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Abstract. In [14] we proposed a scheme to generate fuzzy rule-based multiclassification systems by means of bagging, mutual
information-based feature selection, and a multicriteria genetic algorithm for static component classifier selection guided by the
ensemble training error. In the current contribution we extend the latter component by making use of the bagging approach’s
capability to evaluate the accuracy of the classifier ensemble using the out-of-bag estimates. An exhaustive study is developed
on the potential of the two multicriteria genetic algorithms respectively considering the classical training error and the out-of-bag
error fitness functions to design a final multiclassifier with an appropriate accuracy-complexity trade-off. Several parameter
settings for the global approach are tested when applied to nine popular UCI datasets with different dimensionality.

1. Introduction

Multiclassification systems (MCSs) (also called mul-
ticlassifiers or classifier ensembles) have been shown as
very promising tools to improve the performance of sin-
gle classifiers when dealing with complex, high dimen-
sional classification problems in the last few years [28].
This research topic has become especially active in the
classical machine learning area, considering decision
trees or neural networks to generate the component
classifiers, but also some work has been done using
different kinds of fuzzy classifiers (see Section 2.2).

In a previous study [13], we described how fuzzy
rule-based multiclassification systems (FRBMCSs)
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could be generated from classical MCS design ap-
proaches such as bagging [4] and random subspace [23]
with a basic, heuristic fuzzy classification rule gen-
eration method [25]. Later, we analyzed how more
advanced feature selection approaches based on the
use of mutual information measures – the classical
Battiti’s mutual information feature selection (MIFS)
method [3], a greedy heuristic, and its extension
to a greedy randomized adaptive search procedure
(GRASP) [19]— allowed us to obtain better performing
FRBMCSs [14].

The latter generation approach was embedded into
an overproduce-and-choose strategy [36] with the aim
to both reduce the final multiclassifier complexity and
even try to increase its accuracy by eliminating redun-
dant classifiers. To do so, we proposed a multicriteria
genetic algorithm (GA) [9] for static component clas-
sifier selection guided by the training error which al-
lowed us to generate linguistic fuzzy rule-based clas-

1448-5869/10/$27.50  2010 – IOS Press. All rights reserved



46 O. Cordón and A. Quirin / Comparing two genetic overproduce-and-choose strategies

sification system (FRBCS) ensembles with different
accuracy-complexity trade-offs in a single run.

The resulting FRBMCS design technique thus be-
long to the genetic fuzzy systems family, one of the
most successful approaches to hybridize fuzzy systems
with learning and adaptation methods in the last fifteen
years [11,12]. It is also quite novel in the fuzzy systems
area since no previous work has been done on bagging
FRBCSs up to our knowledge.

The aim of the current contribution is to take a step
ahead on those first developments by paying more at-
tention to the genetic classifier selection stage. To do
so, we will make use of another of the bagging inherent
advantages, its ability to test the accuracy of the ensem-
ble without the need of removing any pattern from the
data set (i.e., no need to use a validation set) by means
of the “Out-Of-Bag” Error (OOBE) [6]. Hence, a new
variant of the multicriteria genetic component classifier
selection technique will be proposed by adapting the
whole FRBMCS design framework in order the latter
stage can be guided by the OOBE. In principle, the
original fitness function based on the use of the train-
ing error could lead to the generation of overfitted FR-
BCS ensembles due to the use of the same patterns for
the individual classifier generation and MCS selection
stages. Proceeding in the former way, the FRBCS en-
semble configurations selected by the OOBE-guided
GA will be evaluated on those instances not considered
to learn the component classifiers, i.e., not chosen by
the bagging resampling to be included in each bag. We
aim to check if the new GA fitness function will allow
us to reduce the possible overfitting while still being
competitive in terms of accuracy regarding to the initial
ensemble.

An exhaustive study will be developed to test the two
GA variants based on the use of the two fitness func-
tions guided by the classical training error and OOBE,
respectively, on nine popular data sets from the UCI
machine learning repository with different characteris-
tics of dimensionality (i.e., with different numbers of
examples and features). Several parameter settings for
the global approach (e.g., different granularity levels
for the fuzzy partitions) will be tested and the perfor-
mance of the two kinds of genetically selected FRBM-
CSs will be compared between them, as well as to both
the individual FRBCSs and the initial FRBCS ensem-
bles.

This paper is set up as follows. In the next section,
the preliminaries required for a good understanding of
our work (popular classifier ensemble design approach-
es, fuzzy MCSs, the need of classifier selection, and the

existing GA-based methods to perform it) are reviewed.
Section 3 recalls our approach for designing FRBM-
CSs considering bagging and feature selection, while
Section 4 describes the proposed multicriteria GA for
component classifier selection. The experiments devel-
oped and their analysis are shown in Section 5. Specif-
ically, an example of the analysis of one chromosome
regarding the FRBCS ensemble accuracy-complexity
trade-off is presented in Section 6. Finally, Section 7
collects some concluding remarks and future research
lines.

2. Background and related work

This section explores the current literature related
to the generation of a FRBMCS. The techniques used
to generate MCSs and FRBCSs are described in Sec-
tions 2.1 and section 2.2 respectively. Some ways to
reduce the size of the ensembles are described in Sec-
tion 2.3. The use of GAs, for this purpose, is explored
in Section 2.4.

2.1. Related work on MCSs

A MCS is the result of the combination of the outputs
of a group of individually trained classifiers in order to
get a system that is usually more accurate than any of
its single components [28].

According to the existing literature, there are dif-
ferent methods to generate a MCS, all of them based
on altering the training process in such way there is
disagreement between the component classifiers. Dif-
ferent taxonomies can be considered, but it is usually
agreed that there is a well known group comprising ap-
proaches considering data resampling to obtain differ-
ent training sets to derive each individual classifier, i.e.
bagging and boosting:

1. Bagging [4]: In the bootstrap aggregation ap-
proach, the individual classifiers are independent-
ly learnt from resampled training sets (“bags"),
which are randomly selected with replacement
from the original training data set, following the
statistical bootstrapping procedure. In this way,
bagging must be used in combination with “un-
stable” learning algorithms where small changes
in the training set result in large changes in the
predictions given by the classifier [5].
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2. Boosting [43]: Boosting is a family of different
methods following the same operation mode: the
individual classifiers are generated sequentially
by selecting the training set for each of them based
on the performance of the previous classifier(s)
in the series. Opposed to bagging, the resam-
pling process gives a higher probability of selec-
tion to the incorrectly predicted examples by the
previous classifiers.

These methods have gain a large acceptance in
the machine learning community during the last two
decades due to their high performance. Decision trees
are the most usual classifier structure considered by
them and much work has been done on the topic, al-
though they can be used with any type of classifier (the
use of neural networks is also very extended, see for
example [35]).

On the other hand, a second group can be found com-
prised by a more diverse set of approaches which in-
duct the individual classifier diversity using some ways
different from resampling [52]. Feature selection plays
a key role in many of them where each classifier is de-
rived by considering a different subset of the original
features. random subspace [23], where each feature
subset is randomly generated, is one of the most repre-
sentative methods of this kind. Although it was initially
proposed for decision tree ensembles, it can be clearly
used with any kind of classifier inductor in the same
way that resampling approaches. Other generic ap-
proaches considering more advanced feature selection
strategies can be found in [49,51].

Finally, there are some advanced proposals that can
be considered as combinations of the two groups. The
most extended one could be random forests [6], where
the individual classifiers are decision trees learnt from
a resampled “bag" of examples, a subset of random
variables is selected at each construction step, and the
best split for those selected variables is chosen for that
node.

The interested reader is referred to [2,35] for two
reviews for the case of decision tree ensembles (both)
and neural networks (the latter), including exhaustive
experimental studies. The next subsection reviews the
case of the fuzzy MCSs.

2.2. Previous work on fuzzy MCSs

The use of boosting for the design of fuzzy classifi-
er ensembles has been considered in some works, tak-
ing the weak learners as fuzzy variants of neural net-

works [37,50]: as granular models [38], as neuro-fuzzy
systems [45], as well as single fuzzy rules [16,24,40].

