,0.11)
MC:(0.90,0.10)

10000 (5,6,8,7,3) SLS:(0.25,0.23,0.06,0.23,0.23) (3,5) 0.8548 0.1452 2,10,251
TA:(0.16,0.16,0.17,0.17,0.17,0.17)
AB:(0.07,0.14,0.16,0.33,0.08,0.08,0.07,0.07)
ES:(0.14,0.14,0.14,0.14,0.14,0.15,0.15)
MC:(0.87,0.05,0.08)

5000 (6,9,9,2,2) SLS:(0.16,0.16,0.17,0.17,0.17,0.17) (3,5) 0.8764 0.1236 2,16,862
TA:(0.10,0.10,0.10,0.10,0.12,0.11,0.10,0.17,0.10)
AB:(0.10,0.36,0.10,0.09,0.05,0.09,0.08,0.06,0.07)
ES:(0.50,0.50)
MC:(0.91,0.09)
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Table 4. , Results when the FIR methodology enhanced with a GA is used to learn the granularity and the membership functions. MSEtrain cost function. Electrical distribution application.

# eval Granularity Data proportion Optimal mask Q MSEtrain SEtest

A 160000 (2,4,5,7,8) SLS:(0.10,0.90) (1,3,4,5) 0.4779 0.1090 2936
TA:(0.21,0.24,0.27,0.28)
AB: (0.19,0.33,0.31,0.09,0.08)
ES: (0.17,0.20,0.16,0.17,0.11,0.14,0.05
MC: (0.13,0.11,0.11,0.12,0.15,0.09,0.06,0.23)

80000 (2,7,5,5,8) SLS:(0.10,0.90) (1,3,4,5) 0.4953 0.1116 8252
TA:(0.11,0.11,0.11,0.17,0.12,0.12,0.26)
AB: (0.12,0.4,0.24,0.10,0.14)
ES:(0.25,0.21,0.25,0.22,0.07)
MC:(0.13,0.11,0.11,0.12,0.19,0.11,0.13,0.10)

40000 (2,8,7,9,9) SLS:(0.08,0.92) (1,3,4,5) 0.5080 0.1152 3022
TA:(0.12,0.12,0.12,0.13,0.13,0.13,0.13,0.12)
AB: (0.29,0.12,0.12,0.12,0.12,0.11,0.12)
ES:(0.14,0.07,0.08,0.13,0.08,0.20,0.09,0.16,0.05)
MC:(0.08,0.11,0.05,0.06,0.07,0.08,0.14,0.18,0.23)

20000 (2,7,7,8,9) SLS:(0.10,0.90) (1,3,4,5) 0.5217 0.1165 3066
TA:(0.11,0.27,0.11,0.12,0.12,0.13,0.14)
AB: (0.12,0.12,0.30,0.11,0.11,0.12,0.12)
ES:(0.11,0.11,0.19,0.11,0.15,0.11,0.11,0.11)
MC:(0.09,0.09,0.05,0.12,0.15,0.10,0.10,0.19,0.11)

10000 (2,3,5,8,7) SLS:(0.57,0.43) (3,4,5) 0.5748 0.1258 3025
TA:(0.20,0.51,0.29)
AB:(0.18,0.18,0.18,0.27,0.19)
ES:(0.18,0.10,0.10,0.10,0.11,0.17,0.12,0.12)
MC:(0.08,0.08,0.08,0.11,0.28,0.21,0.16)

5000 (2,2,7,9,9) SLS:(0.10,0.90) (1,3,4,5) 0.4999 0.1180 2976
TA:(0.50,0.50)
AB: (0.32,0.10,0.12,0.07,0.17,0.12,0.10)
ES:(0.12,0.22,0.06,0.09,0.12,0.12,0.11,0.05,0.11)
MC:(0.12,0.05,0.15,0.06,0.07,0.18,0.13,0.18,0.06)

B 160000 (5,7,7,6,7) SLS:(0.17,0.22,0.24,0.17,0.20) (3,4,5) 0.5357 0.1341 2939
TA:(0.14,0.14,0.14,0.14,0.14,0.15,0.15)
AB: (0.10,0.08,0.11,0.12,0.33,0.13,0.13)
ES: (0.09,0.27,0.09,0.21,0.27,0.07)
MC: (0.06,0.07,0.30,0.33,0.06,0.10,0.08)

