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Fuzzy Inductive Reasoning (FIR) is a data-driven methodology that uses fuzzy and pattern

recognition techniques to infer system models and to predict their future behavior. It is

well known that variations on fuzzy partitions have a direct effect on the performance of the

fuzzy-rule-based systems. The FIR methodology is not an exception. The performance of

the model identification and prediction processes of FIR is highly influenced by the

discretization parameters of the system variables, i.e. the number of classes of each variable

and the membership functions that define its semantics. In this work, we design two new

genetic fuzzy systems (GFSs) that improve this modeling and simulation technique. The main

goal of the GFSs is to learn the fuzzification parameters of the FIR methodology. The new

approaches are applied to two real modeling problems, the human central nervous system and

an electrical distribution problem.
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1. Introduction

Fuzzy set theory and fuzzy logic are very powerful tools

for managing uncertainties inherent to complex systems.

Fuzzy systems have demonstrated their ability to solve

different kind of problems like control, (Driankov et al.

1993, Leondes 1999), modeling (Pedrycz 1996) or

classification (Chi et al. 1996, Vapnik 1998, Kuncheva

2000), and have been successfully applied to a wide

range of applications, i.e. signal and image processing

(Chi et al. 1996, Sattar and Tay 1999, Suzuki et al.

2001), risk assessment (Leondes 1999), information

retrieval (Miyamoto 1989, Chen et al. 2001), industrial

applications (Hirota and Sugeno 1995, Leondes 1999,

Dote and Ovaska 2001), etc. However, most of the
research done in the field in the 90s did not contain
learning and adaptation capabilities. In the last decade,
there has been a high interest for including learning in
fuzzy systems. This has been achieved by means of the
development of hybrid techniques that include fuzzy
systems together with complementary techniques
like neural networks, evolutionary algorithms or
probabilistic methods.

It is commonly established that more intelligent
systems can be obtained by the hybridization of soft
computing methodologies (Bonissone 1997, Cordón
et al. 2001). Neural fuzzy systems (NFSs) and
genetic fuzzy systems (GFSs) are the most notorious
representatives of hybrid systems within soft computing.
NFS and GFS hybridize the approximate reasoning
method of fuzzy systems with the learning processes*Corresponding author. Email: angela@lsi.upc.edu
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based on a neural network and an evolutionary
algorithm, respectively.
There are numerous studies on both subjects.

However, neuro-fuzzy systems (Jang et al. 1997) have
been used in a larger number of applications, in
particular in the industrial area. This article is focused
on GFSs (Cordón et al. 2001) and, therefore, we only
review here some of the results that are more related to
the work presented in our research.
In Cordón et al. (2004), the authors present an

excellent overview of the research done in the last
10 years in the field of GFSs. As described in this article,
the most prominent types of GFSs are genetic fuzzy-
rule-based systems (GFRBSs), whose genetic processes
learn or tune different components of a fuzzy-rule-base
system, i.e. scaling functions (Gudwin et al. 1998,
Magdalena 1999, Hoffmann 2001), membership func-
tions (Herrera et al. 1995, Gürocak 1999, Hoffmann
2001, Casillas et al. 2005), rule bases (Ishibuchi et al.
1999, González and Pérez 2001, Hoffmann 2001,
Camargo et al. 2004, Carmona et al. 2004, del Jesús
et al. 2004) or knowledge bases (Heider and Drabe 1997,
Hoffmann and Pfister 1997, Camargo et al. 2004,
Pomares et al. 2004). In Gudwin et al. (1998), the
use of contextual transformation functions to adjust
membership functions is introduced. The fine tuning of
membership functions is critical when evaluating the
effectiveness of fuzzy systems in control, modeling or
classification problems. Linear context adaptation is
simple and fast, but the membership functions obtained
are uniformly distributed. Non-linear context
adaptation is more computationally expensive, but the
membership functions can be stretched or expanded to
best represent concepts in real environments, e.g. higher
sensitivity in extreme classes or in middle classes. In that
work, a genetic algorithm (GA) was used to find a
non-linear transformation function given the base
membership functions and a set of data available from
the application studied. In Magdalena (1999), the author
proposed a GA to learn the rule base and the gain and
sensitivity of fuzzy logic controllers by means of scaling
functions. Hoffmann (2001) describes two applications
of GFSs, an evolutionary strategy that tunes the scaling
and membership functions of a fuzzy cart-pole balan-
cing controller and a GA that learns the fuzzy control
rules for an obstacle-avoidance behavior of a mobile
robot. Casillas et al. (2005) present a genetic tuning
process for jointly fitting the fuzzy rule symbolic
representations and the meaning of the involved
membership functions. The good performance of this
proposal mainly lies in the tuning approach performed
at two different levels of significance. In Herrera et al.
(1995) and Gürocak (1999), GA-based methods are
described to alter the shapes of the fuzzy sets by shifting
its peak location. In these studies, it is assumed that the

rule base and the fuzzy sets are already defined.

The research presented in Ishibuchi et al. (1999) and

González and Pérez (2001) deals with the automatic

generation of fuzzy if-then rules by means of genetic

methods. In Ishibuchi et al. (1999), fuzzy if-then rules

are obtained for pattern classification problems. This

work uses fixed membership functions and therefore, no

tuning mechanism is applied to them. In González and

Pérez (2001), different search strategies (GAs, simulated

annealing and hill climbing) are analyzed to find the best

fuzzy rules that describe the system under study. del

Jesús et al. (2004) proposes the use of an Adaboost

algorithm for the same task. Another strategy is to

identify fuzzy modes from certainty degrees, as studied

in Carmona et al. (2004). Heider and Drabe (1997) and

Hoffmann and Pfister (1997) present two genetic

perspectives for the learning of fuzzy knowledge bases.

In Heider and Drabe (1997), a cascaded GA is

introduced with the idea of splitting the fuzzy system

design process into optimization of the structure and the

parameters. This algorithm is tested on a fuzzy

controller design task. In Pomares et al. (2004), a

novel approach to achieve global learning in fuzzy

controllers is proposed.
Although the largest number of research efforts has

been reported on GFRBSs, other kinds of GFSs, like

genetic fuzzy neural networks (Russo 1998, Chung et al.

2000, Alpaydin et al. 2002) and genetic fuzzy clustering

algorithms (Hall et al. 1994, Van Le 1995, Yuan et al.

1995), have also been developed with successful results.
In the research presented in this article, we propose

two new GFS to improve a modeling and simulation

technique, Fuzzy Inductive Reasoning (FIR). The main

goal of the GFSs is to take advantage of the

potentialities of GAs in order to learn the fuzzification

parameters of the FIR methodology; i.e. the number of

fuzzy sets (classes) per variable and the membership

functions that define its semantics. Due to the fact that it

is a methodology based on fuzzy logic, FIR modeling

and prediction performance is influenced by these

discretization parameters.
In the last years, the FIR methodology has been

applied to different kinds of applications (e.g. control,

biomedicine, ecology), usually obtaining good results

(Mugica et al. 1994, Nebot et al. 1996, Nebot et al.

2001). In these studies, default values have been used to

determine the number of classes and the associated

membership functions. The default value for the

number of classes’ parameter for each system variable

is three and the equal frequency partition (EFP) is used

as the default method to obtain the membership

functions of the classes. The EFP method is one of the

simplest classification methods available. It consists

in distributing the system data into a predefined number
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of classes maintaining the same number of occurrences
in each class.
However, experience has shown that in some applica-

tions, i.e. biomedical and ecological, the determination
of the parameters needed in the discretization step
becomes significant for the identification of a good
model that captures systems behavior in an accurate
way. Therefore, the automatic determination of good
fuzzification parameters in the FIR methodology is an
interesting and useful alternative to the use of heuristics
and/or default values. This is, precisely, the main
contribution of this article, i.e. the design and develop-
ment of two GFS for the automatic determination of the
FIR methodology fuzzification parameters. In our case,
the fuzzy system is the FIR methodology and two GAs
are developed to find the parameters of this fuzzy
system. The first problem to be addressed is the learning
of the optimal number of classes for each system
variable. The second one is the learning of the member-
ship functions of the classes. The reason for designing
two GAs instead of only one that deals with both
problems at the same time is 2-fold: 1) testing the
viability of the GFS approach to fulfill each one of these
goals in the context of the FIR methodology and
2) learning the number of classes and the membership
functions independently, allowing the use of a priori
expert knowledge when available or to study other
methodologies for any of the problems addressed.
The improved FIR methodology is used for model

identification of two real problems, i.e. modeling of the
human central nervous system (CNS) control and
estimating the maintenance cost of medium voltage
lines in Spanish towns. The results are compared to the
ones obtained by other methodologies in the same
applications, i.e. NARMAX, time delay neural
networks, recurrent neural networks, GFRBSs, linear
models, etc.
The FIR methodology is presented in section 2.

The GAs proposed are described in section 3. Sections 4
and 5 present the applications under study (i.e. medical
and electrical) and the discussion of the obtained results,
respectively. Finally, the conclusions of this research
are given.

2. Fuzzy inductive reasoning methodology

The conceptualization of the FIR methodology arises
from the General System Problem Solving approach
(GSPS) proposed by Klir (1985). This methodology of
modeling and qualitative simulation is based on systems
behavior rather than on structural knowledge. It is able
to obtain good qualitative relations between the vari-
ables that compose the system and to infer the future
behavior of that system. It has the ability to describe
systems that cannot easily be described by classical
mathematics (e.g. differential equations), i.e. systems for
which the underlying physical laws are not well
understood. FIR is composed of four main processes,
namely: fuzzification, qualitative model identification,
fuzzy forecasting and defuzzification. Figure 1 describes
the processes of the FIR methodology.