However, only a few contributions for bagging fuzzy
classifiers have been proposed considering, fuzzy adap-
tive neural networks [37], fuzzy clustering-based clas-
sifiers [48], and neuro-fuzzy systems [7] as component
classifier structures. Up to our knowledge, no proposal
has been made considering FRBCSs.

Two advanced GFS-based contributions are worthy
to be mentioned. On the one hand, an FRBMCS de-
sign technique is proposed in [1] based on the use of
some niching GA-based feature selection methods to
generate the diverse component classifiers, and of an-
other GA for classifier fusion by learning the combina-
tion weights. On the other hand, another interval and
FRBCS ensemble design method based on the use of a
single- and multi-objective genetic rule selection is in-
troduced in [33]. In this case, the coding scheme allows
an initial set of either intervals or fuzzy rules, consider-
ing the use of different features in their antecedents, to
be distributed among different component classifiers,
trying to make them as diverse as possible by means
of two accuracy and one entropy measures. Besides,
the same authors presented a previous proposal in [26],
where a multi-objective GA generated a Pareto set of
FRBCSs with different accuracy-complexity trade-offs
to be combined into an ensemble.

Finally, some works making use of fuzzy techniques
for classifier ensemble fusion have also been proposed,
but they are out out of the scope of the current contri-
bution.

The next two subsections reviews the techniques
used to optimize the ensemble size.

2.3. Determination of the optimal set of component
classifiers in the MCS

Typically an ensemble of classifiers is post-processed
in such a way only a subset of them are kept for the
final decision. It is a well known fact that the size of
this MCS is an important issue for its trade-off between
accuracy and complexity [2,35] and that most of the
error reduction occurs with the first few additional clas-
sifiers [4,35]. Furthermore, the selection process also
participates in the elimination of the duplicates or the
poor-performing classifiers.

While in the first studies on MCSs a very small num-
ber (around ten) of component classifiers was consid-
ered as appropriate to sufficiently reduce the test set
prediction error, later research on boosting (that also
holds for bagging) suggested that error can be signifi-
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cantly reduced by largely exceeding this number [44].
This has caused the use of very large ensemble sizes
(for example comprised by 1,000 individual classifiers)
in the last few years [2].

Hence, the determination of the optimal size of the
ensemble is an important issue for obtaining both the
best possible accuracy in the test data set without over-
fitting it, and a good accuracy-complexity trade-off. In
pure bagging and boosting approaches, the optimal en-
sembles are directly composed of all the component
classifiers generated until an specific stopping point,
which is determined according to different means (val-
idation data set errors, likelihood, . . .). For example,
in [2] it is proposed an heuristic method to determine
the optimal number guided by the “OOBE" error.

However, there is the chance that the optimal ensem-
ble is not comprised by all the component classifiers
first generated but on a subset of them carrying a larg-
er degree of disagreement/diversity. This is why dif-
ferent classifier selection methods [15] has been pro-
posed. They could be mainly grouped in two kinds of
strategies. The first one is named the overproduce-and-
choose strategy (OCS) [36], also known as the test-
and-select methodology [47] or the static strategy [42]
in the literature. In this strategy, a large set of classi-
fiers is produced and then selected to extract the best
performing subset. The second one is named the dy-
namic classifier selection approach (DCS) [21]. In this
approach, the accuracy of each classifier surrounding
the region of the feature space where the unknown pat-
tern to be classified is located is previously estimated,
and the best ones are selected to classify that specific
pattern.

GAs have been commonly used for the both strate-
gies as we will show in the following subsection.

2.4. Related work on genetic selection of FRBMCSs

GAs are a popular technique used to select the classi-
fiers, especially within the OCS strategy. Usually, per-
formance, complexity and diversity measures consid-
ered used as search criteria. Complexity measures are
employed to increase the interpretability of the system
whereas diversity measures are used to avoid overfit-
ting.

Among the different genetic OCS proposals, we can
remark the following ones. In [34], a hierarchical multi-
objective GA (MOGA) algorithm, performing feature
selection at the first level and classifier selection at the
second level, is presented which outperforms classi-
cal methods for two handwritten recognition problems.

The MOGA allows both performance and diversity to
be considered for MCS selection. In [22] a GA is used
to select from seven diversity heuristics for k-means
cluster-based ensembles and the ensemble size is also
encoded in the genome. Even if the experiments con-
ducted on 18 datasets showed that no particular combi-
nation of heuristics have been chosen by the GA across
all the datasets, this study dealt with the three fami-
lies of criteria: performance, complexity and diversi-
ty. Another extensive comparison between 15 different
classifiers, 27 datasets, 7 search methods (among them
three evolutionary algorithms) and 16 selection crite-
ria (diversity measures and classifier error) is presented
in [39], but the conclusion does not agree with the other
studies: the diversity measures seem not to be useful
to improve the error rate. In the study of Mart ínez-
Munoz et al. [31], a GA is compared to five other tech-
niques for ensemble selection. Even if the performance
of the GA was the worst obtained, they showed that
while selecting a small subset of classifiers, the gen-
eralization error was significantly decreased. In [20],
the authors developed a multidimensional GA to opti-
mize two weight-based models, in which the weights
are assigned to each classifier or to each class. They
applied their system to 6 different classifiers (only lin-
ear and quadratic classifiers are explored), but on only
two small datasets and without comparing to the re-
sults obtained on a single classifier. Another study [27]
aimed to develop a weighted-based GA for combining
diverse classifiers, driven from machine-learning tech-
niques or human experts. The authors obtained promis-
ing results, but they applied their methodology only on
a small dataset, due to the difficulty of collecting a large
expert dataset. Our own previous studies [13,14] also
consider a multicriteria GA for the ensemble selection
in an OCS fashion, with performance (training error)
and complexity as criteria to guide the GA.

Some conclusions drawn in the cited papers are sim-
ilar to all of them: in general, the performance obtained
after the genetic selection of an ensemble outperforms
the initial MCS, while quite drastically simplifying the
system. But in all of them, the error rate is measured
on the initial training set or a pre-defined validation set.
The aim of the current contribution is to analyze a new
selection methodology based on the use of the OOBE
to select the ensembles by the means of a GA, taking
advantage of the bagging approach.

The other strategy, the DCS approach, is still less
extended in the specialized literature. One of the avail-
able studies, presented in [41], is a comparison of a
single-objective GA and a MOGA for 14 different ob-
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jective functions of the mentioned three families of cri-
teria (12 diversity measures, the training error, and the
number of classifiers as a complexity measure). The
authors applied their study on only one dataset, a digit
handwritten recognition problem with 10 classes and
118,735 instances. They conclude saying that the train-
ing error is the best criterion for a single GA and a com-
bination of training error and one diversity measure is
the best criterion for a MOGA. In [42], the two OCS
and DCS strategies are combined to form a dynamic
overproduce-and-choose strategy to allow, respective-
ly, the generation of a set of highly accurate ensembles,
and to select the one with the highest degree of confi-
dence, in a two-step process. This strategy outperforms
both a static strategy and the initial ensemble of clas-
sifiers on seven datasets. In [18], the authors proposed
a GA selecting the votes of each classifier in an en-
semble for its reliability to classify each class, instead
of discarding the classifiers at a whole. They obtained
good results with respect to static strategies, but they
tested their proposal on only one application. In [30],
an ensemble of neural networks are evolved using an
evolutionary algorithm based on negative correlation,
in order they learn different parts of the training set.
Very competitive results are presented, but in only two
datasets.

We can also notice that GAs are also popular tech-
niques for feature selection. For instance, in [49], a GA
is compared to four other techniques for feature selec-
tion on a high number of datasets (21) and using differ-
ent diversity measures. For all the experimentations,
the GA outperformed the remaining methods regarding
the MCS test accuracy.

3. Bagging and feature selection-based FRBMCSs

In this section we will both detail how the individual
classifiers and the FRBMCSs are designed. Figure 1
shows the framework of the whole approach. A nor-
malized dataset is split into two parts, a training set and
a test set. The training set is submitted to an instance
selection and a feature selection procedure in order to
provide individual training sets (the so-called bags) to
train simple FRBCSs (through the method described
in Section 3.1). The instance selection and the feature
selection procedures are described in Section 3.2. Af-
ter the training, we got an initial MCS, which is vali-
dated using the training and the test errors (Ensemble
Training Error and Ensemble Test Error), as well as a
measure of complexity based on the total number of

rules in the FRBCSs. This ensemble is selected using
a GA (described in Section 4) using either the Training
Error or the OOBE. The final MCS is validated using
different accuracy (Training Error, OOBE, Test Error)
and complexity measures (number of classifiers, total
number of rules).