80000 (4,5,4,9,8) SLS:(0.25,0.25,0.25,0.25) (3,4,5) 0.4470 0.1359 2963
TA:(0.20,0.20,0.20,0.20,0.20)
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TABLE 4 – continued

# eval Granularity Data proportion Optimal mask Q MSEtrain SEtest

AB: (0.18,0.07,0.55,0.20)
ES:(0.09,0.16,0.09,0.09,0.09,0.09,0.09,0.18,0.12)
MC:(0.11,0.11,0.18,0.05,0.12,0.12,0.13,0.18)

40000 (4,2,4,6,8) SLS:(0.16,0.33,0.24,0.27) (3,4,5) 0.4646 0.1353 3007
TA:(0.54,0.46)
AB: (0.39,0.16,0.27,0.18
ES:(0.06,0.16,0.16,0.36,0.21,0.05)
MC:(0.05,0.11,0.07,0.12,0.09,0.32,0.05,0.19)

20000 (4,3,7,9,7) SLS:(0.25,0.25,0.25,0.25) (3,4,5) 0.5390 0.1361 2978
TA:(0.36,0.32,0.32)
AB: (0.14,0.14,0.14,0.14,0.14,0.15,0.15)
ES:(0.06,0.11,0.13,0.15,0.07,0.19,0.14,0.07,0.08)
MC:(0.18,0.05,0.09,0.11,0.32,0.13,0.12)

10000 (4,4,4,3,3) SLS:(0.11,0.53,0.11,0.25) (3,4,5) 0.5566 0.1390 3053
TA:(0.25,0.25,0.25,0.25)
AB: (0.13,0.17,0.35,0.35)
ES:(0.45,0.49,0.06)
MC:(0.15,0.28,0.57)

5000 (8,7,2,2,2) SLS:(0.11,0.12,0.12,0.12,0.14,0.14,0.13,0.12) (3,4,5) 0.6616 0.1847 7896
TA:(0.11,0.11,0.12,0.12,0.28,0.13,0.13)
AB: (0.52,0.48)
ES:(0.50,0.50)
MC:(0.35,0.65)
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and MSEtrain objective functions are studied, are 61:16 and 132:17 h, respectively, on a

Pentium III computer (0.6GHz). The errors obtained by the GFS in this application are

significantly lower than the ones obtained by the methodologies of table 1. The best result of

11,836 SE obtained by the TSK fuzzy model is much larger than the 2728 SE obtained by

FIR methodology enhanced by the GA. From tables 3 and 4 it can also be seen that the results

obtained by both cost functions are equivalent. In this case the performance of FIR models

when the MSEtrain cost function is used is not superior to the performance of the 1 2 Q

objective function. Therefore, the 1 2 Q objective function is preferable because of its lower

computational cost. Figure 3 presents the best predictions obtained for the two cost functions

studied. The top plot shows real and predicted test signals obtained when the best solution of

the 1 2 Q objective function is used to find the optimal mask, whereas the bottom plot shows

these signals obtained when the best solution of the MSEtrain objective function is used to find

the optimal mask. The SE errors for the top and bottom plots are 2728 and 2936, respectively.

The error values are high due to the range [0–10000] of the maintenance cost variable and

due to the fact that the SE formula has not been normalized by the variance. However, as can

be observed in figure 3, the prediction signals obtained by FIR models are able to follow the

real maintenance cost signal very accurately, i.e. the real and predicted values are

indistinguishable.

4.2 Ozone models

The problem of estimating the ozone levels is important because this toxic gas can produce

harmful effects on the population’s health such as eye irritation, respiratory problems and

aggravation of cardiovascular diseases. In order to provide adequate early warnings, it is

valuable to have accurate and reliable forecasts of future high ozone levels. Therefore, the

construction of ozone models that capture as precisely as possible the behavior of this gas in

the atmosphere is of great interest not only for environmental scientists but also for

Figure 3. Prediction signals of the test data set obtained by the optimal FIR models identified with the best 1 2 Q
(top) and MSEtrain (bottom) objective functions solutions for the electrical distribution application.

