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Abstract— One of the biggest challenges in genomics is the 
elucidation of the design principles controlling gene expression. 
Current approaches examine promoter sequences for particular 
features, such as the presence of binding sites for a 
transcriptional regulator, and identify recurrent relationships 
among these features termed network motifs.  To define the 
expression dynamics of a group of genes, the strength of the 
connections in a network must be specified, and these are 
determined by the cis-promoter features participating in the 
regulation.  Approaches that homogenize features among 
promoters (e.g., relying on consensuses to describe the various 
promoter features) and even across species hamper the discovery 
of the key differences that distinguish promoters that are co-
regulated by the same transcriptional regulator.  Thus, we have 
developed a an approach based on fuzzy logic expressions to 
analyze proteobacterial genomes for promoter features that is 
specifically designed to account for the variability in sequence, 
location and topology intrinsic to differential gene expression.  
We applied our method to characterize network motifs 
controlled by the PhoP/PhoQ regulatory system of Escherichia 
coli and Salmonella enterica serovar Typhimurium. We identify 
key features that enable the PhoP protein to produce distinct 
kinetic patterns in target genes, which could not have been 
uncovered just by inspecting network motifs. 

I. INTRODUCTION 

Whole genome sequences and genome-wide gene expression 
patterns (usually in the form of microarray data) provide the 
raw material for the characterization and understanding of 
transcription regulatory networks.  These networks can be 
represented as directed graphs in which a node stands for a 
gene (or an operon in the case of bacteria) and an edge 
symbolizes a direct transcriptional interaction.  Recurrent 
patterns of interactions, termed network motifs, occur far 
more often than in randomized networks, forming elementary 
building blocks that carry out key functions. This is a 
convenient representation of the topology of a set of 
regulatory Boolean (i.e. ON-OFF) networks, in which each 
gene is either fully expressed or not expressed at all, or that it 
has a binding site for a transcriptional regulator or lacks such 
a site.  However, this approach has serious limitations because 
most genes are not expressed in a simple Boolean fashion.  
Indeed, genes that are co-regulated by the same transcription 
factor are often differently expressed with characteristic 
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expression levels and kinetics.  Therefore, a deeper 
understanding of regulatory networks demands the 
identification of the key features used by a transcriptional 
regulator to differentially control genes that display distinct 
behaviors despite belonging to networks with identical motifs. 

The identification of the promoter features that determine 
the distinct expression behavior of co-regulated genes is a 
challenging task because: first, there are difficulties in 
discerning the sequence elements relevant to differential 
expression patterns (e.g., the binding sites for transcriptional 
regulators and RNA polymerase) from a background of 
variable DNA sequences that do not play a direct role in gene 
regulation.  Second, the sequences recognized by a 
transcription factor may differ from promoter to promoter 
within and between genomes and may be located at various 
distances from other cis-acting features in different promoters 
[1].  Third, similar expression patterns can be generated from 
different or a mixture of multiple underlying features, thus, 
making it more difficult to discern the causes of analogous 
regulatory effects. 

In this study, we present a method specifically aimed at 
handling the variability in sequence, location and topology 
that characterize gene transcription.  Instead of using an 
overall consensus model for a feature, where important 
differences are often concealed because of intrinsic averaging 
operations between promoters and even across species (see 
Appendix), we decompose a feature into a family of models 
or building blocks.  This approach maximizes the sensitivity 
of detecting those instances that weakly resemble a consensus 
(e.g., binding site sequences) without decreasing the 
specificity.  In addition, features are considered using fuzzy 
assignments, which allow us to encode how well a particular 
sequence matches each of the multiple models for a given 
promoter feature.  Individual features are then linked into 
more informative composite fuzzy expressions that can be 
used to explain the kinetic expression behavior of genes.  We 
applied our method to analyze promoters controlled by the 
PhoP/PhoQ regulatory system of Escherichia coli and 
Salmonella enterica serovar Typhimurium.  This system 
responds to the same inducing signal (i.e. low Mg2+) in both 
species [1, 2].  Moreover, the E. coli phoP gene could 
complement a Salmonella phoP mutant [3].  The DNA-
binding PhoP protein appears to recognize a tandem repeat 
sequence separated by 5 bp [1, 2], consistent with being a 
dimer.  The PhoP/PhoQ system is an excellent test case 
because it controls the expression of a large number of genes, 
amounting to ca. 3% of the genes in the case of Salmonella. 
Furthermore, the PhoP/PhoQ regulon has been shown to 
employ a variety of network motifs including the single-input 
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module (Fig. 1A), the multi-input module (Fig. 1B), the bi-fan 
(Fig. 1C), the chained (Fig. 1D), and also the feedforward 
loop [1, 4].  Our analysis uncovered the salient features that 
distinguish genes co-regulated by PhoP belonging to similar 
networks.  Gene transcription measurements provided 
experimental support for the investigated predictions. 