3.1. Individual FRBCS composition and design
method

The FRBCSs considered in the ensemble will be
based on fuzzy rules with a class Cj and a certainty
degree CFj in the consequent:

Rule Rj : If x1 is Aj1 and . . . and xn is Ajn

then Class Cj with CFj ; j = 1, 2, ..., N,

and they will take their decisions by means of the
single-winner method, which gives as classifier output
the class associated to the rule with the largest value
for the product of its firing degree and the certainty de-
gree [10,25]. The and conjunctive operator in the rule
antecedent is modeled by the product T-Norm. This
fuzzy reasoning method has been selected due to its
high simplicity and interpretability. The use of other
more advanced ones [10] is left for future works.

To derive the fuzzy knowledge bases, one of the
heuristic methods proposed by Ishibuchi et al. in [25]
is considered. All the fuzzy rule derivation methods
in this family start from a fuzzy partition definition for
each variable, and are based on generating a fuzzy rule
Rj for each fuzzy input subspace Aj where at least
a training example is located. The consequent class
Cj and certainty degree CFj are statistically computed
from all the examples located in the specific subspace
D(Aj) (grid-based methods, see [8]).

In the chosen method, Cj is computed as the class h
with maximum confidence according to the rule com-
patible training examples D(Aj) = {x1, . . . , xm}.
That confidence value for every class is computed as:

c(Aj ⇒ Class h) =
|D(Aj)

⋂
D(Class h)|

|D(Aj)| =

=

∑
p∈Class h µAj (xp)∑m

p=1 µAj (xp)
h = 1, 2, . . . , M ;

CFj is obtained as the difference between the confi-
dence of the consequent class and the sum of the con-
fidences of the remainder (called CF IV

j in [25]):

CFj = c(Aj ⇒ Class Cj) −
m∑

h=1;h �=Cj

c(Aj ⇒ Class h).



50 O. Cordón and A. Quirin / Comparing two genetic overproduce-and-choose strategies

Training
Dataset

Dataset

Test
Dataset

(normalized)

Bagging Genetic
Selection

Final Set of
Classifiers

FRBCS
Mutual

Information
Feat. Selection

50%

50%

n

n

n

n

BAG 1 FRBCS 1

FRBCS 2
FRBCS 2

FRBCS
FRBCS

BAG

OOB 1

OOB 2

OOB

BAG 2

Feature
selection

Feature
selection

Instance
selection

(resampling)

Feature
selection

n
n

Validation:
 Ensemble Training Error
 Ensemble Test Error
 Complexity

Classical validation:
 GA Training Error
 GA Test Error
 Complexity
OOB validation:
 GA Out-Of-Bag Error
 GA Test Error
 Complexity

Fitness:
 Training Error
 Out-Of-Bag Error

FRBCS 1

FRBCS...

Fig. 1. Our framework: after the instance and the feature selection processes, the individual FRBCSs are learned. Finally, they are selected by a
GA to compose the FRBMCS.

This method is good for our aim of designing FRBM-
CSs since it is simple and quick. Besides, we experi-
mentally checked it fulfils the most important require-
ment for creating an ensemble, that of being unstable
enough to generate uncorrelated classifiers when run
on different bootstrapped samples of a training set.

However, it carries some drawbacks. The first one is
that of generating an excessive number of rules, which
will make impossible to run it on pure bagging ap-
proaches without feature selection when the number of
problem attributes and the granularity are high.

On the other hand, it is well known that heuristic,
data-driven fuzzy classification rule generation meth-
ods result in FRBCSs with a low accuracy by them-
selves, which will also affect the final accuracy of the
generated FRBMCSs. Even so, we prefer considering
it in this study due to the said advantages.

3.2. FRBMCS design approaches

In this contribution we are applying a bagging ap-
proach combined with a feature selection method in or-
der to generate FRBMCSs [14]. Three different feature
selection methods, random subspace and two variants
of Battiti’s MIFS, greedy and GRASP, are considered.

As said before, random subspace [23] is a method
in which we select randomly a set of features from the
original dataset. The greedy Battiti’s MIFS method [3]
is based on a forward greedy search using the Mutu-
al Information measure [46], with regard to the class.
This method selects the set S of the most informative
features about the output class which cannot be pre-
dicted with the already selected features. The Mutual
Information I(C, F ) for a given feature F is defined
as:

I(C, F ) =
∑

c,f

P (c, f) log
P (c, f)

P (c)P (f)
(1)

where P (c), P (f) and P (f) are respectively the val-
ues of the density function for the class and the fea-
ture variables, and the joint probability density. In the
MIFS method, we select as a first feature f , the one
that maximizes I(C, f), and then the features f that
maximize Q(f) = I(C, f) − β

∑
s∈S I(f, s), until S

reaches the desired size. β is a coefficient to set up the
penalization on the information brought by the already
selected features.

The MIFS-GRASP variant is an approach where the
set is generated by iteratively adding features randomly
chosen from a Restricted Candidate List (RCL) com-
posed of the best τ percent decisions according to the
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Q measure. Parameter τ is used to control the amount
of randomness injected in the MIFS selection. With
τ = 0, we get the original MIFS method, while with
τ = 1, we get the random subspace method.1

For the bagging approach, the bags are generated
with the same size as the original training set, as com-
monly done. In every case, all the classifiers will con-
sider the same fixed number of features.

Finally, no weights will be considered to combine
the outputs of the component classifiers to take the
final MCS decision, but a pure voting approach will be
applied: the ensemble class prediction will directly be
the most voted class in the component classifiers output
set.

4. A multicriteria genetic-based MCS selection
method

As described in Section 2.3, several studies have
demonstrated most of the gain in a MCS’s performance
comes in the first few classifiers combined [2,35], and
several proposals have been made either to determine
when enough component classifiers have been generat-
ed for the ensemble or to select a subset of them with
a large degree of disagreement. In the current contri-
bution we propose to use a multicriteria GA in order
to be able not only to obtain a single solution, i.e., a
classifier ensemble composition, but a list of possible
MCS designs, ranked by their quality, from a single
chromosome.

In one of our previous studies [13], we used this GA
approach considering the likelihood instead of the train-
ing error as the fitness function guiding criterion, as it
seems to be more appropriate when basic feature selec-
tion methods are used. In this extension of the study
published in [14], we are comparing two approaches
for the fitness function. In the first one, we use the
same training set as the one used to generate the bags
on which each single classifier are trained. In the fol-
lowing, we will refer to it as the Training Error-based
Fitness Function (TEFF).

This training error is computed as follows. Let
h1(x), h2(x), . . . , hl(x) be the outputs of the com-

1We should note that, although this procedure is called MIFS-
GRASP, it does not completely match the usual GRASP structure [19]
since it does not include a second stage with a local optimizer. In
our case, the use of only the first randomized greedy stage is a better
choice since more diverse feature subsets (and thus more diverse
individual classifiers) will be obtained at a lowest computational cost.

ponent classifiers of the selected ensemble for an in-
put value x = (x1, . . . , xn). For a given sample
{(xk, Ck)}k∈{1...m}, the training error of that MCS is:

1
m

· #{k | Ck �= argj∈{1...M} hj(xk)} (2)

In the second one, we allow the GA to compute the
error measure of an ensemble by using only the “Out-
Of-Bag" instances of each classifier, i.e. the equation
above is computed considering only the instances xk

not found into the bag k (see Fig. 1). In the follow-
ing, we will refer to it as the Out-Of-Bag Error-based
Fitness Function (OOBEFF). Not only these Out-Of-
Bag instances have not been seen during the learning of
each individual classifier, thus leading to less overfit-
ting, but also the size of the datasets used for the genet-
ic selection is reduced as only a 37% of the instances
from the original training set is comprised in the Out-
Of-Bags in average [4], thus improving the selection
stage computation time.