The fuzzification process converts quantitative data
stemming from the system into fuzzy data, i.e. qualita-
tive triples. The qualitative model identification process
is responsible for finding causal and temporal relations
between variables and therefore of obtaining the model
that best represents the system.

Once the FIR model is available, the prediction
system can take place using the FIR inference engine.
This process is called fuzzy forecast. FIR inference
engine is a specialization of the k-nearest neighbor rule,
commonly used in the pattern recognition field.
Defuzzification is the inverse process of fuzzification.
It allows converting the qualitative predicted output into
quantitative values that can then be used as input to an
external quantitative model.

In order to define a useful chromosome codification
and a good objective function, it is necessary to go
deeply into the fuzzification and model identification
processes of the FIR methodology.

2.1 Fuzzification

Figure 2 illustrates the process of fuzzification by means
of an example. As mentioned earlier, a quantitative
value is fuzzified into a qualitative triple. The
first element of the triple is the class value, the second
element is the fuzzy membership value and the third
element is the side value. The side value indicates
whether the qualitative value is to the left or to the right
of the peak value of the associated membership function
(figure 2).

The side value, that is not commonly used in fuzzy
logic, is responsible for preserving, in the qualitative
triple, the complete knowledge contained in the original
quantitative value.

In figure 2, a temperature of 23�C would hence be
fuzzified into the class normal with a side value right and
a fuzzy membership value of 0.755.

Figure 1. Fuzzy inductive reasoning (FIR) scheme.

Optimization of fuzzy partitions for inductive reasoning using genetic algorithms 993
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Most fuzzy inference approaches preserve the
knowledge by associating to each quantitative data
value, multiple fuzzy rules consisting of tuples of class
and membership values. They will thus represent the
temperature of 23�C as being normal with likelihood
0.755 and being warm with likelihood 0.20. FIR
accomplishes the same by associating to each quantita-
tive data value, the described triple. Then, in the FIR
methodology, the queues of the membership functions
are discarded and only the part of the membership
functions in the range [0.5–0.1] is used. The point where
two neighboring classes match with a membership value
of 0.5 is named landmark. Therefore, the component to
be optimized by the GA is the width of the membership
function of each class, specified by both landmarks. In
the example of figure 2, the membership function of the
class normal is defined by landmarks {13,27}; being this
pair, the temperature values that specify the limits
between the class normal and its adjacent classes, fresh
and warm, respectively.
The result of the fuzzification process are three

matrices of identical size named qualitative datamatrices,
one containing the class values, the second storing the
membership information and the third recording the side
values. Each column represents one of the observed
variables and each row denotes one time point, i.e. one
recording of all variables or one recorded state.

2.2 Qualitative model identification

AFIRmodel iscomposedofastructure, calledmask,anda
pattern rulebase, namedbehaviormatrix.Amaskdenotes
a dynamic relationship among qualitative variables.
An example of a mask is presented in equation (1).

ð1Þ

Each negative element in the mask is called an
m-input (mask input). It denotes a causal relation with
the output, i.e. it influences the output up to a certain
degree. The enumeration of the m-inputs is immaterial
and has no relevance. The single positive value denotes
the output. The mask of equation (1) contains four
m-inputs. In position notation, it can be written as
(1,4,10,12,15), enumerating the mask cells from top
to bottom and from left to right. In this example, the
first and second m-inputs, i1 and i2, correspond to
the input variables u1 and u4 two sampling intervals
back, (t� 2�t), whereas the third m-input, i3, refers to

the output variable y1 one sampling interval into the
past, (t� �t), etc.

How is a mask found that, within the framework of
all allowable masks, represents the most deterministic
state transition matrix, i.e. optimizes the predictiveness
of the model? In FIR, the concept of a mask candidate
matrix is introduced. A mask candidate matrix is an
ensemble of all possible masks from which the best is
chosen by either a mechanism of exhaustive search of
exponential complexity or by one of various suboptimal
search strategies of polynomial complexity as described
in Jerez and Nebot (1997). The mask candidate matrix
contains �1 elements where the mask has a potential
m-input, aþ 1 element where the mask has its m-output
and 0 elements to denote forbidden connections. Thus, a
good mask candidate matrix to start the search for the
best mask shown in equation (1) might be:

Each of the possible masks is compared to the others
with respect to its potential merit, i.e. the degree of
determinism associated with the state transition matrix
constructed from it. The optimality of the mask is
evaluated with respect to the maximization of its
forecasting power. The Shannon entropy measure is
used to determine the uncertainty associated with
forecasting a particular output state, given any legal
input state. The Shannon entropy relative to one input
state is calculated from equation (2):

Hi ¼
X
8o

pðojiÞ � log2 pðojiÞ ð2Þ

where p(o|i) is the conditional probability of a certain
m-output state o to occur, given that the m-input state

x u1 u2 u3 u4 y1
t

t� 2�t �1 0 0 �2 0
t� �t 0 0 0 0 �3
t 0 �4 0 0 þ1

x u1 u2 u3 u4 y1
t

t� 2�t �1 �1 �1 �1 �1

t� �t �1 �1 �1 �1 �1
t �1 �1 �1 �1 þ1

Figure 2. FIR fuzzification process of ambient temperature

variable.

994 J. Acosta et al.
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i has already occurred. The term probability is meant in
a statistical rather than in a true probabilistic sense.
It denotes the quotient of the observed frequency of a
particular state divided by the highest possible frequency
of that state. The overall entropy of the mask is then

computed as the sum given in equation (3):

Hm ¼ �
X
8i

pðiÞ �Hi ð3Þ

where p(i) is the probability of that input state to occur.
The highest possible entropy Hmax is obtained when
all probabilities are equal, and a zero entropy
is encountered for relationships that are totally
deterministic. A normalized overall entropy reduction
Hr is defined as:

Hr ¼ 1:0�
Hm

Hmax

� �
ð4Þ

Hr is obviously a real-valued number in the range
between 0.0 and 1.0, where high values usually indicate
an improved forecasting power. The masks with highest
entropy reduction values generate forecasts with the
smallest amounts of uncertainty.
One problem still remains. The size of the pattern rule

base increases as the complexity of the mask grows, and
consequently, the number of legal states of the model
grows fast. Since the total number of observed data
records remains constant, the frequency of observation

of each state shrinks rapidly, and so does the predic-
tiveness of the model. The entropy reduction measure
does not account for this problem. With increasing
complexity, Hr simply keeps growing. Very soon, a
situation is encountered where every state that has ever
been observed has been observed precisely once. This
obviously leads to a totally deterministic state transition
matrix, and Hr assumes a value of 1.0. Yet the
predictiveness of the model will be dismal, since in all
likelihood, already the next predicted state has never

before been observed, and that means the end of
forecasting. Thus, this consideration must be included
in the overall quality measure.
From a statistical point of view, every state should be

observed at least five times (Law and Kelton 1990).
Therefore, an observation ratio, Or, is introduced as an
additional contributor to the overall quality measure:

Or ¼
5 � n5x þ 4 � n4x þ 3 � n3x þ 2 � n2x þ n1x

5 � nleg
ð5Þ

where: nleg is the number of legal m-input states, n1x
is the number of m-input states observed only once, n2x
is the number of m-inputs states observed twice, etc.

If every legal m-input state has been observed at least

five times, Or is equal to 1.0. If no m-input state has been

observed at all (no data are available), Or is equal to 0.0.

Thus, Or can also be used as a quality measure. The

overall quality of a mask, Q, is then defined as

the product of its uncertainty reduction measure, Hr,

and its observation ratio, Or:

Q ¼ Hr �Or ð6Þ

The optimal mask is the mask with the

largest Q value.
Let us now address the second issue. How is the

pattern rule base obtained from the mask? This process

is illustrated in figure 3. The mask can be used to

‘flatten’ dynamic relationships into pseudo-static rela-

tionships. The left side of figure 3 shows an excerpt of

the qualitative data matrix that stores the class values. It

shows the numerical rather than the symbolic class

values. In the example shown in figure 3, all the

variables were discretized into three classes, except

variable y1, that was discretized into two classes.

The dashed box symbolizes the mask that is shifted

downwards along the class value matrix. The round

shaded ‘holes’ in the mask denote the positions of the

m-inputs, whereas the square shaded ‘hole’ indicates the

position of the m-output. The class values are read out

from the class value matrix through the ‘holes’ of the

mask, and are placed next to each other in the behavior

matrix that is shown on the right side of figure 3.
Here, each row represents one position of the mask

along the class value matrix. It is lined up with the

bottom row of the mask. Each row of the behavior

matrix represents one pseudo-static qualitative state or

qualitative rule (also called pattern rule). For example,

Optimal 
mask 

m-input m-output

System
inputs 

System
output

Behavior matrix
(Pattern rule base)

i1 i2 i3 i4 O1

3    3    1    2       2 
1    2    2    2       1 
2    1    1    2       1 
3    3    1    3       2 
2    2    2    2       1 
2    1    1    1       2 
3    2    2    3       1 

. 

. 

.

Qualitative data matrix
(Classes)

u1 u2 u3 u4 y1

0     3    2   2 3  2 

δt 1 2  2 2    1 

2δt  2 2  3 1    2 

3δt  3 2  1 3    1 

4δt 2 2  2 2    1 

5δt  2 3  3 1     2 

6δt  3 2  2 1  
   1 

7δt 1    1    3    1       2 

.  3 3 1  3  1 
 . .

Figure 3. FIR pattern rule base obtaining.

