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Abstract

Defuzzification of type-2 fuzzy sets is a com-
putationally intense problem. This paper
proposes a new approach for defuzzification
of interval type-2 fuzzy sets. The collaps-
ing method converts an interval type-2 fuzzy
set into a representative embedded set (RES)
which, being a type-1 set, can then be de-
fuzzified straightforwardly. The novel Rep-
resentative Embedded Set Theorem (REST),
with which the method is inextricably linked,
is expounded, stated and proved within this
paper. Additionally the Pseudo Representa-
tive Embedded Set (PRES), a useful and eas-
ily calculated approximation to the RES, is
discussed.

1 Introduction

1.1 Type-2 Fuzzy Inferencing Systems

Type-2 fuzzy sets were originally proposed by
Zadeh [6]; their advantage over type-1 fuzzy sets is
their ability to model second-order uncertainties.

A fuzzy inferencing system (FIS) is a comput-
erised aid to decision making, which uses fuzzy
sets. It works by applying fuzzy logic operators to
common-sense linguistic rules. An FIS can be of
any type; here we are concerned with the type-2 FIS,
i.e. one which employs type-2 sets. An FIS (of any
type) usually starts with a crisp number, and passes
through the five stages of fuzzification, antecedent
computation, implication, aggregation/combination
of consequents, and defuzzification.

When implementing a type-2 FIS researchers
discretise the membership functions. This work is
concerned only with discretised type-2 fuzzy sets.

1.2 Defuzzification

The output of the fourth stage of a type-2 FIS is a
type-2 fuzzy set, which requires defuzzification to
convert it into a crisp number, the ‘answer’ to the

problem presented to the FIS. It is this final defuzzi-
fication stage that is the focus of this paper.

The defuzzification techniques available for dis-
cretised type-2 sets are:

Full Defuzzification In a conventional generalised
type-2 FIS, the defuzzification stage consists
of two parts, type-reduction and defuzzification
proper. Type-reduction ([5], pages 248-252) in
which the type-2 fuzzy set is converted to a
type-1 fuzzy set, the type-reduced set (TRS),
involves the processing of all the embedded
sets ([5], definition 3-10, page 98) within the
original discretised type-2 set. These sets are
very numerous. For instance, when a prototype
type-2 FIS performed an inference using sets
which had been discretised into 51 slices across
both the x and y-axes, the number of embedded
sets in the aggregated set was calculated to be
in the order of 2.9× 1063. Though individu-
ally easily processed, embedded sets under full
defuzzification give rise to a processing bottle-
neck simply by virtue of their high cardinality.

Sampling Method The sampling method of de-
fuzzification [1] is an efficient, cut-down alter-
native to full defuzzification. In this technique,
only a relatively small random sample of the to-
tality of embedded sets is processed. The resul-
tant defuzzified value, though surprisingly ac-
curate, is nonetheless an approximation.

The Karnik-Mendel Iterative Procedure This
procedure [2] is an efficient method of defuzzi-
fication for interval type-2 sets but produces
only a (very good) approximation to full
defuzzification since it works by finding the
mid-point of the TRS interval without taking
account of the distribution of the values along
the interval.

Table 1 contrasts these three methods, comparing
them in relation to efficiency, exactness and appli-
cably. None of these methods is both efficient and
exact.



Table 1: Comparison of Full, Sampling, and Iterative
Methods

Method Efficiency Exactness Usage
Full poor perfect generalised

Sampling excellent approximate generalised

Iterative excellent approximate interval

1.3 Reversal of Blurring

Mendel and John ([4], page 118) describe the trans-
formation from a type-1 to a type-2 membership
function by a process of blurring:

Imagine blurring the type-1 membership
function . . . by shifting the points . . . either
to the left or the right, and not necessarily
by the same amounts, . . . Then, at a spe-
cific value of x, say x′, there no longer is
a single value for the membership func-
tion (u′); instead the membership func-
tion takes on values wherever the verti-
cal line [x = x′] intersects the blur. These
values need not all be weighted the same;
hence, we can assign an amplitude distri-
bution to all of these points. Doing this for
all x ∈ X , we create a three-dimensional
membership function — a type-2 member-
ship function — that characterizes a type-
2 fuzzy set.