The GA looks for an optimal ordering of the com-
ponent classifiers, so that the most relevant classifiers
have the lowest indexes and those redundant members
that can be safely discarded are in the last places. The
coding scheme is thus based on an order-based repre-
sentation, a permutation Π = {j1, j2, . . . , jl} of the l
originally generated individual classifiers. In this way,
each chromosome encodes l different solutions to the
problem, based on considering a “basic” MCS com-
prised by a single classifier, that one stored in the first
gene; another one composed of two classifiers, those in
the first and the second genes, and so forth.

The degree to which a permutation fulfills this goal
is measured by means of the cumulative error of the
ensemble, defined as the vector containing the training
or Out-Of-Bag error values (depending on the consid-
ered approach) of the first classifier; the subset formed
by the first and the second; and so on. The fitness
function is thus multicriteria, being composed of an
array of l values, Li = L′

{j1,j2,...,ji}, corresponding to
the cumulative error of the l mentioned MCS designs.
The best chromosome is that member in the population
with the lowest minimum cumulative error. Then, the
final design is the MCS comprising the classifiers from
the first one to the one having the minimum cumula-
tive error value (although any other design not having
the optimal error but, for example, showing a lowest
complexity can also be directly extracted, see Fig. 7 in
Section 6).

Instead of using a Pareto-based approach [9], a lex-
icographical order is considered to deal with the mul-
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Table 1
Data sets considered

Data set #attr. #examples #classes

Pima 8 768 2
Glass 9 214 7
Vehicle 18 846 4
Sonar 60 208 2
Breast 9 699 2
Heart 13 270 2
Yeast 8 1,484 10
Phoneme 5 5,404 2
P-Blocks 10 5,473 5

ticriteria optimization, since we think it better match-
es our scenario. When comparing two chromosomes,
one is better than the other if it takes a better (lower)
minimum value of the cumulative error. In case of tie,
the first positions of the fitness arrays are compared.
If both first positions are of equal value, the second
positions are compared, and so on.

To increase its convergence rate, the GA works fol-
lowing a steady-state approach. The initial population
is composed of randomly generated permutations. In
each generation, a tournament selection of size 3 is per-
formed, and the two winners are crossed over to obtain
a single offspring that directly substitutes the loser. In
this study, we have considered OX crossover and the
usual exchange mutation [32].

5. Experiments and analysis of results

In this section, we discuss the performance obtained
by a single FRBCS, an FRBMCS and two GA-selected
FRBMCSs on nine chosen data sets.

5.1. Experimental setup

To evaluate the performance of the FRBMCSs gen-
erated, we have selected nine data sets from the UCI
machine learning repository (see Table 1). In order
to compare the accuracy of the considered classifiers,
we used Dietterichs 5 × 2-fold cross-validation (5 ×
2-cv), which is considered to be superior to paired k-
fold cross validation in classification problems [17]. In
5 × 2-cv, five stratified two-fold cross-validations are
performed. The data set is randomly broken into two
halves, and one is used for training and the other for
testing and vice versa. The procedure is repeated five
times, each with a new half/half partition, and a sin-
gle index is finally computed by averaging the ten test
errors.

Three different granularities, 3, 5 and 7, are tested
for the single FRBCS derivation method, for feature

sets of size 5 selected by means of three approach-
es: the greedy Battiti’s MIFS filter feature selection
method [3], the Battiti’s method with GRASP (with
τ equal to 0.5, see Section 3.2), and random sub-
space [23]. Battiti’s method has been run by consider-
ing a discretization of the real-valued attribute domains
in ten parts and setting the β parameter to 0.1.

The FRBMCSs generated are initially comprised by
50 classifiers. The GA for the component classifier
selection works with a population of 50 individuals and
runs during 50 generations. The mutation probability
considered is 0.05.

All the experiments have been run in an Intel quadri-
core Pentium 2.4 GHz computer with 2 GBytes of
memory, under the Linux operating system.

5.2. Single FRBCS vs. bagging + feature selection
FRBMCSs

The statistics (5 × 2-cv error, number of rules,
and run time required for each run, expressed in sec-
onds) for the single FRBCSs are collected in Table 2.
There are three subtables for each feature selection
method considered: Battiti’s method (greedy), Battiti’s
method combined with GRASP with 50% of random-
ness (GRASP 0.50), and the random subspace method.
The best results for a given feature selection method are
shown in bold and the best values overall are outlined.

In our previous study [13], we showed that the best
results for the four datasets considered in that contribu-
tion were obtained using 5 labels for the smaller prob-
lems (pima and glass), and 7 labels for the largest ones
(vehicle and sonar). This is not the case with this larger
study as sonar and some other problems with a higher
dimension (breast and heart) give their best results with
3 labels using respectively the GRASP 0.50 and the
greedy approaches. For the largest problems (yeast,
phoneme, and p-blocks), the best performance is still
obtained with the largest number of labels.

Overall, the best single FRBCS results were obtained
with GRASP 0.50 for four datasets, and with the greedy
approach for only two datasets (in the remaining three
datasets, these two approaches gave the same results).
Pure random subspace only achieves a draw in the best
results for a single dataset. This confirms the fact that
controlled randomness in the feature selection process
is useful when combined with FRBCSs.

The results for the FRBMCSs of 50 classifiers gener-
ated from the three different feature selection approach-
es considered are shown in Table 3, which present the
same structure than Table 2.
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Table 2
Results for the single FRBCSs with feature selection

Greedy
Pima Glass Vehicle Sonar Breast Heart Yeast Phoneme P-Blocks

3 labels 5 × 2-cv 0.266 0.446 0.549 0.261 0.048 0.197 0.565 0.287 0.089
5 #attr. #rules 178.50 135.30 136.40 146.60 232.90 98.60 212.00 240.70 118.00

time 0.08 0.04 0.12 0.08 0.07 0.02 0.29 0.57 0.62

5 labels 5 × 2-cv 0.246 0.376 0.430 0.287 0.064 0.227 0.481 0.207 0.077
5 #attr. #rules 682.70 291.00 437.60 615.20 1128 198.90 937.40 1181 358.20

time 0.42 0.25 0.65 0.16 0.40 0.11 2.57 3.16 4.27

7 labels 5 × 2-cv 0.262 0.414 0.402 0.291 0.136 0.258 0.442 0.181 0.067
5 #attr. #rules 1600 431.20 1021 1218 1752 277.20 2012 3180 731.90

time 1.75 1.32 3.27 0.52 1.49 0.53 13.84 14.27 23.23

Random Subspace
Pima Glass Vehicle Sonar Breast Heart Yeast Phoneme P-Blocks

3 labels 5 × 2-cv 0.265 0.457 0.512 0.319 0.051 0.252 0.616 0.287 0.088
5 #attr. #rules 161.80 109.50 154.50 174.50 207.40 67.60 66.10 240.70 139.00

time 0.07 0.03 0.12 0.08 0.07 0.02 0.21 0.57 0.65

5 labels 5 × 2-cv 0.262 0.435 0.460 0.329 0.083 0.262 0.539 0.207 0.081
5 #attr. #rules 604.20 259.60 587.80 773.60 804.90 118.70 167.90 1181 504.40

time 0.36 0.24 0.67 0.17 0.34 0.11 2.10 3.17 4.53

7 labels 5 × 2-cv 0.276 0.418 0.415 0.340 0.150 0.279 0.496 0.181 0.071
5 #attr. #rules 1432 410.90 1266 1536 1261 164.50 297.40 3180 1124

time 1.66 1.32 3.37 0.63 1.35 0.52 11.82 14.31 24.20

GRASP τ = 0.50
Pima Glass Vehicle Sonar Breast Heart Yeast Phoneme P-Blocks

3 labels 5 × 2-cv 0.267 0.447 0.546 0.316 0.047 0.209 0.565 0.287 0.089
5 #attr. #rules 179.50 137.00 135.80 169.00 233.30 92.10 212.00 240.70 120.20

time 0.09 0.04 0.12 0.09 0.08 0.03 0.29 0.57 0.63

5 labels 5 × 2-cv 0.246 0.375 0.425 0.314 0.066 0.237 0.481 0.207 0.077
5 #attr. #rules 682.70 293.50 418.90 752.70 1187 176.90 937.40 1181 367.00

time 0.39 0.26 0.63 0.17 0.41 0.11 2.57 3.17 4.30

7 labels 5 × 2-cv 0.266 0.423 0.399 0.317 0.145 0.270 0.442 0.181 0.065
5 #attr. #rules 1599 437.20 907.50 1470 1886 250.20 2012 3180 757.00

time 1.71 1.34 3.25 0.55 1.52 0.52 13.82 14.35 23.32

Comparing the best results for each dataset for the
single FRBCS and the FRBMCSs, the FRBMCS out-
performs the single FRBCS in five cases (pima, vehicle,
sonar, breast, and heart), the FRBCS outperforms the
FRBMCS in three cases (glass, yeast, and phoneme)
and there is a tie in the remaining case (p-blocks). As
can be seen, there is no clear methodology to get the
best FRBMCS: all feature selection approaches give
their best result on at least one dataset, and there is no
optimal granularity for all of the datasets. But in gener-
al, the highest number of times the best results are ob-
tained is with the random subspace method (4 datasets),
followed the GRASP 0.50 approach (3 datasets), plus
the additional draw in the phoneme dataset. The same
sequence is obtained using respectively 7 labels (4
datasets) and 5 labels (3 datasets).