Optimization of fuzzy partitions for inductive reasoning using genetic algorithms 995
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the shaded rule of figure 3 can be read as follows:
‘If all the m-inputs (i1, i2, i3, i4,) have a value of 2
(corresponding to medium) then the m-output, O1,
assumes a value of 1 (corresponding to high)’.
The qualitative rules can be invoked during

qualitative simulation to predict new qualitative
outputs. Clearly, these rules can be written in any
order, i.e. the sequencing of the rows of the behavior
matrix has become irrelevant. They can be sorted
alphanumerically. The sorted behavior matrix is called
state transition matrix.
For a deeper and more detailed insight into the FIR

methodology, the reader is referred to Nebot (1994).

3. Genetic algorithms for the optimization of fuzzy

partitions

GAs are general purpose search methods used to find
approximate solutions to difficult problems through the
application of the principles of evolutionary biology to
computer science. GAs use biologically derived techni-
ques like inheritance, mutation, natural selection and
recombination. There were initially proposed by
Holland (1975) and they have been studied later in
depth by other authors (Michalewicz 1996). They are
very robust and highlight due to their good behavior in
difficult problems, i.e. in those problems in which the
search space is big, discontinuous, complex and not very
well known. Although the optimal solution to the
problem is not guaranteed, they usually provide
acceptable solutions in a reasonable time.
The basic idea is to maintain a population of

chromosomes (representing candidate solutions to the
concrete problem being solved) that evolves over time
through a process of competition and controlled
variation that emulates the genetic processes that take
place in the nature. Along successive iterations, denomi-
nated generations, the chromosomes in the population
are ordered with regard to their degree of adaptation to
the problem. Using this evaluation, a new population is
built by means of a selection mechanism and a set of
genetic operators like crossover and mutation. An
evaluation or fitness function must be designed for each
problem to be solved. Given a particular chromosome of
the population (a possible solution), the fitness function
returns a single numerical value, which is supposed to be
proportional to the utility or adaptation of the solution
represented by that chromosome. This function is
responsible for guiding the GA in the search space.
For this reason, it should be well designed so that it is
capable, not only for distinguishing, in a clear way, the
well-adapted chromosomes from those that are not, but
also for ordering them with respect to their capacity to
solve the problem.

The main aspects to be considered in the implementa-
tion of a GA are: (A) genetic representation, (B)
fitness or objective function, (C) genetic operators
and (D) genetic parameters. These points are highly
important in order to achieve a good performance of the
algorithm.

3.1 Determination of the number of classes (GA1)

In this section, the first GA proposed (GA1) is described
in detail. The goal of GA1 is to determine the number
of classes of each of the system variables.

3.1.1 Genetic representation. Each chromosome
is composed by the number of classes associated to
each variable. The number of linguistic terms for N
variables is codified using a vector of N integers in the
range [2–9]. The values of the genes are forced to remain
in this interval, so the genetic operators must observe
this requirement. Therefore, if we denote by Xi

the number of classes for the variable i, a full
chromosome representation for a system of N variables
(including inputs and outputs), is defined by means
of equation (7):

C ¼ ðX1,X2 , . . . ,XNÞ ð7Þ

3.1.2 Fitness or objective function. In order to evaluate
a chromosome, the following steps are considered:

(1) Decode the information of the chromosome, build-
ing the associated fuzzy partition in the FIR
structures.

(2) Execute the qualitative model identification process of
the FIR methodology with the training data set,
using the partition built in the previous step.
Therefore, the mask associated to that partition
with the highest quality measure is obtained.

(3) Compute an objective function. In this research, two
objective functions are proposed: a) the quality of the
optimal mask or b) the prediction error of part of the
training data set.

As explained earlier, in the qualitative model
identification process of the FIR methodology, the
optimal mask (i.e. the best model structure) is
identified by means of a quality measure, Q. The quality
of a mask is a value between 0 and 1, where 1
indicates the highest quality. Therefore, the first cost
function proposed is 1�Q, due to the fact that the
algorithm task is to minimize the cost function.

The second cost function is defined as the prediction
error of a portion of the training data set. The
normalized mean square error in percentage (MSE),

996 J. Acosta et al.
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given in equation (8), is used for this purpose,

MSE ¼
E yðtÞ � ŷðtÞð Þ

2
h i
VAR yðtÞ½ �

:100% ð8Þ

where ŷ(t) is the predicted output, y(t) the system output
and VAR denotes variance. The idea is to use a part of
the training data set to identify the model and the rest
of the data set to evaluate the prediction performance of
that model. It is important to remember that the FIR
model is composed of the optimal mask and the pattern
rule base (behavior matrix). Therefore, both must be
generated in the evaluation process of a certain fuzzy
partition when this cost function is used. Moreover, the
fuzzy forecasting process of the FIR methodology needs
to be executed to obtain the cost of the evaluated
chromosome. Thus, the computational cost of this
evaluation function is considerably higher than the one
obtained with the cost function that only depends on the
quality of the mask. However, the prediction accuracy
should be higher. The size of the portion of the training
data set used for cost function evaluation purposes is
defined with respect to the size of the whole training
data set.

3.1.3 Genetic operators. In this work, the Stochastic
Universal Sampling proposed by Baker (1987) is used,
including an elitist selection. The genetic operators
considered are:

(1) Crossover operator: operator is executed when the
two parents have different granularity in one or
more variables. In this case, the crossover operation
is simple, a cut point is selected randomly and both
parts are crossed according to the classic crossover
operator.

(2) Mutation operator: Due to the nature of the values
stored in the chromosome, the mutation operator
proposed in Thrift (1991) is considered. In this case,
the granularity associated to the gene of the selected
chromosome is increased or decreased in one unit
(the decision is made randomly). When the value to
be changed is the minimum (2) or the maximum (9),
the only possible change is done, i.e. increase or
decrease by one the granularity, respectively.

3.1.4 Genetic parameters. The values of the probabil-
ities have been established according to Grefenstette
(1986). Table 1 shows the values of the parameters
applied to this algorithm for each one of the two
applications under study.
In the medical application, we have considered two

stop criteria of the GA: to reach 40 and 64 chromosome

evaluations, respectively. In the electrical application,
we have considered again two stop criteria of the GA:
to reach 1000 and 2000 chromosome evaluations,
respectively. In this application, the search space is
considerably larger.

The initial population is composed of a group of
individuals with the same number of classes associated
to each variable, and the rest of the chromosomes have
their values chosen randomly. No repeated chromo-
somes are allowed.

3.2 Determination of the membership functions (GA2)

In this section, the second GA proposed (GA2) is
described in detail. The goal of GA2 is to determine the
membership function of each class.

3.2.1 Genetic representation. The genetic representa-
tion chosen takes into account the number of samples
registered for each variable. A specific variable is
represented by the proportion of data samples that
each class contains, codified in the range [0–1]. An
example of chromosome representation for a unique
variable that has four classes could be (0.4, 0.1, 0.3, 0.2),
meaning that the membership function of the first class
contains the 40% of the data samples available for this
variable, and the second, third and fourth membership
functions contain 10%, 30% and 20% of the data
records, respectively. Of course, the sum of the propor-
tions for each variable must be 1.

Therefore, if we denote by Dij the data proportion of
the class i and variable j, a full chromosome representa-
tion for a system of N variables (including inputs and
outputs) with n classes per variable, is defined by:

C ¼ ðD11,Dn1,D12,Dn2, . . . ,D1N, . . . ,DnNÞ ð9Þ

The minimum proportion, Vmin, is established to 0.05
and the maximum proportion, Vmax, is defined by
Vmax¼ 1�Vmin�(Nlabel� 1), where Nlabel is the number
of classes of the variable. Note that each time the
distribution of the landmarks changes due to the action
of the genetic operators, it is mandatory to recompute
the proportions of the new distribution. A clear
advantage of this representation is the facility to
compute the landmarks from it. This is done by the
following steps:

(1) The observed trajectory values of each variable are
sorted in ascending order.

(2) The sorted vector is then split into segments (as
many segments as classes have been determined for
that variable) that contain the proportion of values
determined by the GA2 solution.

Optimization of fuzzy partitions for inductive reasoning using genetic algorithms 997
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(3) Finally, the landmarks are chosen anywhere between
the extreme values of neighboring segments, i.e.
using the arithmetic mean values of neighboring
observed data points in different segments.

3.2.2 Fitness or objective function. The same cost
functions proposed for the determination of the
number of classes are studied here. The evaluation of
the chromosomes is done following the steps described
in the section 3.1.2.

3.2.3 Genetic operators. The same selection mechan-
ism mentioned in section 3.1.3 is used here. The genetic
operators chosen are:

(1) Crossover operator: The arithmetic crossover
operator (Michalewicz 1996) is considered the most
adequate for the chromosome representation
defined. This operator generates two offspring as a
weighted mean of the parent values. A real value, u,
in the range [0–1] is selected randomly and used
to compute the new offspring by means of
equation (10).

Ct ¼ u � fatherþ ð1� uÞ �mother

C0t ¼ ð1� uÞ � fatherþ u �mother
ð10Þ

An advantage of the crossover operator selected is
that it assures the validity of the offspring obtained, i.e.
the sum of the data proportion for all the classes of each
variable is 1.

(1) Mutation operator: Due to the nature of the values
stored in the chromosome, the mutation operator
proposed in Thrift (1991) is considered. In this case,
the data proportion associated to the gene of the
selected chromosome is increased or decreased (the
decision is made randomly) by a factor in-between
the range [Vmin . . .MAX] set, also, randomly. Where
MAX¼ 0.5�Vmin�(Nlabel� 1). The other propor-
tions of the same variable are adjusted in order to
maintain the addition to 1.