The collapsing method of defuzzification is a re-
sponse to the challenge of reversing blurring. Fur-
ther motivation for this research was to devise an ef-
ficient and exact type-2 defuzzification technique.

1.4 Embedded Sets

An interesting feature of the FIS is that embed-
ded sets only appear during the final defuzzifica-
tion stage. (Theoretically they could be employed
in the earlier stages, but to do so would be impracti-
cal.) A defuzzification technique that reversed blur-
ring would obviate the need for processing embed-
ded sets, which would be an enormous practical ad-
vantage, as well as being satisfying from a theoreti-
cal perspective.

Though the collapsing algorithm does not re-
quire processing of embedded sets, it involves the
creation, and subsequent defuzzification, of a single
type-1 set which is embedded. Moreover, the em-
bedded set concept is used in the proof of the theo-
rem (section 1) upon which the method is based.

1.5 Overview

Our research sees developing generalised type-2
systems as a challenge for the research community.
However in this community the interval case is of-
ten explored before the generalised case. This paper
reports the first results on the interval case with a
view to future extension of the research to the gen-
eralised case. We propose a straightforward, exact,
iterative defuzzification technique for a discretised
interval type-2 fuzzy set.

1.6 Preliminaries

The discussion in this article relies on certain as-
sumptions and definitions.

Discretisation Technique
It is assumed that the domain is discretised into an
arbitrary number m of vertical slices, and the co-
domain into 2 slices, which are the end-points of the
secondary domain.

Defuzzification Method
The analysis presented in this paper presupposes that
the centroid method of defuzzification is adopted.

Scalar Cardinality
The concept of scalar cardinality is frequently en-
countered in the following analysis. For type-1
fuzzy sets, Klir and Folger ([3], p17) define scalar
cardinality as follows:

The scalar cardinality of a fuzzy set A de-
fined on a finite universal set X is the sum-
mation of the membership grades of all the
elements of X in A. Thus,

| A |= ∑
x∈X

µA(x).

The symbol ‘∑’ as used here represents ‘sum’.
To distinguish scalar cardinality from cardinality

in the classical sense of the number of members of a
set, we adopt the ‘‖ ‖’ symbol for scalar cardinality,
i.e. ‖A‖ represents the scalar cardinality of A.

2 The Representative Embedded Set

In this section we introduce the idea of the represen-
tative embedded set, a concept which fundamentally
underpins the collapsing method of defuzzification
that is the subject of this paper.

An interval type-2 fuzzy set is a type-2 fuzzy set
in which every secondary membership grade takes
the value 1. Such a set is completely specified by
its footprint of uncertainty ([4], definition 5, page
119), since all its secondary grades are by definition



equal to 1. In the analysis which follows, to speak
in terms of the footprint of uncertainty (FOU) of an
interval type-2 fuzzy set is equivalent to referring to
the interval set itself.

2.1 The Collapsing Technique

It is helpful to think of the interval FOU as a blurred
type-1 membership function ([4], page 118). The
collapsing technique is the reversal of this process
to create a type-1 fuzzy set from an interval FOU.
The type-1 set’s membership function is derived so
that its defuzzified value is equal to that of the inter-
val set. It is a simple matter to defuzzify a type-1
set, and to do so would be to find the defuzzified
value of the original interval set. Hence the collaps-
ing process reduces the computational complexity of
interval type-2 defuzzification. We term this special
type-1 set the representative embedded set. It is a
representative set because it has the same defuzzi-
fied value as the original interval type-2 fuzzy set. It
is an embedded set because it lies within the FOU
of the interval type-2 fuzzy set. Before defining the
representative embedded set, we first define the rep-
resentative set.
Definition 1 (Representative Set). A type-1 fuzzy set
is a representative set (RS) of an interval type-2 fuzzy
set if it has the same defuzzified value as the interval
set.
Definition 2 (Representative Embedded Set). Let F̃
be an interval type-2 fuzzy set with defuzzified value
XF̃ . Then type-1 fuzzy set R is a representative em-
bedded set (RES) of F̃ if its defuzzified value (XR) is
equal to that of F̃, i.e. XR = XF̃ , and its membership
function lies within the FOU of F̃.
Clearly an RS may be embedded, i.e. an RES, or
non-embedded.