Finally, over all the different feature selection ap-
proaches, the bagging+feature selection approach al-
lowed a decrease of 6% of the test error, while reducing
by 13% the average size of the individual classifiers.
The best example is produced on the breast dataset,
with the random subspace approach, using 5 labels and
5 attributes, in which the bagging allowed us to get a
decrease of a 40% in the test error, while reducing the
size of the rule base by a 4%. The best reduction of the
rule base was obtained on the p-blocks dataset (−50%),
with the random subspace approach, using 7 labels and
5 attributes, but at the cost of increasing the test error
by 17%.

The Mann-Whitney U test, also known as the
Wilcoxon Ranksum test, has been used for a deeper
insight of the results. Unlike the commonly used t test,
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Table 3
Results for the FRBCS ensembles

Bagging + Greedy
Pima Glass Vehicle Sonar Breast Heart Yeast Phoneme P-Blocks

5 × 2-cv 0.261 0.463 0.525 0.255 0.048 0.187 0.576 0.287 0.088
3 labels #rules 8578 6208 6843 7282 11067 4144 10080 11913 5404
5 #attr. avg. #rules 171.55 124.16 136.87 145.65 221.34 82.87 201.60 238.26 108.07

time 3.43 1.51 4.87 2.52 3.48 0.96 13.81 27.99 26.27

5 × 2-cv 0.235 0.396 0.400 0.240 0.057 0.207 0.481 0.207 0.077
5 labels #rules 29405 12877 22177 26769 43019 7630 41392 54448 15870
5 #attr. avg. #rules 588.11 257.54 443.55 535.37 860.37 152.60 827.83 1089 317.39

time 17.93 12.11 31.21 6.66 18.50 5.21 128.61 161.12 211.93

5 × 2-cv 0.243 0.430 0.375 0.262 0.160 0.257 0.444 0.182 0.066
7 labels #rules 64891 18633 48479 49587 61451 10430 85372 143827 31700
5 #attr. avg. #rules 1298 372.66 969.58 991.74 1229 208.61 1707 2877 634.00

time 84.70 67.36 166.51 24.72 71.86 25.58 699.56 712.24 1164

Bagging + Random Subspace
Pima Glass Vehicle Sonar Breast Heart Yeast Phoneme P-Blocks

5 × 2-cv 0.299 0.450 0.453 0.250 0.035 0.166 0.612 0.287 0.100
3 labels #rules 7936 5671 8008 8174 10479 3821 4608 11913 5641
5 #attr. avg. #rules 158.71 113.42 160.16 163.47 209.58 76.43 92.16 238.26 112.82

time 3.34 1.49 5.06 2.58 3.38 1.00 11.30 29.16 26.84

5 × 2-cv 0.260 0.430 0.378 0.221 0.050 0.201 0.491 0.207 0.090
5 labels #rules 27199 11998 30799 31824 38502 7471 13732 54448 15209
5 #attr. avg. #rules 543.97 239.96 615.97 636.47 770.04 149.42 274.65 1089 304.17

time 17.64 11.94 33.91 7.13 17.70 5.33 112.41 161.80 205.27

5 × 2-cv 0.263 0.402 0.330 0.241 0.208 0.223 0.444 0.182 0.083
7 labels #rules 59824 17999 67936 57298 54426 10659 24388 143827 28178
5 #attr. avg. #rules 1196 359.98 1359 1146 1089 213.18 487.77 2877 563.57

time 82.12 66.06 174.24 25.57 70.38 25.36 621.38 725.05 1130

Bagging + GRASP τ = 0.50
Pima Glass Vehicle Sonar Breast Heart Yeast Phoneme P-Blocks

5 × 2-cv 0.262 0.464 0.494 0.246 0.040 0.180 0.578 0.287 0.088
3 labels #rules 8609 6289 7362 7951 11228 4335 9936 11913 5738
5 #attr. avg. #rules 172.18 125.77 147.24 159.03 224.56 86.70 198.72 238.26 114.77

time 3.45 1.53 4.91 2.57 3.54 1.07 13.87 28.37 27.30

5 × 2-cv 0.234 0.405 0.399 0.220 0.056 0.210 0.482 0.207 0.076
5 labels #rules 29748 13302 25578 30068 44695 8243 40314 54448 16962
5 #attr. avg. #rules 594.95 266.04 511.56 601.36 893.90 164.86 806.29 1089 339.25

time 18.05 12.23 32.79 6.96 18.75 5.24 128.66 159.31 214.29

5 × 2-cv 0.247 0.425 0.353 0.242 0.186 0.247 0.445 0.182 0.065
7 labels #rules 65802 19272 54721 54684 63352 11480 83519 143827 33599
5 #attr. avg. #rules 1316 385.45 1094 1094 1267 229.60 1670 2877 671.98

time 85.27 68.27 170.48 25.49 72.93 25.45 698.20 713.56 1168

the Wilcoxon test does not assume normality of the
samples [29], which would be unrealistic in the case of
the UCI datasets. The significance tables presented in
this paper contain three symbols: ‘+’ when the signifi-
cance is favorable for the method in the row, ‘−’ when
the significance is favorable for the method in the col-
umn, and ‘=’ when there is no significance about which
method is better than the other. When not specified,
the confidence level considered for the null hypothesis

rejection is 5%. Table 4 shows the statistical signifi-
cance for the methodology used to create the classifier
ensembles. Each set of parameters is compared and the
one giving the best result for a given dataset is marked
with a star ‘*’. The experimental design is shown in
Fig. 2. As said before, in general, the random subspace
method performs well, and the same could be said in-
dependently for the approaches using 7 labels. Here
the statistical test proves it for two datasets: the com-
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Fig. 2. Experimental design for the statistical test to compare the
FRBMCS design methodologies.

bination random subspace + 7 labels obtained the best
significant result (over all the other approaches) for the
vehicle and the yeast datasets.

5.3. Genetic FRBMCS selection using the TEFF

The values for the genetically selected FRBMCSs
using the TEFF are collected in Table 5. Table 5 shows
the results obtained with the TEFF and the greedy and
the random subspace feature selection methods. Ta-
ble 5 shows the results obtained with the TEFF and the
GRASP 0.50 feature selection method.

The first conclusion we can draw is that the TEFF
was able to reduce the best test error for all the problems
in comparison with the use of a single classifier. The
best improvement was obtained on the sonar dataset
(−17%). TEFF is better than a single classifier in
all the cases (see Table 2). Comparing the individual
test errors between the single classifiers and the GA
selection using the TEFF, the best improvement of test
error (−33%, with 19x more rules) was obtained with
the heart dataset, using the random subspace approach
with 3 labels and 5 attributes, proving that randomness
is very useful for the improvement of the error. It
seems there is a direct relation between the randomness
injected in the feature selection method and the amount
of improvement of the test error observed between a
single classifier and an ensemble selected by the TEFF.
In average, over all datasets and all granularities values,
the random subspace causes a decrease of a 11% of the
test error, while the GRASP 0.50 causes a decrease of a
7% and the greedy approach of only a 5%. Concerning
the number of rules, the TEFF produces 10.4x more
rules than a single classifier in average, but produces
4.2x less rules than the initial FRBMCSs.