II. RESULTS 

We investigated five types of cis-acting promoter features by 
extracting the maximal amount of useful information from 
datasets and then creating models that describe promoter 
regulatory regions.  This entailed applying three key strategies 
(Appendix Fig. S1): first, we conducted an initial survey of 
the data provided from different available sources, capturing 
and distinguishing between broad and easily discernable 
patterns.  We then used these patterns as models to re-visit the 
data with greater sensitivity and specificity, which allowed the 
detection of those instances where a binding site sequence 
resembles the consensus only weakly or where the distances 
between the transcription factor and the RNA polymerase are 
unusual.  Second, we utilized fuzzy clustering methods [5, 6] 
to encode how a promoter matches each of the multiple 
models for a given promoter feature, which avoided having to 
make premature categorical assignments, thus producing an 
initial classification of the promoters into multiple subsets.  
Finally, we applied fuzzy logic to link basic features into 
more informative composite models that explain the distinct 
expression behavior of genes belonging to similar networks 
(Appendix Fig. S1 and S2).  Additional features are described 
in the Appendix. 

A. Transcription factor binding site submotifs 

Many genes are controlled by a single-input network motif 
where the affinity of a transcription factor for its promoter 
sequences is a major determinant of gene expression (Fig. 
2A).  Thus, co-regulated genes displaying distinct expression 
patterns are likely to differ in the binding site for such a 
transcription factor.  Methods that look for matching to a 
consensus sequence have been successfully used to identify 
promoters controlled by particular transcription factors.  
However, the strict cutoffs used by such methods increase 
specificity but decrease sensitivity, which makes it difficult to 
detect binding sites with weak resemblance to a consensus 
sequence [7].  

To circumvent the limitation of consensus methods [8], we 
decomposed the binding site motif of a transcription factor 
into several submotifs and then combined the submotifs into a 
multi-classifier (see Methods), which increased the sensitivity 
to weak sites without losing specificity.  In the case of PhoP, 
we identified four submotifs (Appendix Fig. S3), and used 
them to search both strands of the intergenic regions of the E. 
coli and Salmonella genomes (Appendix Fig. S2).  This 
allowed the recovery of promoters, such as that corresponding 
to the E. coli hdeA gene or the Salmonella pmrD, that had not 
been detected by the single consensus position weight matrix 
model [7] despite being footprinted by the PhoP protein [1, 4]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1.  The PhoP/PhoQ system employs a variety of network motifs to 
regulate gene transcription.  (a) In the single-input module, PhoP as a single 
transcription factor regulates a set of genes (i.e. mgtA, phoP and pmrD).  (b) 
In the multi-input module, two or more transcription factors (e.g., PhoP and 
RcsB) regulate a target gene (i.e. ugd).  (c) In the bi-fan module, a set of genes 
(i.e. pmrD and yrbL) are each regulated by a combination of transcription 
factors (i.e. PhoP and PmrA).  (d) In the chained motif, genes are regulated in 
an ordered cascade.   

 
To test the notion that PhoP binding to promoters with 

different PhoP box submotifs is a determinant promoter 
activity, we compared the gene expression patterns of wild-
type Salmonella harboring plasmids with a transcriptional 
fusion between a promoterless gfp gene to different PhoP-
activated promoters.  Faster GFP expression kinetics were 
observed when transcription was driven by the phoP 
promoter, which has the M2 submotif, than when it was 
driven by the pmrD promoter, which has the M1 submotif, 
(Fig. 2B-C).  Thus, the binding site for a transcriptional 
regulator is a key determinant in gene expression.  
Performance. To evaluate the ability of the resulting models 
to describe PhoP-regulated promoters, we extended the 
dataset by including 772 promoters (RegulonDB V3.1 
database [11]) that are regulated by transcription factors other 
than PhoP (see “Search known transcription factor motifs” in 
gps-tools.wustl.edu), by selecting the promoter region 
corresponding to the respective transcription factor binding 
site ± 10 bp.  We considered the compiled list of PhoP 
regulated genes as true positive examples (Appendix Table 
S1) and the binding sites of other transcriptional regulators as 
true negative examples to evaluate the performance of the 
submotif feature.  We used a leave-one-out crossvalidation 
process (Crossvalind, Matlab r2006a), which is appropriate 
for reduced datasets, as a procedure to estimate the variance 
error on the training set (correct test estimation of 94% vs. 
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75% between submotifs and single position weight matrices, 
respectively).  Then, each matrix threshold has been 
optimized for classification purposes by using the correlation 
coefficient measurement (see below) based on the extended 
dataset (Appendix Table S2).  (See the complete evaluation of 
genomes in gps-tools.wustl.edu).  We found that the PhoP-
binding site model increases its sensitivity from 66% to 91% 
when submotifs are used instead of a single consensus, while 
its specificity went from 98% to 97%  (correlation coefficient 
73% vs. 87%).   