When the value to be changed plus the factor gets out
of the limits of the range [Vmin . . .Vmax], the only
possible change is done, i.e. increase or decrease by the
proportion factor, respectively.

3.2.4 Genetic parameters. The crossover and mutation
parameters proposed in Subsection 3.1.4 are also used
here, whereas the population size and the stop criteria
used are shown also in table 1.

Notice that for the medical application studied, the
search space is much bigger than it was in the problem of
the determination of the number of classes, and there-
fore, the stop criteria is now set to 3500 and 7000
chromosome evaluations (section 4).

In the electrical application, we have considered again
two stop criteria of the GA: to reach 10,000 and 20,000
chromosome evaluations, due to the fact that in this case
the search space is also larger.

The initial population is composed of an individual
distributed by the EFP method, and the rest of the
chromosomes have their values chosen randomly.
No repeated chromosomes are allowed.

4. Central nervous system

The human CNS (figure 4) is composed of five
controllers, namely, heart rate (HR), myocardium
contractility (MC), peripheral resistance (PR), venous
tone (VT) and coronary resistance (CR). All of them are
single-input/single-output (SISO) models driven by the
same input variable, namely the carotid sinus blood
pressure (CSP).

The input and output signals of the CNS controllers
were recorded with a sampling rate of 0.12 seconds from
simulations of the purely differential equation model
obtaining 7279 data points (Nebot et al. 1998). The
model had been tuned to represent a specific patient
suffering a coronary arterial obstruction, by making the
four different physiological variables (right auricular
pressure, aortic pressure, coronary blood flow and HR)
of the simulation model agree with the measurement
data taken from the real patient. Each CNS control was

Table 1. Genetic parameters of the GA1 and GA2 for the applications studied.

Parameter GA type Medical Electrical

Population size (# individuals) GA1 9 50

GA2 50 50
Crossover probability GA1 and GA2 0.6 0.6
Mutation probability GA1 and GA2 0.1 0.1

Stop criteria (Chromosome evaluations) GA1 (40, 64) (1000, 2000)
GA2 (3500, 7000) (10000, 20000)

998 J. Acosta et al.
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validated by using it to forecast six data sets not used in
the training process. Each one of these six test data sets,
with a size of about 600 data points each, contains
signals representing specific morphologies, allowing the
validation of the model for different system behaviors.

4.1 Previous works

Table 2 contains the predictions achieved when
NARMAX (Nebot et al. 1998), time delay neural
networks and recurrent neural networks (Cueva et al.
1997) are used for the same problem. The columns of
the table specify the average prediction error of the six
test sets for each controller. All methodologies used the
same training and test data sets previously described.

4.2 Learning the optimal number of classes for each
system variable (GA1)

This section evaluates the utility of the GA1 proposed
for the optimization of the number of classes. Thirty
executions of the GA1 are performed for each objective
function and stop criteria. This GA is executed to obtain
the optimal number of classes for the input and output
variables of each of the five controllers. The EFP is used

as the default method to obtain the membership
functions of the classes.

As mentioned before, two objective functions were
studied in this work. Table 3 shows the results obtained
for the CR controller when 1�Q was used as objective
function and when the objective function is defined as
the prediction MSE of a portion of the training data set.
In this application, the last 25% of the training signal is
used for objective function evaluation and only the first
75% of the signal is used to obtain the FIR models
(masks and pattern rule bases).

Table 3 is organized as follows. The first column
indicates the number of chromosome evaluations made
by the GA1. The second column indicates the partition
suggested by the GA when its execution ends up. Note
that the partition suggested by the GA is the input
parameter to the fuzzification process of the FIR
methodology. The third and fourth columns present
the optimal mask (in position notation) obtained by FIR
for this specific partition and the quality associated
to this mask, respectively. The fifth column corresponds
to the evaluation of the objective function used: 1�Q or
MSEtrain. The next column shows the mean value of the
prediction errors obtained for the six test data sets. The
last column indicates the CPU time (in seconds) used
by the GA.

The GA suggests, when it reaches 40 evaluations,
5 and 4 different partitions for the objective functions
1�Q and MSEtrain, respectively. When 64 evaluations
are used as the stop criteria, the GA suggests for both
objective functions, four different partitions. Looking
closer at table 3 it can be seen that the optimal solution
for the objective function 1�Q corresponds to the
partition (9,3) with a mask quality of 0.9787. The
partitions found, for both stop criteria, suggest always
three classes for the output variable, and five, six, seven,
eight or nine classes for the input variable. Notice that
the qualities (Q) of all the suggested partitions are very
close to the optimal one.

The MSEtrain objective function corresponds to the
prediction error of part of the training data set. As
mentioned before, in this case, the mask is obtained
using exclusively the first 75% data points of the
training signal. Therefore, the data used for the objective
function evaluation has not been seen before for the
model. This is the reason why the best predictions
obtained for the last 25% values of the training set do
not correspond, necessarily, to the partitions with
associated optimal masks of highest quality. However,
the quality of the optimal masks found for the suggested
partitions are still high, i.e. 0.9642. The optimal solution
is the partition (2,5) with a MSEtrain of 0.08%, that is
really very low. The partition (3,4) is the best suboptimal
solution, i.e. with the second lowest MSEtrain. Therefore,
the GA is able to obtain the best partitions. Notice that

Table 2. Prediction errors (MSE) of the CNS controller
models using NARMAX, TDNN and RNN methodologies

(Mean value of the 6 test data sets for each controller).

HR (%) PR (%) MC (%) VT (%) CR (%)

NARMAX 9.3 18.5 22.0 22.0 25.5
TDNN 15.3 33.7 34.0 34.0 55.6
RNN 18.3 31.1 35.1 34.7 57.1

Figure 4. Simplified diagram of the cardiovascular system

model, composed of the hemodynamic system and the CNS

control.

Optimization of fuzzy partitions for inductive reasoning using genetic algorithms 999
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the CPU time has increased considerably with respect to
the objective function 1�Q. This is due to the fact that
now the forecasting process of the FIR methodology
needs to be executed for each partition evaluated.
Tables 4 and 5 contain the partition results for the rest

of the CNS controllers. The tables are organized as
table 3, but the optimal mask, quality and time
columns are not included. The GA has been executed
30 times for both objective functions and stop criteria.
As can be seen in the tables, the optimal solution is
reached for both objective functions and stop criteria in
all the controllers.
It is interesting to analyze the MSEtest columns of

tables 3–5. As expected, the MSEtrain objective function
is able to obtain partitions with higher performance on
the prediction of the test data sets than the ones
obtained by the 1�Q objective function. However, the
results obtained for all the controllers are very good if
compared to the ones obtained when other inductive
methodologies are used (table 2). Moreover, the highest
MSEtest of 4.85% obtained with the 1�Q objective
function for the controller CR is five times smaller than
the smaller error obtained with these methodologies,
25.5%. Therefore, in this application, both objective
functions can be considered good for the task at hand.
However, this is not the case for all the controllers when
the 1�Q objective function is used. Notice that
although the GA finds both the best solution and the

suboptimal solutions, the prediction error of the test
data sets for the HR controller is smaller using the
NARMAX approach, i.e. 9.3% vs. 13.76%. In this case,
the quality measure used by the FIR methodology is not
doing a good job. It can be interesting to study
alternative quality measures for the task at hand.

In general, it is observed that in all the controllers, the
1�Q objective function needs less time to be evaluated
but the performance with respect to the test set prediction
is lower. Contrarily, the MSEtrain objective function is
more expensive from the CPU time point of view but the
performance is higher. The user should decide which
objective function to use taking into account the size of
the optimization problem and his/her own needs.

Clearly, the medical application presented in this
article is a short optimization problem due to the fact
that only two variables are involved and a maximum of
nine classes is allowed for each one of them (in fact only
eight, because class 1 is not used). Therefore, there exist
64 possible solutions and an exhaustive search can be
performed easily.

However, previous works (Schoenauer and
Michalewicz 1997, González and Pérez 2001) suggest
the scalability of the GAs. Therefore, it can be assumed
that this approach will work on large optimization
problems as well where an exhaustive search would be
impracticable. This is demonstrated by means of the
electrical application presented later in this article.

Table 3. Number of classes results of the CR controller using: (a) 1�Q and, (b) Prediction error of the last 25% of the training
data set (MSEtrain) cost functions. EFP method for the membership functions.

1�Q # Eval Part. Opt. mask Q 1�Q MSEtest (%) Time

64 (9,3)* (1,4,6) 0.9787 0.0213 3.92 18
64 (8,3) (1,4,6) 0.9776 0.0224 4.33 14
64 (7,3) (1,4,6) 0.9776 0.0224 4.85 13

64 (4,3) (1,4,6) 0.9748 0.0252 1.36 10
40 (9,3)* (1,4,6) 0.9787 0.0213 3.92 12
40 (8,3) (1,4,6) 0.9776 0.0224 4.33 9

40 (7,3) (1,4,6) 0.9776 0.0224 4.85 9
40 (6,3) (1,4,6) 0.9762 0.0238 1.79 7
40 (5,3) (1,4,6) 0.9749 0.0251 2.38 9

Optimal Solution: Partition¼ (9,3); Q¼ 0.9787

MSEtrain # Eval Part. Opt. mask Q MSEtrain (%) MSEtest (%) Time

64 (2,5)* (1,4,5,6) 0.9642 0.08 0.16 114
64 (3,4) (4,5,6) 0.9638 0.13 0.29 111

64 (2,4) (3,4,5,6) 0.9630 0.17 0.39 93
64 (7,4) (4,5,6) 0.9677 0.19 0.42 84
40 (2,5)* (1,4,5,6) 0.9642 0.08 0.16 49

40 (3,4) (4,5,6) 0.9638 0.13 0.29 55
40 (2,4) (3,4,5,6) 0.9630 0.17 0.39 57
40 (7,4) (4,5,6) 0.9677 0.19 0.42 54

Optimal Solution: Partition¼ (2,5); MSEtrain¼ 0.08%

*Optimal solution.
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4.3 Learning the membership functions of the classes
(GA2)

This section evaluates the utility of the GA2 proposed
for the optimization of the membership functions.
Thirty executions of the GA2 are performed for each

objective function. This GA considers the optimal
number of classes obtained by the previous algorithm.