Learning fuzzy partitions in FIR methodology 719
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government agencies. To deal with the problem under study, we were provided with the data

used by Wieland and Wotawa (1999), stemming from the Viennese basin in the East Austrian

region. It was registered mostly in the summer season, when ozone, O3, occurs in highest

concentrations. The ozone values (output variable), measured in parts per billon (ppb) are the

average of five measurement points providing 3 h fixed average values. The input variables

correspond to weather data originated from the weather prediction model of the European

Center for Medium Range Weather Forecasts, i.e. the temperature (T) in 8K, the cloud cover

(CC) that take values ranging from 0 (no clouds) to 1 (completely cloudy) and the wind speed

(WS) in m/s. Ozone and weather data were available for the periods: 07-07-1995–25-09-

1995 (81 values), and 01-05-1996–30-09-1996 (149 values).

In previous studies, the available data was divided into the training set (all data from 1996)

and the test set (all data from 1995). This distribution of data constitutes the denominated

initial partition (Wieland and Wotawa 1999, Gómez et al. 2003), and it is used also in the

present study for comparison purposes. Also, the root mean square error (RMS) described in

equation 6 is used for the computation of each model prediction error.

RMS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 ðyiðtÞ2 ŷiðtÞÞ

2

N

s
ð6Þ

where, ŷ(t) is the predicted output, y(t) the system output, and N is the number of samples.

4.2.1 Previous studies. Table 5 contains the best RMS prediction errors achieved by

Wieland and Wotawa (1999) and Gómez et al. (2003) when different types of NNs are used

for the same problem. In Wieland and Wotawa (1999), the NNs used were a multilayer

perceptron (MLP), an elman network (EN), and a modified elman network (MEN). The

Wieland and Wotawa’s NN models were compared with statistical models, IMPO models

and Santiago models, showing that the prediction performance of these NNs was better. The

IMPO models use a chemical/physical approach developed by the Institute for Meteorology

and Physics of the Universität für Bodenkultur Wien (Stohl et al. 1996). On the other hand in

Gómez et al. (2003), the authors used a MEN network with hyperbolic tangent activation

function, and a powerful type of recurrent NN called long short term memory (LSTM).

The first column of table 5 describes the method evaluated. The second column stands for

the number of hidden units. The third column shows the learning rate. The fourth column

indicates whether bias neurons had been used or not. The fifth column gives the necessary

Table 5. Prediction errors (RMS) obtained by NNs, taken from Wieland and Wotawa (1999), Gómez et al. (2003).
Ozone application (initial partition).

NN model #HU LR Bias Steps RMStest

MLP 2 1 N 3000 15.053
MLP 5 þ 1 1 Y 1000 11.200
MLP 5 0.4 N 100 11.176
MLP 5 þ 1 0.2 Y 100 10.813
MLP 2 þ 1 0.2 Y 1000 10.665
MEN (a ¼ 0.2) 5 þ 1 0.2 Y 3000 10.515
EN 8 þ 1 0.2 Y 5000 10.318
MEN (a ¼ 0.4) 5 þ 1 0.2 Y 5000 9.957
MEN-HYP (a ¼ 0.2) 5 þ 1 0.2 Y 1000 9.193
LSTM – 0.00125 – 3500 9.796

J. Acosta et al.720
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number of learning steps needed by the NN in order to obtain the best results. The last

column indicates the RMS error of the test set. In Gómez et al. (2003), the results of the FIR

methodology when used to obtain the best models for the problem at hand are presented. In

this study, default and heuristic recode (or fuzzification) parameter values were used. The

best result were obtained with the EFP method and discretizing the temperature into 3

classes, whereas the rest of the variables were discretized into 2 classes. Table 6 shows the

optimal and the best suboptimal masks. The first column indicates whether it is the optimal

mask or a suboptimal one. The second column describes the causal relations of each mask in

a position notation. The third column prints the quality measure of each mask. The last

column shows the RMS error obtained when the test set is predicted. As can be seen from

tables 5 and 6, the MEN network with hyperbolic tangent activation function has the lowest

prediction error. A more detailed discussion of these results can be found in (Gómez et al.

2003).

4.2.2 Fuzzy partitions determination. In this section the utility of the GFS developed is

evaluated for the problem at hand. Thirty executions were performed for each objective

function and stop criteria. Table 7 shows the values of the genetic parameters applied to this

problem.

Tables 8 and 9 show a summary of the results obtained for each objective function, i.e.

1 2 Q and MSEtrain, respectively.

In this application the last 8% of the training signal is used for MSEtrain objective function

evaluation and the first 92% of the signal is used to obtain the FIR models (masks and pattern

rule bases). The reduced amount of data available does not allow increasing the percentage of

the signal used to compute the MSEtrain objective function. Both tables are organized in the

same way as tables 3 and 4. The granularity and data proportion per variable are the output of

the GFS and the input parameters of the FIR recode process.