Moreover, it reduces the best test error obtained with
the initial FRBMCSs with 50 component classifiers
for many datasets, including those with the highest
dimension (glass, sonar, yeast, phoneme, p-blocks).
The best improvementof the best test error compared to
the initial FRBMCSs was obtained on the glass dataset
(−9%).

5.4. Genetic FRBMCS selection using the OOBEFF

The values for the genetically selected FRBMCSs
using the OOBEFF are collected in Table 6 shows the
results obtained with the OOBEFF and the greedy and
the random subspace feature selection methods. Ta-
ble 6 shows the results obtained with the OOBEFF and
the GRASP 0.50 feature selection method.

The FRBMCSs based on the OOBEFF are better than
the single FRBCSs in seven cases, and slightly worse
in the other two cases (glass and yeast). Comparing
the individual test errors between the single classifiers
and the GA selection using the OOBEFF, the best im-
provement of test error (−36%, with 24x more rules)
was obtained with the breast dataset, using the ran-
dom subspace approach with 5 labels and 5 attributes.
When comparing with the same result using the TEFF,
it seems the random subspace allows the best increase
for both fitness functions, proving again that a feature
selection method based on randomness is very useful
for the improvement of the performance. In average,
over all datasets and all granularities values, the ran-
dom subspace causes a decrease of a 12% of the test
error, while the GRASP 0.50 causes a decrease of a 6%
and the greedy approach of only a 3%.

Concerning the number of rules, the OOBEFF pro-
duces 15.9x more rules than a single classifier in av-
erage (so 54% more than the number obtained for the
TEFF function), but produces only 2.7x less rules than
a FRBMCS.

It reduces the best test error obtained with the initial
FRBMCSs with 50 component classifiers in five cases
(glass, vehicle, sonar, phoneme and p-blocks), and the
performance is equal in one more case (yeast). The
best improvement of the best test error compared to the
FRBMCS was obtained on the sonar dataset (−4%).

5.5. Comparison of the TEFF and the OOBEFF
genetic OCS FRBMCS strategies

Comparing the two fitness functions, the OOBEFF is
able to outperform the TEFF in the individual test error
for 26 cases, mainly for some configurations applied
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Table 5
Results for the FRBCS ensembles selected by the GA using the TEFF

Bagging + Greedy
Pima Glass Vehicle Sonar Breast Heart Yeast Phoneme P-Blocks

5 × 2-cv 0.257 0.360 0.461 0.235 0.047 0.185 0.498 0.286 0.084
3 labels #classifiers 4.1 7.3 10.3 12.3 3.2 11.8 6.9 5.9 2.7
5 #attr. #rules 696.5 904.3 1431.0 1842.1 714.3 964.7 1406.0 1411.4 303.2

avg. #rules 171.5 125.4 138.3 148.3 221.8 82.2 203.4 239.4 112.7
time 94.06 26.35 103.26 25.32 83.90 32.86 184.60 656.29 648.74

5 × 2-cv 0.242 0.383 0.392 0.247 0.063 0.214 0.476 0.205 0.075
5 labels #classifiers 11.5 15.9 15.5 10.4 5.4 16.6 12.7 6.6 4.8
5 #attr. #rules 6744.9 4233.1 7338.4 5757.7 4795.2 2809.5 10513.1 7162.0 1532.0

avg. #rules 592.8 268.7 481.9 567.0 898.7 162.2 832.7 1088.4 330.2
time 93.48 26.10 103.48 25.17 84.57 32.45 182.64 663.86 643.33

5 × 2-cv 0.258 0.393 0.374 0.258 0.156 0.250 0.446 0.180 0.064
7 labels #classifiers 12.7 8.9 14.6 6.3 20.9 16.3 17.0 10.6 6.0
5 #attr. #rules 16614.3 3524.3 16102.3 6427.0 26455.1 3716.1 29091.4 30490.3 3949.9

avg. #rules 1313.9 404.5 1115.7 1040.9 1256.1 227.3 1715.8 2872.8 655.6
time 92.87 26.50 102.90 24.85 84.00 32.48 186.18 647.24 656.13

Bagging + Random Subspace
Pima Glass Vehicle Sonar Breast Heart Yeast Phoneme P-Blocks

5 × 2-cv 0.256 0.381 0.428 0.216 0.042 0.170 0.505 0.286 0.080
3 labels #classifiers 4.2 13.7 13.4 20.1 6.4 15.7 5.7 5.9 4.9
5 #attr. #rules 703.4 1546.0 2239.5 3376.7 1352.7 1260.3 546.1 1411.4 597.0

avg. #rules 168.1 113.1 168.9 168.3 209.7 80.1 99.1 239.4 124.6
time 92.77 26.39 103.24 25.08 84.81 32.63 182.90 657.48 650.83

5 × 2-cv 0.263 0.392 0.378 0.249 0.063 0.204 0.483 0.205 0.074
5 labels #classifiers 11.9 13.7 13.0 9.4 5.5 13.5 14.1 6.6 7.4
5 #attr. #rules 6680.0 3312.2 9455.9 6208.8 4690.0 2341.9 4225.5 7162.0 2682.9

avg. #rules 555.8 245.0 734.3 668.8 856.8 177.1 301.3 1088.4 385.7
time 91.47 26.18 104.81 24.83 85.60 32.94 183.64 658.75 645.97

5 × 2-cv 0.265 0.393 0.337 0.267 0.187 0.250 0.441 0.180 0.065
7 labels #classifiers 17.0 15.5 17.5 6.4 10.2 10.5 21.5 10.6 5.4
5 #attr. #rules 21289.5 5980.6 28854.2 7655.2 11141.2 2902.1 12849.9 30490.3 4253.2

avg. #rules 1248.4 386.2 1680.2 1203.7 1092.8 279.1 602.2 2872.8 840.2
time 92.31 26.08 103.52 25.19 84.10 32.78 184.77 639.66 649.01

Bagging + GRASP τ = 0.50
Pima Glass Vehicle Sonar Breast Heart Yeast Phoneme P-Blocks

5 × 2-cv 0.254 0.372 0.449 0.237 0.047 0.183 0.504 0.286 0.083
3 labels #classifiers 4.4 10.2 12.9 13.9 6.0 15.0 6.9 5.9 6.7
5 #attr. #rules 763.0 1317.9 1991.6 2252.6 1330.4 1333.1 1377.5 1411.4 811.0

avg. #rules 174.3 126.0 155.9 161.7 222.4 89.9 200.0 239.4 124.6
time 93.37 26.49 102.09 25.18 83.65 32.78 184.07 655.97 647.14

5 × 2-cv 0.239 0.363 0.399 0.252 0.061 0.202 0.475 0.205 0.074
5 labels #classifiers 10.9 14.7 12.0 7.8 5.2 13.1 15.3 6.6 9.8
5 #attr. #rules 6497.4 3986.7 7227.3 4893.9 4709.5 2448.1 12415.5 7162.0 3332.2

avg. #rules 593.5 282.0 611.3 630.0 907.1 183.6 815.7 1088.4 383.4
time 92.58 26.16 103.75 24.86 84.30 32.24 184.11 654.60 648.25

5 × 2-cv 0.256 0.395 0.356 0.257 0.174 0.241 0.441 0.180 0.063
7 labels #classifiers 16.4 10.3 13.2 6.7 11.8 15.4 18.0 10.6 8.6
5 #attr. #rules 21836.6 4140.6 18296.2 7767.8 15168.6 4132.7 30697.7 30490.3 6033.9

avg. #rules 1346.2 401.9 1386.5 1148.7 1285.4 276.3 1703.5 2872.8 698.7
time 92.49 26.18 102.93 25.31 84.24 32.44 187.73 640.89 652.24
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Table 6
Results for the FRBCS ensembles selected by the GA using the OOBEFF

Bagging + Greedy
Pima Glass Vehicle Sonar Breast Heart Yeast Phoneme P-Blocks

5 × 2-cv 0.255 0.417 0.497 0.239 0.047 0.187 0.530 0.286 0.087
3 labels #classifiers 11.5 12.3 14.2 14.7 12.9 12.0 10.8 10.2 9.3
5 #attr. #rules 1996.8 1516.8 1952.4 2172.6 2856.8 1014.7 2174.4 2431.1 1036.4

avg. #rules 172.9 123.2 137.7 145.4 221.0 84.2 202.1 238.2 110.1
time 103.61 29.12 116.53 28.22 94.52 36.47 205.65 732.06 722.17