The results are presented in two sections, based on the
objective function used for the evaluation of the
chromosomes.

4.3.1 12Q objective function. Table 6 presents the
results of the GA2 for the five controllers when 1�Q
objective function is used. The table is organized as
follows. The first column is divided in three sections.
Section A corresponds to the best result obtained by the
GA2 while section B corresponds to its worse result.
Section C shows the result when the GA2 is not used, i.e.
when the EFP method is used to determine the data
proportions for each variable. Therefore, C is taken as a
reference. The second column indicates the number
of chromosome evaluations made by the GA2. The
third column shows the data proportion for the input
variable (CSP), and the output variable for each

Table 4. Number of classes results of the MC and HR
controllers using: (a) 1�Q and, (b) Prediction error of the
last 25% of the training data set (MSEtrain) cost functions.

EFP method for the membership functions.

MC

1�Q # Eval Part 1�Q MSEtest (%)

64 (8,7)* 0.1866 8.37
64 (7,7) 0.1950 40.77

40 (8,7)* 0.1866 8.37
40 (7,7) 0.1950 40.77

MSEtrain # Eval Part MSEtrain (%) MSEtest (%)

64 (4,9)* 0.60 2.53
64 (2,5) 0.63 2.76

64 (3,9) 1.10 3.91
40 (4,9)* 0.60 2.53
40 (2,5) 0.63 2.76

40 (3,9) 1.10 3.91
40 (2,6) 1.13 3.04

HR

1�Q # Eval Part 1�Q MSEtest (%)

64 (7,2)* 0.1674 13.76
64 (8,2) 0.1861 12.94
64 (6,2) 0.1968 15.99

64 (7,4) 0.2739 2.68
64 (9,4) 0.2756 13.28
64 (8,7) 0.2774 12.39

40 (7,2)* 0.1674 13.76
40 (8,2) 0.1861 12.94
40 (6,2) 0.1968 15.99

40 (9,2) 0.1973 12.24
40 (7,4) 0.2739 2.68
40 (8,4) 0.2763 2.91
40 (8,7) 0.2774 12.39

40 (7,8) 0.2804 5.69
40 (9,7) 0.2811 3.59

MSEtrain # Eval Part MSEtrain (%) MSEtest (%)

64 (3,7)* 0.89 9.37

64 (5,9) 1.02 2.85
64 (4,6) 1.03 3.48
64 (4,7) 1.34 3.82
40 (3,7)* 0.89 9.37

40 (5,9) 1.02 2.85
40 (4,6) 1.03 3.48
40 (6,7) 1.15 13.73

40 (4,4) 1.65 2.79

*Optimal solution.

Table 5. Number of classes results of the VT and PR
controllers using: (a) 1�Q and, (b) Prediction error of the last
25% of the training data set (MSEtrain) cost functions. EFP

method for the membership functions.

VT

1�Q # Eval Part 1�Q MSEtest (%)

64 (8,7)* 0.1858 9.49
64 (7,7) 0.1952 40.20

40 (8,7)* 0.1858 9.49
40 (7,7) 0.1952 40.20

MSEtrain # Eval Part MSEtrain (%) MSEtest (%)

64 (2,5)* 0.61 1.69
64 (2,8) 0.64 1.58

64 (2,7) 0.77 2.09
64 (4,9) 0.91 2.06
40 (2,5)* 0.61 1.69

40 (2,8) 0.64 1.58
40 (2,7) 0.77 2.09
40 (7,7) 1.34 2.08

PR

1�Q # Eval Part 1�Q MSEtest (%)

64 (8,7)* 0.1448 6.10
64 (7,7) 0.1505 4.66

40 (8,7)* 0.1448 6.10
40 (7,7) 0.1505 4.66

MSEtrain # eval Part MSEtrain (%) MSEtest (%)

64 (4,9)* 0.93 3.05
64 (7,7) 1.08 3.40

40 (4,9)* 0.93 3.05
40 (7,7) 1.08 3.40

*Optimal solution.
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Table 6. Membership functions results of the MC, HR, VT, PR and CR controllers using 1�Q cost function. GA1 results
for the number of classes.

# Eval Data proportion Opt. mask Q 1�Q MSEtest (%)

MC controller; Num. Class.: (8,7)

A 7000 CSP:(0.17,0.19,0.20,0.08,0.11,0.07,0.07,0.11) (4,5,6) 0.9371 0.0629 3.63

MC:(0.06,0.05,0.06,0.06,0.05,0.67,0.05)
3500 CSP:(0.18,0.21,0.10,0.08,0.10,0.10,0.15,0.08) (3,4,6) 0.9334 0.0666 82.52

MC:(0.07,0.05,0.05,0.05,0.08,0.65,0.05)

B 7000 CSP:(0.15,0.15,0.13,0.08,0.09,0.14,0.13,0.13) (3,4,6) 0.8347 0.1653 4.03
MC:(0.17,0.15,0.12,0.15,0.15,0.16,0.10)

3500 CSP:(0.14,0.10,0.14,0.10,0.08,0.16,0.19,0.09) (3,4,6) 0.8345 0.1655 2.53

MC:(0.17,0.14,0.17,0.15,0.16,0.11,0.10)
C Equal frecuency partition method (3,4,6) 0.8166 0.1834 8.37

HR controller; Num. Class.: (7,2)

A 7000 CSP:(0.05,0.20,0.27,0.08,0.09,0.05,0.26) (4,5,6) 0.9421 0.0579 11.49
HR:(0.06,0.94)

3500 CSP:(0.05,0.05,0.05,0.36,0.19,0.05,0.25) (4,5,6) 0.9420 0.0580 11.98

HR:(0.06,0.94)
B 7000 CSP:(0.15,0.14,0.11,0.14,0.10,0.14,0.22) (4,5,6) 0.9212 0.0788 12.48

HR:(0.07,0.93)

3500 CSP:(0.20,0.19,0.13,0.10,0.07,0.09,0.22) (4,5,6) 0.9192 0.0808 11.49
HR:(0.06,0.94)

C Equal frequency partition method (4,5,6) 0.8326 0.1674 13.76

VT controller; Num. Class.: (8,7)

A 7000 CSP:(0.21,0.17,0.19,0.07,0.13,0.07,0.11,0.05) (3,4,6) 0.9332 0.0668 6.17
VT:(0.06,0.08,0.05,0.05,0.06,0.62,0.08)

3500 CSP:(0.17,0.26,0.11,0.14,0.11,0.07,0.08,0.06) (3,4,6) 0.9256 0.0744 73.77
VT:(0.10,0.07,0.07,0.06,0.60,0.05,0.05)

B 7000 CSP:(0.14,0.11,0.14,0.11,0.11,0.19,0.10,0.10) (3,4,6) 0.8401 0.1599 4.87

VT:(0.17,0.12,0.12,0.14,0.15,0.20,0.10)
3500 CSP:(0.13,0.13,0.12,0.11,0.09,0.15,0.11,0.16) (3,4,6) 0.8308 0.1692 9,82

VT:(0.13,0.18,0.13,0.16,0.15,0.15,0.10)
C Equal frecuency partition method (3,4,6) 0.8142 0.1858 9.49

PR controller; Num. Class.: (8,7)

A 7000 CSP:(0.13,0.13,0.11,0.09,0.15,0.12,0.14,0.13) (4,5,6) 0.8831 0.1169 19.56

PR:(0.18,0.11,0.15,0.14,0.15,0.11,0.16)
3500 CSP:(0.13,0.14,0.10, 0.10, 0.12,0.13,0.15,0.13) (4,5,6) 0.8807 0.1194 3.61

PR:(0.18,0.11,0.15,0.14,0.14,0.12,0.16)
B 7000 CSP:(0.19,0.15,0.13,0.12,0.09,0.12,0.13,0.07) (3,4,6) 0.8687 0.1313 8.21

PR:(0.13,0.16,0.20,0.17,0.18,0.10,0.06)
3500 CSP:(0.12,0.13,0.11,0.15,0.10,0.21,0.09,0.09) (4,5,6) 0.8671 0.1329 3.66

PR:(0.20,0.09,0.29,0.15,0.11,0.09,0.07)

C Equal frecuency partition method (4,5,6) 0.8552 0.1448 6.10

CR controller; Num. Class.: (9,3)

A 7000 CSP:(0.06,0.09,0.18,0.12,0.09,0.22,0.11,0.08,0.05) (1,4,6) 0.9845 0.0155 2.03
CR:(0.38,0.43,0.19)

3500 CSP:(0.06,0.07,0.10,0.19,0.11,0.23,0.07,0.12,0.05) (1,4,6) 0.9844 0.0156 2.03
CR:(0.40,0.41,0.19)

B 7000 CSP:(0.07,0.14,0.17,0.17,0.18,0.10,0.07,0.05,0.05) (1,4,6) 0.9840 0.0160 1.36
CR:(0.38,0.43,0.19)