Table 6. Prediction errors (RMS) obtained by FIR, taken from Gómez et al. (2003). Ozone application (initial
partition). Granularity (3,2,2,2). EFP method

Mask type Mask relations Q RMStest

Opt (7,12,14,15,16) 0.4306 13.676
Subopt (8,12,13,16) 0.3680 10.550
Subopt (1,4,13,16) 0.3158 10.538
Subopt (4,13,14,16) 0.4033 10.183
Subopt (7,12,13,16) 0.3456 10.111
Subopt (1,12,13,16) 0.3566 10.022
Subopt (9,12,13,16) 0.2830 9.827
Subopt (8,9,13,16) 0.2866 9.757

Table 7. Genetic parameters of the GA for the ozone application.

Parameter Value

Population size (# individuals) 40
Crossover probability 0.6
Mutation probability 0.1
Stop criteria (chromosomes evaluations) {500, 1000, 2000, 4000, 8000, 16,000}

Learning fuzzy partitions in FIR methodology 721
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Table 8. Results when the FIR methodology enhanced with a GA is used to learn the granularity and the membership functions. 1 2 Q cost function. Ozone application.

# eval Granularity Data proportion Optimal mask Q 1 2 Q RMStest

A 16000 (2,3,7,2) TMP:(0.65,0.35) (3,16) 0.9823 0.0177 20.9833
NUB:(0.29,0.40,0.31)
VV: (0.14,0.14,0.17,0.16,0.06,0.16,0.17) O3:(0.95,0.05)

8000 (3,4,7,2) TMP:(0.28,0.42,0.30) (3,16) 0.9823 0.0177 20.1400
NUB:(0.26,0.27,0.22,0.25)
VV: (0.14,0.15,0.15,0.16,0.06,0.16,0.18); O3:(0.95,0.05)

4000 (2,3,3,2) TMP:(0.68,0.32) (13,14,16) 0.9814 0.0186 11.9828
NUB:(0.26,0.16,0.58)
VV: (0.33,0.33,0.34); O3:(0.95,0.05)

2000 (2,3,2,2) TMP:(0.70,0.30) (6,13,16) 0.9808 0.0192 11.8037
NUB:(0.36,0.28,0.36)
VV: (0.56,0.44); O3:(0.94,0.06)

1000 (9,7,8,2) TMP:(0.07,0.08,0.09,0.05,0.13,0.19,0.05,0.17,0.17) (5,16) 0.9771 0.0229 16.7516
NUB:(0.14,0.14,0.14,0.14,0.14,0.15,0.15)
VV: (0.27,0.12,0.06,0.05,0.12,0.15,0.06,0.17)
O3:(0.95,0.05)

500 (2,7,2,2) TMP:(0.66,0.34) (14,16) 0.9548 0.0452 13.0337
NUB:(0.14,0.14,0.14,0.14,0.14,0.15,0.15)
VV: (0.20,0.80); O3:(0.93,0.07)

B 16000 (2,3,5,3) TMP:(0.64,0.36) (10,13,16) 0.9580 0.0420 10.8162
NUB:(0.20,0.23,0.57)
VV: (0.16,0.16,0.16,0.38,0.14); O3:(0.90,0.05,0.05)

8000 (4,3,3,4) TMP:(0.36,0.19,0.16,0.29) (2,13,16) 0.9078 0.0922 10.8603
NUB:(0.25,0.29,0.46)
VV: (0.29,0.46,0.25); O3:(0.83,0.07,0.05,0.05)

4000 (2,4,9,3) TMP:(0.64,0.36) (10,13,16) 0.9567 0.0433 10.8910
NUB:(0.19,0.17,0.17,0.47)
VV: (0.09,0.05,0.22,0.12,0.20,0.10,0.11,0.05,0.06)
O3:(0.90,0.05,0.05)

2000 (3,3,2,2) TMP:(0.30,0.41,0.29) (11,13,16) 0.9452 0.0548 10.5619
NUB:(0.19,0.20,0.61)
VV: (0.38,0.62); O3:(0.91,0.09)

1000 (3,4,2,2) TMP:(0.38,0.27,0.35) (1,3,13,16) 0.7446 0.2554 9.8303
NUB:(0.25,0.25,0.25,0.25)
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VV: (0.50,0.50); O3:(0.76,0.24)
500 (3,7,3,2) TMP:(0.33,0.33,0.34) (13,15,16) 0.7593 0.2407 8.8196

NUB:(0.15,0.15,0.15,0.15,0.15,0.10,0.15)
VV: (0.33,0.33,0.34); O3:(0.80,0.20)
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Table 9. Results when the FIR methodology enhanced with a GA is used to learn the granularity and the membership functions. Prediction error of the last 8% of the training data set
(MSEtrain) cost function. Ozone application.