2.2 Derivation of an RES

We know that any RES will lie within the FOU of
the interval type-2 fuzzy set it represents. The ob-
jective of this analysis is to derive an expression for
the membership function of an RES in terms of the
upper and lower membership functions of the inter-
val set to be defuzzified. Our strategy is two-stage:

1. We derive a formula for the special case of the
interval FOU which has only one blurred verti-
cal slice.

2. We generalise this formula to the typical inter-
val FOU in which every point of the original
type-1 membership function has been blurred,
i.e. one for which the upper membership func-
tion is greater than the lower membership func-
tion for every domain value.

3 Solitary Collapsed Slice Lemma
(SCSL)

In this section we concentrate on the derivation of an
RES in the special case of an interval FOU formed
by (upwardly) blurring the membership function of
a type-1 fuzzy set at a single domain value xI (fig-
ure 1), to create a vertical slice which is an interval
as opposed to a point. This interval is the secondary
domain at xI . The FOU formed by this blurring is
depicted in figure 2, and consists of the shaded tri-
angular region plus the line L. We derive a formula
for the RES of this somewhat unusual interval FOU
in terms of the original type-1 membership function
and the amount of blurring.

Type-1 Set with a Single Blurred Grade
Let A be a type-1 fuzzy set that has been discretised
into m vertical slices. We calculate the defuzzified
value of A, XA, by finding the centroid of A:

XA = ∑i=m
i=1 µA(xi)xi

∑i=m
i=1 µA(xi)

= ∑i=m
i=1 µA(xi)xi

‖A‖ .

To avoid division by 0, it is assumed throughout this
paper that ‖A‖> 0.

x

y

0 1
0

1

B

bI

xI

A

Figure 1: At x = xI the membership function of type-
1 fuzzy set A has been blurred, increasing the mem-
bership grade by the amount bI , creating a new type-
1 fuzzy set B.

Now suppose the membership function of A is
blurred upwards at domain value xI , so that xI , in-
stead of corresponding to the point µA(xI), corre-
sponds to the co-domain range [µA(xI),µA(xI)+ bI ].
Let B (figure 1) be a type-1 fuzzy set whose mem-
bership function is the same as that of A apart from
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Figure 2: FOU of interval type-2 fuzzy set F̃ , which
consists of the original line of type-1 set A plus the
triangular region.

at the point xI , for which µB(xI) = µA(xI)+ bI . XB,
the defuzzified value of B, may be calculated:

XB = ∑µB(xi)xi

∑µB(xi)

= ∑µA(xi)xi +bIxI

∑µA(xi)+bI

=
‖A‖XA +bIxI

‖A‖+bI

= XA +
‖A‖XA +bIxI

‖A‖+bI
−XA

= XA +
bI(xI −XA)
‖A‖+bI

.

Interval Set with One Blurred Slice
Let F̃ (figure 2) be an interval type-2 fuzzy set whose
lower membership function is A and upper member-
ship function B. The membership function of A is
identical to that of B apart from the blurring at the
point xI which makes µB(xI) greater than µA(xI) by
the amount bI .

Full Defuzzification of Set F̃
Full defuzzification requires that all the embedded
sets of a type-2 set be processed to form the type-
reduced set. F̃ contains only two embedded sets,
namely A and B. Therefore the type-reduced set of
F̃ consists of the two pairs of co-ordinates (XA,1)
and (XB,1). We find the defuzzified value of F̃ by
calculating the mean of XA and XB, i.e. 1

2 (XA +XB).
Let XF̃ be the defuzzified value of F̃ . XF̃ will be
expressed in terms of ‖A‖, XA, xI and bI , all of which

are known values.

XF̃ =
1
2
(XA +XB)

=
1
2

(
XA +XA +

bI(xI −XA)
‖A‖+bI

)

= XA +
bI(xI −XA)
2(‖A‖+bI)

.

Type-1 Defuzzification of Set R
Let R be an RES of F̃ such that the membership
function of R is the same as that of A for all domain
values xi apart from xI . At this point the membership
function deviates from that of A so that µR(xI) takes
the value µA(xI)+ rI . Figure 3 depicts the member-
ship function of R. Following the same chain of rea-
soning as in the derivation of XB, we work out an ex-
pression for XR in terms of ‖A‖, XA, xI and rI , where
‖A‖, XA, xI are known values:

XR = XA +
rI(xI −XA)
‖A‖+ rI

.
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Figure 3: R, the representative embedded set of F̃ , is
indicated by the undashed line.