3500 CSP:(0.11,0.20,0.09,0.25,0.12,0.07,0.06,0.05,0.05) (1,4,6) 0.9836 0.0164 1.56

CR:(0.38,0.39,0.23)
C Equal frecuency partition method (1,4,6) 0.9787 0.0213 3.92

1002 J. Acosta et al.
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controller (MC, HR, VT, PR, CR). The number of
elements of the data proportion corresponds to the
number of classes for that variable (shown in table 6 on
top of each controller). The data proportion is the
output of the GA2. The fourth column presents the
optimal mask, in position notation, encountered by FIR
when the data proportion obtained is used to set the
landmarks. The fifth column corresponds to the quality
associated to the optimal mask. The sixth column is
the value of the objective function 1�Q. The last
column shows the mean value of the prediction errors
(equation (8)) obtained for the six test data sets.
If we look closer at table 6, it can be seen that for all

the controllers, the worse result obtained by the GA2
(1�Q value of row B) is better than the reference result,
i.e. when the default EFP method is used to obtain the
membership functions of each class. Therefore, although
the GA does not assure the optimal solution, all the
solutions obtained are better than the one obtained
when no GA is used. The prediction errors of the test
sets (last column) are also presented to see the accuracy
of each model obtained. Notice that although the
MSEtest is usually smaller when the GA2 is used to
obtain the membership functions, this is not always true.
This is due to the fact that the test data sets have not
been used in the FIR model identification process.
The CPU time needed by the GA to run the 30

executions is, obviously, directly related to the
pre-defined number of classes of the variables. For
MC, VT and PR controllers with the number of classes
set to (8,7), i.e. the partition with a higher number of
classes, the CPU time needed by the GA to compute one
execution was 1 hour and 45 minutes using a Pentium III
(0.6GHz) computer.

4.3.2 MSEtrain objective function. Table 7 presents the
results of the GA2 for the five controllers when the
MSEtrain objective function is used. The table is orga-
nized as table 6. The only difference is that the fifth
column contains the values of the MSEtrain instead of
the 1�Q. As can be seen in table 7, the GA2 results are
better than the results obtained when the default EFP
method is used to obtain the membership functions.
As explained before, the CPU time needed by the GA

when the MSEtrain objective function is used is clearly
greater than the time needed when the 1�Q is used. In
this case, the mean CPU time needed by the GA to
compute one execution for each controller was 5 hours,
using the same computer as before. If we analyze the last
columns of tables 6 and 7, it can easily be seen that the
MSEtrain objective function is able to obtain member-
ship functions with higher performance on the predic-
tion of the test data sets than the ones obtained by the
1�Q objective function. Also, the best results obtained

by the GA2 (row A) are very good if we compare them
with the ones obtained when the EFP method and other
inductive methodologies are used (table 2). However, as
expected, the MSEtrain objective function is more
expensive from the CPU time point of view. As before,
the user should decide which objective function to use
taking into account the size of the optimization problem
and his/her own needs.

5. Electrical distribution network

The problem of estimating the maintenance cost of the
electric network becomes difficult when we deal with
medium and low voltage lines. Maintenance cost
depends, among other factors, on the total length of
the electrical line each company owns, and on its kind,
i.e. high, medium or low voltage (Cordón et al. 1999).
To justify the distribution expenses of the companies,
models of the length of the line are used. Although high
voltage lines can be easily measured, this is not the case
with medium and low voltage lines. These lines are
found in cities and villages, and it is very difficult and
expensive to measure them, due to the fact that they
have been installed incrementally, according to the
electrical needs in each moment. Therefore, it is
necessary to handle the problem from the modeling
perspective.

To deal with the problem under study, we were
provided with data of 1059 simulated towns (Cordón
et al. 1998, Cordón et al. 1999).

Four characteristics of each town correspond to the
input variables, i.e. the sum of the lengths of all streets in
the town (SLS) in kilometers, the total area of the town
(TA) in Km2, the area that is occupied by buildings (AB)
in Km2 and the energy supply to the town (ES) in MWh.
The maintenance cost of the medium voltage line (MC)
in millions of pesetas is the output variable.

In the previous works (Cordón et al. 1998, Cordón
et al. 1999), the available data were divided into the
training set (first 847 towns) and the test set (last 212
towns), corresponding to the 80% and 20% of the whole
data set, respectively. The same data distribution is used
in the present study in order to compare the results
obtained in an accurate way. For the same reason, the
medium square error (SE) used in Cordón et al. (1998)
and described in equation (11) is used for the computa-
tion of each model prediction error.

SE ¼
1

2 �N

XN
i¼1

�
yiðtÞ � ŷiðtÞ

�2
ð11Þ

where ŷ(t) is the predicted output, y(t) the system output
and N the number of samples.

Optimization of fuzzy partitions for inductive reasoning using genetic algorithms 1003
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Table 7. Membership functions results of the MC, HR, VT, PR and CR controllers using MSEtrain cost function. GA1 results for
the number of classes.

# Eval Data proportion Opt. mask Q MSEtrain (%) MSEtest (%)

MC controller; Num. Class.: (4,9)

A 7000 CSP:(0.20,0.29,0.31,0.20) (4,5,6) 0.7452 0.20 0.45

MC:(0.09,0.08,0.12,0.13,0.12,0.11,0.11,0.11,0.13)
3500 P:(0.27,0.18,0.32,0.23) (4,5,6) 0.7899 0.21 0.48

MC:(0.09,0.08,0.11,0.11,0.15,0.11,0.15,0.10,0.10)

B 7000 CSP:(0.22,0.16,0.35,0.27) (4,5,6) 0.7616 0.33 2.98
MC:(0.16,0.12,0.11,0.13,0.10,0.10,0.10,0.10,0.08)

3500 CSP:(0.13,0.18,0.40,0.29) (4,5,6) 0.7507 0.37 1.59

MC:(0.16,0.10,0.13,0.09,0.10,0.09, 0.15,0.10,0.08)
C Equal frequency partition method (3,4,6) 0.7346 0.60 2.53

HR controller; Num. Class.: (3,7)

A 7000 CSP:(0.32,0.30,0.38) (4,5,6) 0.6837 0.44 1.49
HR:(0.13,0.10,0.12,0.12,0.29,0.12,0.12)

3500 CSP:(0.30,0.32,0.38) (4,5,6) 0.6517 0.44 1.52

HR:(0.13,0.14,0.17,0.16,0.13,0.14,0.13)
B 7000 CSP:(0.32,0.30,0.38) (4,5,6) 0.6711 0.60 2.30

HR:(0.19,0.12,0.16,0.14,0.12,0.12,0.15)

3500 CSP:(0.41,0.23,0.36) (4,5,6) 0.6998 0.69 2.73
HR:(0.16,0.09,0.21,0.20,0.14,0.10,0.10)

C Equal frequency partition method (4,5,6) 0.6761 0.89 9.37

VT controller; Num. Class.: (2,5)

A 7000 CSP:(0.38,0.62) (1,4,5,6) 0.7475 0.19 0.46
VT:(0.11,0.14,0.31,0.22,0.22)

3500 CSP:(0.39,0.61) (1,4,5,6) 0.7400 0.20 0.47
VT:(0.11,0.12,0.25,0.30,0.22)

B 7000 CSP:(0.41,0.59) (3,4,5,6) 0.7567 0.29 0.76

VT:(0.14,0.10,0.20,0.22,0.34)
3500 CSP:(0.43,0.57) (1,4,5,6) 0.7825 0.33 0.81

VT:(0.13,0.24,0.46,0.09,0.08) (1,3,4,6) 0.7315 0.61 1.69
C Equal frequency partition method

PR controller; Num. Class.: (4,9)

A 7000 CSP:(0.23,0.20,0.23,0.34) (4,5,6) 0.8064 0.20 0.80

PR:(0.09,0.10,0.08,0.13,0.14,0.08,0.13,0.10,0.15)
3500 CSP:(0.24,0.22,0.22,0.32) (3,4,6) 0.7995 0.22 0.72

PR:(0.09,0.09,0.10,0.11,0.14,0.13,0.14,0.10,0.10)
B 7000 CSP:(0.21,0.15,0.50,0.14) (4,5,6) 0.7983 0.41 3.88

PR:(0.14,0.13,0.12,0.13,0.09,0.10,0.07,0.07,0.15)
3500 CSP:(0.27,0.16,0.28,0.29) (4,5,6) 0.7758 0.41 1.06

PR:(0.14,0.11,0.14,0.09,0.08,0.10,0.10,0.15,0.09)

C Equal frequency partition method (3,4,6) 0.7497 0.93 3.05

CR controller; Num. Class.: (2,5)

A 7000 CSP:(0.54,0.46) (1,4,5,6) 0.9488 0.05 0.11
CR:(0.13,0.16,0.55,0.11,0.05)

3500 CSP:(0.49,0.51) (1,4,5,6) 0.9533 0.05 0.11
CR:(0.12,0.17,0.54,0.09,0.08)

B 7000 CSP:(0.53,0.47) (1,4,5,6) 0.9650 0.07 0.13
CR:(0.20,0.18,0.20,0.29,0.13)

3500 CSP:(0.53,0.47) (1,4,5,6) 0.9646 0.07 0.13

CR:(0.20,0.23,0.22,0.18,0.17)
C Equal frequency partition method (1,4,5,6) 0.9642 0.08 0.16
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It is interesting to notice that no temporal relation

exists between two consecutive samples of the five

system variables, due to the fact that each sample

represents a specific town. This is the first time that FIR

methodology is used to deal with a non-dynamical

system. However, this is solved easily by forbidding

temporal relations between the system variables. This

can be achieved by defining a mask candidate matrix of

one row, as shown in equation (12).

tnx SLS TA AB ES MC

t
��� � 1 � 1 � 1 � 1 þ 1

��� ð12Þ

As explained in Section 2, with the proposed

candidate matrix, the qualitative model identification

process of FIR methodology computes all possible

masks and the one with the maximum quality value is

considered the optimal one.