# eval Granularity Data proportion Optimal mask Q MSEtrain RMStest

A 16000 (6,4,6,6) TMP:(0.10,0.15,0.18,0.22,0.27,0.08) (13,14,16) 0.4298 41.44 22.9025
NUB:(0.22,0.26,0.27,0.25)
VV: (0.09,0.11,0.21,0.14,0.11,0.34)
O3:(0.05,0.41,0.07,0.07,0.07,0.33)

8000 (2,3,3,3) TMP:(0.36,0.64); NUB:(0.34,0.30,0.36) (11,13,14,16) 0.5170 37.98 11.7773
VV: (0.24,0.32,0.44); O3:(0.06,0.48,0.46)

4000 (4,4,4,4) TMP:(0.10,0.22,0.19,0.49) (13,14,16) 0.3721 46.74 10.0564
NUB:(0.19,0.40,0.11,0.30)
VV: (0.09,0.15,0.55,0.21)
O3:(0.06,0.41,0.26,0.27)

2000 (8,7,5,9) TMP:(0.11,0.11,0.11,0.11,0.12,0.13,0.13,0.18) (13,14,16) 0.2863 48.31 24.5347
NUB:(0.11,0.29,0.21,0.05,0.19,0.08,0.07)
VV: (0.08,0.22,0.07,0.06,0.57)
O3:(0.09,0.05,0.14,0.17,0.06,0.08,0.08,0.06,0.27)

1000 (9,6,7,9) TMP:(0.11,0.11,0.11,0.11,0.11,0.11,0.11,0.11,0.12) (13,14,16) 0.3283 50.03 32.8391
NUB:(0.23,0.34,0.06,0.16,0.10,0.11)
VV: (0.37,0.24,0.12,0.05,0.05,0.08,0.09)
O3:(0.07,0.09,0.07,0.19,0.18,0.08,0.13,0.12,0.07)

500 (6,6,5,8) TMP:(0.12,0.10,0.27,0.15,0.12,0.24) (13,14,16) 0.2972 52.60 11.1948
NUB:(0.05,0.37,0.19,0.22,0.05,0.12)
VV: (0.23,0.11,0.26,0.09,0.31)
O3:(0.12,0.12,0.12,0.12,0.13,0.13,0.13,0.13)

B 16000 (3,3,4,3) TMP:(0.13,0.23,0.64); NUB:(0.47,0.31,0.22) (13,14,16) 0.5847 46.68 8.8591
VV: (0.32,0.13,0.27,0.28); O3:(0.05,0.66,0.29)

8000 (3,2,6,4) TMP:(0.36,0.13,0.51) (13,14,16) 0.7417 54.16 9.4123
NUB:(0.55,0.45)
VV: (0.14,0.32,0.16,0.11,0.15,0.12)
O3:(0.05,0.73,0.17,0.05)

4000 (3,3,4,3) TMP:(0.12,0.26,0.62) (13,14,16) 0.4549 48.27 9.3005
NUB:(0.44,0.28,0.28)
VV: (0.18,0.18,0.17,0.47); O3:(0.05,0.56,0.39)

2000 (2,3,3,7) TMP:(0.41,0.59); NUB:(0.36,0.58,0.06) (1,13,14,16) 0.3226 51.68 9.7052
VV: (0.56,0.34,0.10)
O3:(0.08,0.30,0.21,0.07,0.11,0.17,0.06)
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1000 (2,3,9,2) TMP:(0.47,0.53); NUB:(0.44,0.28,0.28) (12,13,14,16) 0.3688 57.10 9.7278
VV: (0.11,0.11,0.11,0.11,0.11,0.11,0.11,0.11,0.12)
O3:(0.50,0.50)