Equating XR and XF̃ to Derive an Expression
for rI

The defuzzified values XR and XF̃ are by definition
equal (section 2), and by equating these values we
are able to obtain a formula for rI in terms of ‖A‖
and bI :

XR = XF̃ ⇒ rI =
bI‖A‖

2‖A‖+bI
.

We have arrived at the membership function of R,
and in so doing proved the solitary collapsed slice
lemma:



Lemma 1 (Solitary Collapsed Slice Lemma). Let
A be a discretised type-1 fuzzy set which has been
blurred by amount bI at a single point xI to form the
FOU of interval type-2 fuzzy set F̃. Then R, the RES
of F̃, has a membership function such that

µR(xi) =





µA(xi)+
‖A‖bI

2‖A‖+bI
if i = I,

µA(xi) otherwise.

4 Representative Embedded Set
Theorem (REST)

We generalise the solitary collapsed slice lemma to
the typical situation in which every point of the type-
1 membership function has been blurred. First we
present the concept behind the theorem: How an in-
terval type-2 set may be collapsed to create a repre-
sentative embedded set. We then state the theorem,
and go on to prove it inductively.

Collapsing an Interval Set to Form an RES
We have considered an extremely atypical interval
FOU whose membership function follows the course
of a type-1 fuzzy set apart from at one slice xI , at
which its membership grade opens up into a sec-
ondary co-domain [µ(xI),µ(xI + bI)]. We have done
this to provide a simple yet illustrative example of
the collapsing process, as a basis for generalisation
to the typical interval FOU. The SCSL (section 3)
tells us how to calculate the RES for this special case
of an interval type-2 set.

Now we proceed to look at the typical inter-
val FOU, in which the upper membership grade is
greater than the lower membership grade at every
point. The difference between the lower and upper
membership grades at any given point is the amount
of blur (bi) at that point, i.e. µU (xi)− µL(xi) = bi.
The solitary collapsed slice lemma does not apply in
this situation. However, this lemma may be applied
repeatedly to FOUs assembled in stages using slices
taken from the interval set.

Collapsing the 1st FOU to Form RES R1

The first interval FOU to be collapsed (figure 4)
comprises the slice x1 (at x = 0), plus the rest of the
lower membership function L, (represented by the
shaded triangular region plus the line L.) The lower
membership function of the FOU is the line L, and
the upper membership function starts (at x = 0) at the
line U , but immediately descends to L (slice x2), af-
ter which it follows the course of L (slices x2 . . .xm).
The SCSL tells us that this interval set may be col-
lapsed into its RES R1, depicted in figure 5. The
collapse increases the membership grade µL(x1) by
r1 to µR1(x1).

x

y

x1 1
0

1

b1

x2

L

U

Figure 4: The first slice in interval type-2 fuzzy set
F̃ .
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Figure 5: The first slice collapsed, creating an RES
R1 for the interval type-2 fuzzy set F̃ .

Collapsing the 2nd FOU to Form RES R2

We now move on to the second FOU. Figure 6 shows
this FOU before it is collapsed. The SCSL is re-
applied, but instead of the lower membership func-
tion being L, it is now R1. The RES of the second
FOU is R2, which is depicted in figure 7.

Collapsing the (k+1)th FOU to Form RES Rk+1
Suppose FOUs 1, . . . ,k have been collapsed in turn,
with Rk being the most recently formed RES. Then
it is the turn of the k + 1th FOU to be collapsed.
The lower membership function is Rk. This situation
prior to the k + 1th FOU’s collapse is represented in
figure 8; the situation after the collapse in figure 9.

Collapsing the mth FOU to Form RES R
Suppose FOUs 1, . . . ,m − 1 have been collapsed
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Figure 6: For the interval type-2 fuzzy set F̃ , the first
slice is collapsed, and the second slice is shown.
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Figure 7: Slices 1 and 2 collapsed, creating RES R2
for the interval type-2 fuzzy set F̃ .

in turn, with Rm−1 being the most recently formed
RES. Then it is the turn of the mth FOU to be
collapsed. The lower membership function is Rm−1,
and the slice to be collapsed is slice m at x = 1. After
the collapse the new lower membership function is
Rm. As the mth slice is the final slice, then Rm is the
RES of the entire interval type-2 fuzzy set, and is
equivalent to the RES R.