5 × 2-cv 0.239 0.380 0.394 0.247 0.059 0.212 0.477 0.207 0.076
5 labels #classifiers 15.6 12.2 18.7 16.9 19.5 16.8 17.1 15.0 12.9
5 #attr. #rules 9121.5 3186.1 8382.3 9305.7 16850.9 2636.3 14160.0 16311.2 4117.0

avg. #rules 589.7 262.9 449.7 550.2 863.5 160.1 827.1 1089.1 318.2
time 103.56 29.36 116.06 28.08 94.61 36.08 206.10 728.76 722.00

5 × 2-cv 0.252 0.417 0.365 0.262 0.158 0.258 0.446 0.180 0.065
7 labels #classifiers 18.3 12.6 21.7 18.0 17.9 15.8 18.9 17.7 15.7
5 #attr. #rules 23663.2 4616.8 21619.7 18010.3 22124.3 3491.5 32317.7 51100.6 9992.5

avg. #rules 1287.5 364.6 969.4 998.4 1234.5 217.5 1707.8 2879.4 639.3
time 104.59 29.37 114.82 28.02 94.26 36.45 204.82 716.90 722.82

Bagging + Random Subspace
Pima Glass Vehicle Sonar Breast Heart Yeast Phoneme P-Blocks

5 × 2-cv 0.264 0.401 0.448 0.236 0.036 0.174 0.551 0.286 0.086
3 labels #classifiers 11.6 14.9 19.5 19.5 16.1 20.2 14.0 10.2 10.7
5 #attr. #rules 1843.1 1653.0 3243.9 3196.2 3363.9 1614.6 1402.4 2431.1 1237.9

avg. #rules 159.5 111.4 166.6 163.8 209.8 80.3 101.1 238.2 115.4
time 104.26 29.42 114.90 28.15 93.50 36.51 204.74 730.77 722.48

5 × 2-cv 0.252 0.403 0.374 0.211 0.053 0.204 0.493 0.207 0.078
5 labels #classifiers 15.1 14.2 23.2 26.2 24.5 20.1 27.3 15.0 13.9
5 #attr. #rules 8327.6 3410.0 14449.0 16535.2 19118.5 3161.8 8139.7 16311.2 4686.5

avg. #rules 553.4 239.1 625.8 632.0 786.4 154.2 297.2 1089.1 341.3
time 104.13 29.59 116.17 27.95 94.83 36.65 203.66 731.34 722.34

5 × 2-cv 0.263 0.380 0.329 0.238 0.192 0.230 0.444 0.180 0.069
7 labels #classifiers 19.2 14.9 26.6 23.9 16.1 20.7 33.8 17.7 15.7
5 #attr. #rules 22950.1 5568.1 36149.9 27271.6 17731.8 4677.2 16597.5 51100.6 10227.8

avg. #rules 1199.9 381.2 1356.3 1142.8 1097.0 225.4 492.7 2879.4 658.8
time 103.51 29.43 116.30 28.28 94.73 36.28 206.29 731.03 726.54

Bagging + GRASP τ = 0.50
Pima Glass Vehicle Sonar Breast Heart Yeast Phoneme P-Blocks

5 × 2-cv 0.260 0.419 0.474 0.226 0.045 0.185 0.528 0.286 0.086
3 labels #classifiers 9.9 13.8 16.7 18.7 15.7 15.4 13.3 10.2 9.1
5 #attr. #rules 1702.0 1736.3 2496.4 3000.3 3520.8 1360.4 2665.5 2431.1 1070.2

avg. #rules 171.6 124.1 148.2 160.9 224.3 87.7 199.9 238.2 115.8
time 104.61 29.55 114.91 28.05 94.02 36.20 205.21 731.10 725.43

5 × 2-cv 0.237 0.388 0.386 0.233 0.056 0.215 0.481 0.207 0.076
5 labels #classifiers 16.0 12.7 19.4 19.3 21.2 16.8 16.4 15.0 15.2
5 #attr. #rules 9514.2 3414.0 9924.2 11700.3 19118.3 3004.7 13242.0 16311.2 5213.4

avg. #rules 592.0 268.1 508.5 603.0 902.1 178.8 802.0 1089.1 343.2
time 103.22 29.26 115.06 27.99 94.65 35.94 203.20 724.91 719.22

5 × 2-cv 0.253 0.435 0.348 0.235 0.179 0.241 0.445 0.180 0.064
7 labels #classifiers 16.5 13.3 23.4 22.8 16.0 18.7 18.5 17.7 14.8
5 #attr. #rules 21592.2 5114.6 25346.8 24704.1 20646.1 4475.4 31183.4 51100.6 10088.3

avg. #rules 1318.6 377.7 1077.7 1088.2 1290.1 237.9 1684.9 2879.4 685.3
time 103.88 29.00 115.02 28.54 93.57 36.89 204.52 717.69 726.78
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Fig. 3. Comparison of the average test errors of a single classifier, the initial FRBMCS, and those generated using the TEFF and the OOBEFF-based
genetic selection.

on the smallest datasets (pima, glass, vehicle, sonar,
breast, and heart). The best individual improvement
observed was on the breast dataset (−16%), with ran-
dom subspace (again!) with 5 labels and 5 attributes.
We have compared the average improvement over the
feature selection approaches, over all the datasets, and
only the random subspace shows an improvement with
the OOBEFF (−0.52%), while an increase of 0.86%
with GRASP 0.50 and of 1.42% with the greedy ap-
proach are found. Comparing the number of labels, re-
gardless the datasets and the feature selection approach-
es, it seems that the best test error improvement was
obtained with 5 labels (−1.2%, +3.1% with 3 labels
and −0.1% with 7 labels). For all the remaining cases,
it seems the OOBEFF is a little worst than the TEFF,
but the results are still better than those obtained by
the initial pool. This little decrease in the classification
accuracy could be explained by the fact the GA is using
less instances (in general, the bootstrapping produce
a 37% of instances in the “Out-Of-Bags", this means
63% less instances in average).

Figure 3 shows a comparison between the average
test error (taking all the experiments we did with all the
parameter settings into account) obtained on the initial
FRBMCS of 50 classifiers, and the FRBMCSs derived
by the GA using the TEFF and the OOBEFF. As can
be seen, the test error obtained by a genetic selection

is better in eight cases (pima, glass, vehicle, sonar,
breast, yeast, phoneme, and p-blocks). The OOBEFF
only outperforms the TEFF in three cases (pima, sonar
and breast), corresponding to those cases in which the
TEFF was already able to outperform the initial ensem-
ble. In average, the accuracy of the initial ensemble
is improved around a 3.2% by the TEFF and around a
2.5% by the OOBEFF.

Looking at the ensemble size, the two fitness func-
tions perform properly. For the TEFF, in general, the
number of selected classifiers is very small (10.7 in
average, 21.5 for yeast), while keeping the same order
of accuracy than the corresponding full 50 FRBCS en-
sembles. For the OOBEFF, the results are a bit worst
(16.7 in average, 33.8 for yeast): it produces a slightly
higher number of classifiers, which makes sense con-
sidering the fact that the selection is based on non-seen
instances. The increase is highly variable depending on
the datasets: ranging from +10% for glass to +114%
for breast. There are only some (six) cases in which
the OOBEFF produced smaller ensembles: glass for 5
labels (greedy and GRASP 0.50) and 7 labels (random
subspace); sonar for 3 labels (random subspace); and
breast and heart for 7 labels (greedy). Thus, the TEFF
achieved a good accuracy-complexity trade-off in al-
most all datasets, but the OOBEFF could be interesting
in some cases to improve the accuracy while decreasing
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For the single classifier

For each dataset

For each parameter
(granularity, #features), for
each feat. sel. approach

Get the 9 (5x2cv
test error) results

Get the best one
(using the mean)

5x2 cv

For the GA selected
ensembles

Output Wilcoxon(0.05)

Get the 18 (5x2cv
test error) results

Get the best one
(using the mean)

For each parameter
(granularity, #features), for

each feat. sel. approach, for
the two fitnesses

For the ensemble

Get the 9 (5x2cv
test error) results

Get the best one
(using the mean)

For each parameter
(granularity, #features), for
each feat. sel. approach

5x2 cv

5x2 cv

5x2 cv

5x2 cv

5x2 cv

Fig. 5. Experimental design for the statistical test to compare the selected FRBMCS design methodologies.

the complexity (e.g., on glass, 5 labels, 5 attributes and
the greedy approach, the ensemble is reduced by a 23%
while still decreasing the test error).