5.1 Previous works

Table 8 contains the SE prediction errors achieved when

classical methods and hybrid evolutionary techniques

were used for the same problem (Cordón et al. 1998,

Cordón et al. 1999). As regards classical methods,

Cordón, et al. had considered linear models fitted by

linear least squares, second-order polynomial models

fitted by non-linear least square and three-layer-percep-

tron neural network (of 4-5-1 neurons). The minimiza-

tion error algorithm was the conjugate gradient. With

respect to other techniques, they studied GFRBS for the

optimization of three different fuzzy models, i.e.

Wang–Mendel (WM), Mamdami and Takagi-Sugeno-

Kang (TSK). Finally, they used two hybrid algorithms,

GA-P and Interval GA-P, that combines the traditional

GAs with the genetic programming (GP) paradigm

(Howeard and D’Angelo 1995). The Interval GA-P is a

modified version of the GA-P method that uses interval

values instead of punctual ones. All the methodologies

used the same training and test data sets explained

previously.
The first column of table 8 describes the method

evaluated; the second and third columns show the

prediction errors using the SE formula [described in

equation (11)], of the training and test data sets,

respectively. As can be seen in table 8, the GA-P

techniques and fuzzy models outperform again classical

linear and non-linear regression methods as well as

neural networks. The TSK fuzzy model has obtained the

best result. A more detailed discussion of the results

presented in table 8 can be found in Cordón et al. (1999).

These values are taken in this article as reference errors

to study the performance of the FIR methodology in the
same problem.

5.2 Learning the optimal number of classes for each
system variable (GA1)

In this section, the GA1 proposed for learning the
number of classes for each system variable is evaluated
for the problem at hand. Thirty executions of the GA1
are performed for each objective function and stop
criteria. The GA1 is executed to obtain the optimal
number of classes for the input and output variables.
The EFP is used as the default method to obtain the
membership functions of the classes. Table 9 shows
the results obtained for the problem of computing the
maintenance costs of medium voltage lines when both
cost functions, i.e. 1�Q and prediction MSE of a
portion of the training data set are used. In this
application, the last 20% of the training signal is used
for MSEtrain objective function evaluation and only the
first 80% of the signal is used to obtain the FIR models
(masks and pattern rule bases).

Table 9 is organized as follows. The first column
indicates the number of chromosome evaluations made
by the GA1. The second column indicates the partition
suggested by the GA1 when its execution finalizes.
Remember that the partition suggested by the GA1 is
the first input parameter of the fuzzification process of
the FIR methodology. The third and fourth columns
present the optimal mask (in position notation) obtained
by FIR for this specific partition and the quality
associated to this mask, respectively. The fifth column
corresponds to the evaluation of the objective function
used: 1�Q or MSEtrain. The next column shows the
prediction SE error obtained in the test data set. The last
column indicates the CPU time (in seconds) used by the
GA. The GA1 suggests a single partition for 1�Q
objective function and three different partitions for
MSEtrain objective function, when it reaches the 2000
evaluations. When 1000 evaluations are used as the stop

Table 8. Prediction errors (SE) obtained by classical methods
and hybrid evolutionary techniques.

Method SEtrain SEtest

Linear 164,662 36,819
Second-order polynomial 103,032 45,332
Three-layer perceptron 4-5-1 86,469 33,105

GA-P 18,168 21,884
Interval GA-P 16,263 18,325
WM fuzzy model 20,318 27,615

Mamdani fuzzy model 19,679 22,591
TSK fuzzy model (�¼ 0) 25,579 26,450
TSK fuzzy model (�¼ 0, 2) 11,074 11,836

Optimization of fuzzy partitions for inductive reasoning using genetic algorithms 1005



D
ow

nl
oa

de
d 

B
y:

 [U
ni

ve
rs

id
ad

 G
ra

na
da

] A
t: 

20
:0

7 
22

 N
ov

em
be

r 2
00

7 

criteria, the GA1 suggests two and three different
partitions for the objective functions 1�Q and
MSEtrain, respectively. The partitions encountered by
the GA1 have very similar cost function values;
therefore, they can be considered good solutions,
although we do not know the optimal one because an
exhaustive search is computationally very expensive. It is
interesting to notice that in almost all the partitions
suggested by the GA1, the first two input variables, i.e.
sum of the lengths of all streets in the town (SLS) and
total area of the town (TA), are not considered relevant
for the determination of the maintenance cost of the line
(MC). FIR encountered that no important causal
relation exists between SLS and TA with respect to the
output variable MC. Looking closer at table 9, it can be
seen that the models obtained by FIR enhanced by the
GA1 have a much better performance than the
techniques presented in table 8. The lowest SEtest

obtained in previous works is 11,836, whereas the

highest obtained by FIR is 5111. The error reduction
is very significant. Therefore, FIR is able to obtain more
reliable and precise models for the computation of the
maintenance costs of medium voltage lines.

It is also important to analyze the results obtained
by the two cost functions used in the GA1, i.e. 1�Q and
MSEtrain of the last 20% of the training data set.
If we look closer at table 9, it can be observed that the
SEtest values are in almost every case lower when
the MSEtrain cost function is used. As expected, the
CPU time has increased with respect to the 1�Q
objective function, due to the fact that the forecast
process of FIR methodology needs to be executed for
each partition evaluated. However, notice that the
increment of the CPU time is not really significant
because in this application the optimal masks
encountered for the suggested partitions are very
simple (the output only depends of two inputs) and,
therefore, the forecasting process is very fast. Figure 5
presents the best predictions obtained for the two cost
functions studied. The upper plot shows real and
predicted test signals when the partition (2,2,3,2,2)
suggested by the GA1 with the 1�Q objective function
is used, whereas the lower plot shows these signals when
using the partition (2,2,4,9,7) suggested by the GA1
with the cost function MSEtrain. As can be seen in
figure 5, the predictions signals obtained by FIR models
follow the real maintenance cost signal very accurately.

A new experiment is included (only in this section) to
justify the optimization ability of the GAs proposed in
this work. Now, we compare the results obtained by
GA1 with the solutions generated when a random search
of the number of classes for each system variable is
performed. In this experiment, 150 solutions are
randomly generated for each objective function to
evaluate. Repeated solutions are allowed. Tables 10
and 11 show the best and worse random solutions

Table 9. Number of classes results of the electrical distribution problem using: (a) 1�Q and, (b) prediction error of the last 20%
of the training data set (MSEtrain) cost functions. EFP method for the membership functions. (X means any value between the

range [2.9]).

1�Q # Eval Partition Opt. mask Q 1�Q SEtest Time

2000 (X,X,3,2,2) (3,4,5) 0.8365 0.1635 5111 85.42
1000 (X,X,3,2,2) (3,4,5) 0.8365 0.1635 5111 55.46

1000 (2,2,2,6,2) (3,4,5) 0.8308 0.1692 2805 90.09

MSEtrain # Eval Partition Opt. mask Q MSEtrain SEest Time

2000 (X,X,4,9,7) (3,4,5) 0.5704 0.1625 3305 150.29

2000 (X,X,4,9,4) (3,4,5) 0.6417 0.1667 3379 155.04
2000 (5,3,7,9,7) (3,4,5) 0.5742 0.1696 3572 159.33
1000 (X,X,4,9,7) (3,4,5) 0.5704 0.1625 3305 75.59

1000 (X,X,4,9,8) (3,4,5) 0.5452 0.1648 3375 80.42
1000 (7,6,7,9,7) (3,4,5) 0.5742 0.1696 3572 83.55
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Figure 5. Predictions of the test data set when the best FIR

models of the AG1 with 1�Q (upper) and MSEtrain (lower)

objective functions are used.
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obtained for 1�Q and MSEtrain objective functions,
respectively. The mean, standard deviation and median
of the 150 random solutions generated are also
presented in each table. Table 12 presents the mean,
standard deviation and median of the results obtained
by GA1 for the 30 executions performed, for each
evaluation number and objective function. As expected,
random solutions have larger 1�Q and MSEtrain mean
values than the results obtained by GA1, i.e. 0.4 vs. 0.16
and 1.72 vs. 0.16, respectively. The SEtest mean values,
for both objective functions, when the random search is
performed are also much larger than the ones obtained
when GA1 is used to find the partition (1�Q: 23,420

vs. 5111; MSEtrain: 30,874 vs. 3621). It can also be seen
from tables 10 and 11 that the SEtest standard
deviations are very high, showing big differences in the
errors of the solutions obtained by the random search.
This is not the case when GA1 is used. As can be seen
from table 12, the standard deviations low values show
the consistency of the solutions, in the sense that optimal
or suboptimal solutions are always encountered.

5.3 Learning the membership functions of the classes
(GA2)

This section presents the results obtained when the GA2,
proposed for learning the membership functions for
each class, is evaluated for the problem at hand. As in
the GA1, 30 executions are performed for each objective
function and stop criteria. The GA2 considers the
optimal number of classes obtained by the previous
GA, i.e. GA1.

The results are presented in two sections, based on
the objective function used for the evaluation of the
chromosomes.