500 (3,2,4,4) TMP:(0.53,0.25,0.22); NUB:(0.43,0.57) (13,14,16) 0.4333 62.84 9.4563
VV: (0.24,0.44,0.26,0.06)
O3:(0.05,0.38,0.05,0.52)
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Analyzing table 8 it can be seen that, although the GFS does not assure the optimal

solution, all solutions have a mask quality larger than the FIR masks of table 6. The

prediction errors of the test sets (last column) are also presented to show the accuracy of each

model obtained. Notice that although the RMStest is usually smaller when the GFS is used,

this is not always true. This is due to the fact that the test data sets were not used in the FIR

model identification process. Only the suboptimal solutions (row B for each objective

function) present lower prediction errors than those shown in tables 5 and 6. The best result

Figure 4. Prediction signals of the test data set obtained by the optimal FIR models identified with the best 1 2 Q
(top) and MSEtrain (bottom) objective functions solutions for the ozone application.

Figure 5. Training and test data sets. Ozone application.

J. Acosta et al.726



D
ow

nl
oa

de
d 

B
y:

 [U
ni

ve
rs

id
ad

 G
ra

na
da

] A
t: 

20
:0

6 
22

 N
ov

em
be

r 2
00

7 

of 9.193 RMS obtained by the MEN network with hyperbolic tangent activation function is

bigger than the 8.819 and 8.859 RMS errors obtained by FIR methodology enhanced with a

GA. Also, as expected, the MSEtrain objective function is more expensive computationally.

For example, the computational time needed to perform 30 executions for 16000 evaluations

when the 1 2 Q and MSEtrain objective functions are studied is 41:19 and 58:05 h,

respectively, on a Pentium IV computer (2.66Hz). It is important to remark that the

determination of the recode or fuzzification parameters is an offline process. Therefore, once

the FIR model is available, the prediction becomes a real-time process.

As in the previous application, the performance of FIR models when the MSEtrain

objective function is used is not superior to the performance of 1 2 Q objective function.

Therefore, once again, the 1 2 Q objective function is preferable. The user should decide,

which objective function to use taking into account the characteristics of the problem to be

solved, the size of the optimization problem and the required accuracy.

Figure 4 presents the best predictions obtained for the two cost functions studied. The top

plot shows real and predicted test signals obtained when the best solution of the 1 2 Q

objective function is used to find the optimal mask, whereas the bottom plot shows these

signals obtained when the best solution of the MSEtrain objective function is used to find the

optimal mask. The RMS errors for the top and bottom plots are 8.819 and 8.859,

respectively. They, basically, fail on the upper peaks of the first 45 data points. The reason

of the poor ability of FIR models to correctly forecast the upper peaks of the first part of the

test signal is quite clear. FIR is an inductive methodology that captures the pattern rule base

(behavior matrix) from the observed data (identification set), and bases the prediction on

the knowledge derived from it. Therefore, it is not able to predict system behaviors that do

not appear in the identification (training) set, i.e. data that the FIR model has never seen

before. This is exactly the case here. Figure 5 shows the identification (upper plot) and the

test (lower plot) signals of the ozone concentration. Analyzing carefully the identification

signal, it can be seen that from April to September of 1996 (full data set) the ozone

concentration has never reached values higher than 70 ppb. However, from the beginning of

July to middle of August of the test data set (first portion of the lower plot of figure 5) all

the ozone upper peaks go beyond this level. Therefore, FIR is not able to predict this

behavior because it is not included in the training set. Notice that FIR “memorizes” de

training data (in the behavior matrix) and, therefore, is not able to predict system’s behavior

that has never been seen before.

5. Conclusions

A FIR model is a qualitative, non-parametric, shallow model based on fuzzy logic.

Therefore, variations on fuzzy partitions have a direct effect on the performance of the model

identification and prediction processes of FIR methodology. In this paper, a GFS is developed

in the context of FIR in order to optimize its recode (or fuzzification) parameters. Two

objective functions have been evaluated and compared from the perspective of their

performance and computational time.

Two real problems are presented in this research, i.e. the estimation of the maintenance

cost of medium voltage lines in Spanish towns and the prediction of ozone levels in Austria.

The performance of FIR models encountered using the new approach were superior when

Learning fuzzy partitions in FIR methodology 727
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compared with the performance of other methodologies presented in previous studies such

are linear models, second order polynomial models, NNs, hybrid genetic programming and

different fuzzy models, for the same problems.
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