We now state and prove the representative em-
bedded set theorem.

Theorem 1 (Representative Embedded Set Theo-
rem). A discretised type-2 interval fuzzy set F̃, hav-
ing defuzzified value XF̃ , lower membership function
L, and upper membership function U, may be col-
lapsed into a type-1 fuzzy set R, known as the repre-

x

y
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1

xk+1

Rk

Bk+1 U

Figure 8: Slices 1 to k collapsed, slice k +1 about to
be collapsed, for interval type-2 fuzzy set F̃ .
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Figure 9: Slices 1 to k + 1 collapsed, creating RES
Rk+1 for interval type-2 fuzzy set F̃ .

sentative embedded set, whose defuzzified value XR
is equal to XF̃ , with membership function such that:

µR(xi) = µL(xi)+

(
‖L‖+∑i−1

j=1 r j

)
bi

2
(
‖L‖+∑i−1

j=1 r j

)
+bi

,

where bi = µU (xi)−µL(xi).

Proof. Let XF̃ be an interval type-2 fuzzy set, and
R1, . . .Rm be type-1 fuzzy sets formed by collaps-
ing vertical slices 1, . . .m inclusive of XF̃ , i.e. R1 is
formed by collapsing slice 1, R2 by collapsing slices
1 and 2, and Ri by collapsing slices 1 to i. Rm is a
representative set of XF̃ , equivalent to the R of the
previous discussion.



Proof by induction on the number of collapsing ver-
tical slices will be used:

Basis (Collapsing the 1st slice to form R1): Fig-
ures 4 and 5 depict the collapse of the first slice. The
resultant RES is R1. For R1, i = 1, and ∑i−1

1 r j = 0.
We need to prove that

µR1(x1) = µL(x1)+
‖L‖b1

2‖L‖+b1
,

but this is actually what we have when we apply the
solitary collapsed slice lemma (section 3) for i = 1.

Induction hypothesis: Assume the theorem is true
for Rk, i.e. that slices 1, . . . ,k have been collapsed to
form type-1 fuzzy set Rk, and that

µRk(xi) = µL(xi)+

(
‖L‖+

i−1

∑
j=1

r j

)
bi

2

(
‖L‖+

i−1

∑
j=1

r j

)
+bi

.

(In this formula, for i > k, bi = 0.)

Induction Step: Now we collapse slice (k + 1),
which is a single slice. Applying the SCSL (section
3) to Rk we have:

rk+1 =
‖Rk‖bk+1

2‖Rk‖+bk+1
.

We need to prove that for all i

µRk+1(xi) = µL(xi)+

(
‖L‖+

i−1

∑
j=1

r j

)
bi

2

(
‖L‖+

i−1

∑
j=1

r j

)
+bi

.

The proof will be split up into three cases.

Case 1: 1≤ i≤ k

µRk+1(xi) = µRk(xi)

= µL(xi)+

(
‖L‖+

i−1

∑
j=1

r j

)
bi

2

(
‖L‖+

i−1

∑
j=1

r j

)
+bi

.

Case 2: i = k +1

µRk+1(xi) = µL(xi)+ rk+1

= µL(xi)+
‖Rk‖bi

2‖Rk‖+bi
.

We know that

‖Rk‖ =
m

∑
j=1

µRk(x j)

=
k

∑
j=1

(µL(x j)+ r j)+
m

∑
j=k+1

µL(x j)

= ‖L‖+
k

∑
j=1

r j,

and therefore we conclude that

µRk+1(xi) = µL(xi)+

(
‖L‖+

k

∑
j=1

r j

)
bi

2

(
‖L‖+

k

∑
j=1

r j

)
+bi

.

Case 3: i > k +1

µRk+1(xi) = µRk(xi)

= µL(xi)+

(
‖L‖+

i−1

∑
j=1

r j

)
bi

2

(
‖L‖+

i−1

∑
j=1

r j

)
+bi

.