5.3.1 12Q objective function. Table 13 shows the
results obtained when 1�Q was used as objective
function. The table is organized as follows. The first
column is divided in three sections. Section A corre-
sponds to the best result obtained by the GA2 while
Section B corresponds to its worse result. Section C
shows the results obtained when the GA is not used, i.e.
when the EFP method (default value) is used to
determine the membership function of each class.
Therefore, C is taken as a reference. The second
column shows the number of chromosome evaluations
of the GA. The third column shows the data proportion
for the input variables (SLS, TA, AB, ES) and the
output variable (MC). The number of elements of the
data proportion corresponds to the number of classes
for that variable (shown in the top of the tables). The
data proportion is the output of the GA2 and the second
input parameter of the fuzzification process of the FIR
methodology. The fourth column presents the optimal
mask, in position notation, encountered by FIR when
the data proportion obtained is used to set the
landmarks. The fifth column corresponds to the quality
associated to the optimal mask. The sixth column is the
value of the 1�Q objective function. The last column
shows the prediction error SE obtained for test data set.

5.3.2 MSEtrain objective function. Table 14 shows the
results obtained when the objective function is defined
as the prediction MSE of a portion of the training data
set. As before, the last 20% of the training signal is used
for objective function evaluation and only the first 80%

Table 10. Number of classes results of the electrical
distribution problem using random search. 1�Q cost function.

Partition Opt. mask Q 1�Q SEtest

(6,3,2,5,2) (3,4,5) 0.8266 0.1734 2805
(5,8,6,3,2) (1,5) 0.6666 0.3334 460,432
Mean 0.4000 23430.90

SD 0.0736 74843.21
Median 0.4084 2825.79

Table 11. Number of classes results of the electrical
distribution problem using random search. MSEtrain cost

function.

Partition Opt. mask Q MSEtrain SEtest

(5,2,4,9,9) (3,4,5) 0.5433 0.1650 3342
(8,9,8,3,2) (2,5) 0.6799 15.235 270791
Mean 1.7254 30874.29

SD 4.3662 75857.24
Median 0.3315 7294.75

Table 12. Statistics of the GA1 for the electrical distribution
problem, for both objective functions.

1�Q # Eval Statistic 1�Q SEtest

2000 Mean 0.1635 5111
SD 0 0
Median 0.1635 5111

1000 Mean 0.1637 5033.93
SD 0.00104 421.03
Median 0.1635 5111

MSEtrain # Eval Statistic MSEtrain SEtest

2000 Mean 0.1630 3318.77
SD 0.00164 51.46

Median 0.1625 3305
1000 Mean 0.1649 3621.50

SD 0.00758 1150.70

Median 0.1625 3305

Optimization of fuzzy partitions for inductive reasoning using genetic algorithms 1007
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Table 13. Membership functions results of the electrical distribution problem using 1�Q cost function.
GA1 results for the number of classes.

Partition used: (2,2,3,2,2)

# Eval Data proportion Opt. mask Q 1�Q SEtest

A 20000 SLS:(0.85,0.15) (1,3,4,5) 0.9475 0.0525 2727

TA:(0.49,0.51)
AB: (0.79,0.13,0.08)
ES:(0.81,0.19)

MC:(0.85,0.15)
10000 SLS:(0.92,0.08) (1,3,4,5) 0.9505 0.0495 2728

TA:(0.58,0.42)

AB: (0.82,0.10,0.08)
ES:(0.85,0.15)
MC:(0.85,0.15)

B 20000 SLS:(0.52,0.48) (1,3,4,5) 0.8886 0.1114 5094

TA:(0.51,0.49)
AB: (0.35,0.24,0.41)
ES:(0.46,0.54)
MC:(0.49,0.51)

10000 SLS:(0.51,0.49) (1,3,4,5) 0.8723 0.1277 5063
TA:(0.46,0.54)
AB: (0.31,0.26,0.43)

ES:(0.53,0.47)
MC:(0.58,0.42)

C Equal frequency partition method (3,4,5) 0.8365 0.1635 5111

Table 14. Membership functions results of the electrical distribution problem using MSEtrain cost function. GA1 results for
the number of classes.

Partition used: (2,2,4,9,7)

# Eval Data proportion Opt. mask Q MSEtrain SEtest

A 20000 SLS:(0.52,0.48) (3,4,5) 0.5245 0.1228 2973
TA:(0.59,0.41)
AB (0.19,0.33,0.29,0.19)

ES:(0.11,0.12,0.12,0.12,0.12,0.14,0.08,0.08,0.11)
MC:(0.17,0.07,0.11,0.19,0.08,0.25,0.13)

10000 SLS:(0.56,0.44) (3,4,5) 0.5343 0.1246 3028

TA:(0.49,0.51)
AB (0.19,0.35,0.28,0.18)
ES:(0.11,0.11,0.14,0.12,0.11,0.14,0.09,0.07,0.11)
MC:(0.09,0.08,0.09,0.09,0.26,0.31,0.08)

B 20000 SLS:(0.40, 0.60) (3,4,5) 0.5741 0.1306 3005

TA:(0.55,0.45)
AB: (0.27,0.27,0.23,0.23)
ES:(0.13,0.11,0.11,0.08, 0.10,0.13,0.15,0.14,0.05)

MC:(0.12,0.11,0.20,0.12,0.21,0.05,0.19)
10000 SLS:(0.52,0.48) (3,4,5) 0.5465 0.1332 2985

TA:(0.58,0.42)

AB: (0.34,0.26,0.22,0.18)
ES:(0.10,0.11,0.12,0.11,0.18,0.14, 0.10,0.05,0.09)
MC:(0.19,0.24,0.17,0.12,0.15,0.08,0.05)

C Equal frecuency partition method (3,4,5) 0.5704 0.1625 3305

1008 J. Acosta et al.
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of the signal is used to obtain the FIR models (masks
and pattern rule bases). The table is organized as
table 13. The only difference is that the sixth column
contains the values of the MSEtrain instead of the 1�Q
objective cost function.
As explained before, the CPU time needed by the

GA2 when the MSEtrain objective function is used is
clearly greater than the time needed when the 1�Q is
used. The computational time needed to perform 30
executions for 20,000 evaluations when the 1�Q and
MSEtrain objective functions are studied is 6:36 and
11:39 hours, respectively, in a Pentium III computer
(0.6 GHz).
The worse results obtained using the GA2 (row B in

tables 13 and 14) are always better than the reference
result (row C of each table). Therefore, although the
GA2 does not assure the optimal solution, all the
solutions suggested are better than the ones obtained
when no GA is used, i.e. when the default EFP method
is used to obtain the membership functions.
Once again, the errors obtained by FIR methodology,

in this case, are significantly lower than the ones
obtained by the methodologies of table 8. The best
result of 11,836 SE obtained by the TSK fuzzy model is
much bigger than the 2727 SE obtained by FIR
methodology enhanced by the GA2. As expected, the
results obtained by FIR enhanced by both GAs (GA1
and GA2) (tables 13 and 14) are better than the ones
obtained when FIR is enhanced only by the GA1
(table 9). From tables 13 and 14 it can also be seen that
the results obtained by both cost functions are
equivalent. In this case, the performance of FIR
models when the MSEtrain cost function is used is not
superior to the performance of 1�Q objective function.
Therefore, the 1�Q objective function is preferable
because of its lower computational cost. The graphical
representation of the best results presented in tables 13
and 14 is quite similar to the plots shown in figure 5 and,
therefore, it is not presented here.

6. Conclusions

A FIR model is a qualitative, non-parametric, shallow
model based on fuzzy logic. Therefore, variations on
fuzzy partitions have a direct effect on the performance
of the model identification and prediction processes of
FIR methodology. In this article, two GA were designed
to learn fuzzy partitions (one for the number of classes
and another for the membership functions) in the
context of the FIR methodology.
In this article, two real applications have been studied,

i.e. the human CNS and the estimation of the
maintenance cost of medium voltage lines in Spanish
towns. For each application studied, two objective

functions have been evaluated and compared
from the perspective of their performance and
computational time.

The results obtained in the CNS application were
much better than the ones obtained by other inductive
methodologies like NARMAX, time delay neural
networks and recurrent neural networks.

On the other hand, the performance when modeling
the maintenance cost of medium voltage lines is also
superior compared to the performance of other
methodologies presented in previous works like linear
models, second-order polynomial models, neural
networks, hybrid GP and different fuzzy models, for
the same problem.

The results show that better models are obtained
when FIR methodology is enhanced with the two GAs
proposed for learning the number of classes and the
membership functions. The GAs suggested provide an
efficient, computationally effective and flexible way to
optimize fuzzy inductive reasoning models, yet main-
taining an acceptable relation between model complexity
and design effort.

The next step is the development of a GA that allows
the determination of the number of classes and the
membership functions at the same time. It is expected
that a unique algorithm will achieve better results;
however the CPU time will increase considerably, due to
the fact that now the search space will be much bigger.
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M.J. del Jesús, F. Hoffman, I.J. Navascués and L. Sánchez,
‘‘Induction of fuzzy-rule-based classifiers with evolutionary boost-
ing algorithms’’, IEEE Trans. Fuzzy Syst., 3, pp. 296–308, 2004.

Y. Dote and S.J. Ovaska, ‘‘Industrial applications of soft computing: a
review’’, in Proc. IEEE, 9, pp. 1243–65, 2001.

D. Driankov, H. Hellendoorn and M. Reinfrank, An Introduction to
Fuzzy Control, New York: Springer-Verlag, 1993.
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A. Nebot, F. Cellier and M. Vallerdú, ‘‘Mixed quantitative/qualitative
modeling and simulation of the cardiovascular system’’,
Comput. Meth. Prog. Biomed., 55, pp. 127–55, 1998.
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International Federation of Automatic Control) and other scientific and technical societies.

Optimization of fuzzy partitions for inductive reasoning using genetic algorithms 1011