Finally, Fig. 4 shows a comparison between the av-
erage complexity (computed as the number of existing
classifiers in the different FRBMCSs) obtained from
the initial ensembles processed by the GA using the
TEFF and the OOBEFF. As a reference, the complexity
of a single classifier (1) and of the full ensemble (50)

are also represented. As can be seen, the TEFF leads
to smaller ensembles, and the highest decrease is ob-
served in the p-blocks dataset (−87% with the TEFF,
−74% with the OOBEFF). This could be explained by
the fact that to reduce overfitting on the non-seen in-
stances, the GA has to include more classifiers in the
ensembles. In average, the increase of the size between
the two fitness functions is about 63%, but the size of
the ensembles obtained with the OOBEFF is still 67%
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Table 7
Statistical test for the comparison of the FRBMCSs versus the GA selected FRBMCSs
methodologies (see Fig. 5). For each dataset, the best result is marked (‘*’) and the others
are compared to it

Best single classifier Best ensemble Best ens. selected
(app./labels) (app./labels) (app./labels/fitness)

Pima Approach GRASP/5 GRASP/5 GRASP/5/OOBEFF
µ ± σ 0.246 ± 0.00991 0.234 ± 0.019 0.237 ± 0.0134

Symbol = * =

Glass Approach GRASP/5 Greedy/5 Greedy/3/TEFF
µ ± σ 0.375 ± 0.0526 0.396 ± 0.0568 0.360 ± 0.0507

Symbol = = *

Vehicle Approach GRASP/7 Random/7 Random/7/OOBEFF
µ ± σ 0.399 ± 0.0262 0.330 ± 0.0179 0.329 ± 0.0241

Symbol + = *

Sonar Approach Greedy/3 GRASP/5 Random/5/OOBEFF
µ ± σ 0.261 ± 0.0463 0.220 ± 0.0445 0.212 ± 0.0413

Symbol + = *

Breast Approach GRASP/3 Random/3 Random/3/OOBEFF
µ ± σ 0.0466 ± 0.0076 0.0355 ± 0.00468 0.0360 ± 0.0054

Symbol + * =

Heart Approach Greedy/3 Random/3 Random/3/TEFF
µ ± σ 0.197 ± 0.0284 0.166 ± 0.0335 0.170 ± 0.0360

Symbol = * =

Yeast Approach Greedy/7 Random/7 GRASP/7/TEFF
µ ± σ 0.442 ± 0.0123 0.444 ± 0.0124 0.441 ± 0.0151

Symbol = = *

Phoneme Approach Greedy/7 Greedy/7 Greedy/7/TEFF
µ ± σ 0.181 ± 0.00944 0.182 ± 0.00933 0.180 ± 0.00939

Symbol = = *

P-Blocks Approach GRASP/7 GRASP/7 GRASP/7/TEFF
µ ± σ 0.0648 ± 0.00404 0.0653 ± 0.00310 0.0634 ± 0.00318

Symbol = = *

smaller than the initial ensemble (79% smaller using
the TEFF).

Thus, both fitness functions could be viewed as a
proper way to improve the results obtained by the initial
ensemble while reducing its complexity, with the TEFF
giving better results.

5.6. Statistical significance of the results

Table 7 shows the results of the statistical tests per-
formed to check if the performance of the initial FRBM-
CSs and the performance of the GA selected FRBMC-
Ss outperform significantly the performance of the sin-
gle classifier. The best result for each dataset is marked
with a star ‘*’. The experimental design is shown in
Fig. 5.

The best results (in average) are always obtained by
the initial or the selected ensembles, even if they are
only significant for three datasets (on vehicle and sonar,
the performance of the GA outperforms significantly
the single classifier; on breast the performance of the

For the ensemble selected
by the Training Error

For the ensemble selected
by the Out-Of-Bag Error

For each dataset

Output Wilcoxon(0.05 / 0.10)
(only for the OOB approach)

For each parameter
(granularity, #features), for
each feat. sel. approach

5x2 cv

Get the 5x2cv test error results Get the 5x2cv test error results

5x2 cv

Fig. 6. Experimental design for the statistical test to compare the two
fitness functions.

initial ensemble outperforms significantly the single
classifier). In general, the best results are obtained
when considering the GA selection (the GA got the
best results for 6 datasets, versus only 3 for the initial
ensemble).

Thus, combining bagging and the GA selection pro-
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Table 8
Statistical test for the comparison of the two GA fitness functions (see Fig. 6). For
each dataset, the OOBEFF is compared to the TEFF for each approach (‘+’ means
the OOBEFF is significantly better). The results are shown with a confidence
of 5 and 10%. Only the datasets/approaches with have statistically significant
differences are listed

Approach Greedy GRASP τ = 0.50 Random Subspace
Datasets 3 labels 3 labels 7 labels 3 labels 5 labels 7 labels

Glass – =/– =/–
Vehicle =/–
Sonar +
Breast =/+
Yeast – – –

P-Blocks =/– – – –

Fig. 7. An example of the training and test errors for the 50 FRBMCSs selected by a chromosome

cess to design FRBMCSs performs better for high di-
mensional problems with a large number of attributes,
producing a smaller rule base while reducing the test
errors in some cases, which was our original goal [13].
When combining these two techniques with an ad-
vanced feature selection process we also get an im-
provement on the accuracy for datasets with a higher
dimension (glass, vehicle, sonar, and especially, yeast,
phoneme and p-blocks, see Table 7).

Table 8 shows the results of the statistical test
performed to check the significance of the perfor-
mance comparison of the TEFF and the OOBEFF for
all the approaches and all the datasets. Only the
datasets/approaches combinations giving significant re-
sults are shown. In this table, the symbols correspond
to a confidence of 5% and 10%, respectively. The ex-
perimental design is shown in Fig. 6. As already said,
in general, the TEFF performs significantly better for
six approaches considered in four datasets, while the
OOBEFF performs significantly better only for one ap-

proach (5 labels + random subspace) in two datasets.
Thus, in most of the cases, the two fitness functions
give equal performance, apart from some cases (only
13 cases in comparison to the 81 cases considered), in
which the OOBEFF performs slightly worse.

6. On the different FRBCS ensembles contained in
the best chromosome

For the readability of the paper, we will only show
an example of the multicriteria selection capability. In
Fig. 7, a graphical representation of the training and test
error trends of all the FRBMCSs encoded in the best
chromosome obtained from the TEFF-based genetic
selection when applied on the initial FRBCS ensemble
for the sonar dataset (bagging+random subspace, 3
labels, 5 attributes) are shown.

The chosen solution (the one with the lowest Train-
ing Error TE = 0, with 26 classifiers) is highlighted.
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Notice that the ensemble of 9 classifiers has a better test
error and is actually smaller; and how bigger ensembles
lead to bigger training and test errors.

We leave for future works the study of this capability
of our algorithm and the analysis of its interrelation
with the two fitness functions.

7. Conclusions and future works

We have proposed the use of bagging and feature
selection approaches like random subspace and greedy
and GRASP-based Battiti’s methods, together with
a TEFF and a OOBEFF-guided multicriteria GA, to
design FRBMCS ensembles with a good accuracy-
complexity trade-off. The resulting FRBCS ensembles
have shown to be able to deal with classification prob-
lems with a large number of features (up to 60) and a
large number of instances (up to 5,400). The results
obtained in some popular data sets of high dimension
are quite promising.

Our future work will be concentrated on the study of
the influence of other parameters (the GA parameters
for instance), on the design of more advanced genet-
ic MCS selection techniques (for example, the use of
Pareto-based algorithms), on the use of more advanced
fuzzy reasoning mechanisms both in the component
FRBCSs and in the ensemble, on the analysis of the
multicriteria GA potentials, and on the design of MCSs
of more accurate FRBCSs.
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