Conclusion: Drawing the three cases together, we
conclude that for all i,

µRk+1(xi) = µL(xi)+

(
‖L‖+

i−1

∑
j=1

r j

)
bi

2

(
‖L‖+

i−1

∑
j=1

r j

)
+bi

.

5 Collapsing as Type-Reduction

Conventional type-reduction ([5], pages 248-252),
whether of interval or generalised type-2 fuzzy sets,
creates the type-reduced set, which is a type-1 set
whose domain values are the centroids of all the em-
bedded sets of the original type-2 fuzzy set. The sig-
nificant point, however, is that a type-1 fuzzy set is
produced from a type-2 fuzzy set, which is what hap-
pens when an interval set is collapsed.

Both methods of type-reduction result in a type-1
fuzzy set, which is easily defuzzified. However con-
ventional type-reduction is in itself so computation-
ally complex that the fact that the process creates an
easily defuzzified type-1 set is spurious. Moreover,
it is far less computationally complex to defuzzify
an RES than a TRS, as an RES has far fewer points
to process than its equivalent TRS.



6 Pseudo Representative Embedded
Set

The SCSL (section 3) tells us that:

rI =
‖A‖bI

2‖A‖+bI
.

We have assumed (section 3) that ‖A‖ > 0. There-
fore, by dividing the numerator and denominator by
‖A‖, we can deduce that

rI =
bI

2+ bI
‖A‖

<
bI

2
.

As ‖A‖ increases, rI increases and approaches bI
2 . bI

2
can therefore be considered an approximation for rI .
This approximation makes sense intuitively.

The REST (section 1) states that:

µR(xi) = µL(xi)+

(
‖L‖+∑i−1

j=1 r j

)
bi

2
(
‖L‖+∑i−1

j=1 r j

)
+bi

.

The expression ‖L‖+ ∑ j=i−1
j=1 r j replaces ‖A‖ in the

SCSL. The same line of reasoning that was applied
to the blurred single point case applies equally here.
As each slice is collapsed, ‖L‖+∑ j=i−1

j=1 r j increases,
which means that as the collapse progresses, the ri
for each collapsed slice is a closer approximation to
1
2 bi.

Definition 3 (Pseudo Representative Embedded
Set). For an interval type-2 fuzzy set, the pseudo rep-
resentative embedded set (PRES) is the type-1 fuzzy
set whose membership function at every point takes
the mean value of the lower membership function
and the upper membership function of the interval
set. Symbolically µP(xi) = 1

2

(
µL(xi)+µU (xi)

)
.

The approximation of the PRES to a RES is equiva-
lent to the approximation involved in equating ri to
1
2 bi, given that for all vertical slices, ri < 1

2 bi.

7 Conclusions and Further Work

The collapsing method of defuzzification generates
a type-1 embedded set from an interval type-2 fuzzy
set that is representative in that it has the same de-
fuzzified value as the original type-2 set. The rep-
resentative embedded set may be thought of as a
type-reduced set, but the collapsing form of type-
reduction is vastly more efficient than the conven-
tional, full type-reduction. The collapsing method
promises to be efficient and accurate in its imple-
mentation.

Future work will consider the following:

Testing the Collapsing Method This method re-
quires testing, to quantify both the time saving it
makes possible and confirm its accuracy. Tests may
be performed for either defuzzification in isolation,
or defuzzification as part of an interval type-2 FIS.

Discretisation with More Than 2 Co-Domain
Slices The research presented in this paper con-
cerns the situation where the co-domain is sliced at 2
points for every domain value, at the lower and upper
membership grades for that domain value. It would
be desirable to extend the collapsing method to cover
discretisation in which the co-domain is sliced more
than twice.

Other Methods of Defuzzification There is no
obvious reason why this technique may not be ex-
tended to other methods of defuzzification besides
the centroid method.

Generalised Type-2 Fuzzy Sets The technique as
described in this paper applies to interval type-2
fuzzy sets; we plan to extend it to generalised sets.

The PRES as a Substitute for an RES It is far
easier to calculate the PRES membership function
than that of an RES, but of course the defuzzified
value of the PRES is only an approximation. It
would be useful to investigate (both mathematically
and experimentally) the extent to which accuracy is
lost in replacing an RES by the PRES.
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