We also obtained substantial improvements for other 
transcription factors from RegulonDB.  For example, by 
considering the CRP regulator, we used 130 promoters 
regulated by this protein in RegulonDB as the true positive 
values and 642 regulated by other proteins than CRP as 
negative examples. We found that the sensitivity of the CRP 
model for binding sites increases from 29% to 50%, by using 
submotifs instead of a single consensus, while the specificity 
remains the same at 98% (correlation coefficient 39% vs. 
62%).  Overall, by considering transcription factors with more 
than ten reported binding sequences in the RegulonDB data 
base (including CRP, Lrp, FIS, IHF, FNR, ArcA, NarL, GlpR, 
PurR, OmpR, TyrR, AraC, Fur, CytR, FruR,Hns, ArgR, 
DnaA, PhoB, and LexA), we could increase the sensitivity in 
an average of 35%, while retain almost the same sensitivity 
than a single position weight matrix (average correlation 
coefficient 87%).  

B. Transcription factor binding site orientation  

Functional binding sites for a transcription factor may be 
present in either orientation relative to the RNA polymerase 
binding site.  This is due to the possibility of DNA looping 
and to the flexibility of the alpha subunit of the bacterial RNA 
polymerase in its interactions with transcriptional regulators 
[9].  Analysis of PhoP-regulated promoters revealed that the 
PhoP box could be found with the same probability in either 
orientation in the intergenic regions of the E. coli and 
Salmonella genomes (Appendix Fig. S7).  For example, the E. 
coli ompT and yhiW promoters and the Salmonella mig-14, 
pipD, pagC and pagK promoters harbor putative PhoP 
binding sites in the opposite relative orientation to that 
described for the prototypical PhoP-activated mgtA promoter 
[1] (Appendix Fig. S2).  Yet other promoters (i.e. those of the 
ybjX, slyB, yeaF genes in E. coli and the virK, ybjX, and mgtC 
genes in Salmonella) contain sequences resembling the PhoP 
box in both orientations.  The demonstration that PhoP does 
bind to the mgtC, mig-14 and pagC promoters [1], which 
harbor the PhoP binding site in the opposite orientation as in 
the mgtA promoter, validates our predictions and argues 
against alternative network designs where these promoters 
would be regulated by PhoP only indirectly [10]. 

To assess the contribution of PhoP box orientation to 
gene expression, we determined the fluorescence of wild-type 
Salmonella harboring plasmids with a transcriptional fusion 
between a promoterless gfp gene to PhoP-regulated promoters 
that differed in the orientation of the PhoP box.  Promoters 
with the PhoP box in the direct orientation, such as those 

corresponding to the yobG and slyB genes, were transcribed 
earlier and faster than the pagK and pagC promoters in which 
the PhoP box is in the opposite relative orientation (Fig. 3A-
C).  This is in spite of the fact that yobG and pagK promoters 
are equally divergent from the PhoP binding site consensus 
(60% and 66% of the consensus information content 
(Appendix Fig. S3), respectively).  Furthermore, promoters 
sharing the same PhoP binding site submotif but arranged in 
different orientations (e.g. the ugd and mig-14 promoters) 
produced distinct rise times and expression levels (data not 
shown).  
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Fig. 2.  The PhoP protein achieves differential expression using the single-
input network motif by controlling genes that differ in their binding site 
submotifs.  (a) PhoP regulates several promoters (i.e. phoP and pmrD) using a 
single-input network motif.  (b) The PhoP protein recognizes a binding site 
motif consisting of a hexameric direct repeat separated by 5 bp, but 
distinguishes between different submotifs with different specificities.  We 
identified four of these classes (M1- M4; Appendix Fig. S3), and tested the 
influence of this cis-feature in the phoP and pmrD Salmonella promoters 
corresponding to class M2 and M1, respectively.  (c) Transcriptional activity of 
wild-type Salmonella harboring plasmids with a transcriptional fusion 
between a promoterless gfp gene and the Salmonella phoP (red color) or 
pmrD (blue color) promoters.  The activity of each promoter is proportional to 
the number of GFP molecules produced per unit time per cell 
[dGi(t)/dt]/ODi(t)], where Gi(t) is GFP fluorescence from wild-type 
Salmonella strain 14028s culture and conditions described in Methods, and 
ODi(t) is the optical density.  The activity signal was smoothed by a 
polynomial fit (sixth order).  Faster and earlier GFP expression was observed 
when transcription was driven by the phoP promoter, which has the M2 
submotif, than by the pmrD promoter, which has the M1 submotif. 

C. RNA polymerase site 

The distance of a transcription factor binding site to the RNA 
polymerase binding site(s) and the class of sigma 70 promoter 
are critical determinants of gene expression [9].  These classes 
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correspond to the different types of contacts that can be 
established between a transcription factor and RNA 
polymerase. We identified seven patterns among PhoP-
regulated promoters of E. coli and Salmonella (Appendix Fig. 
S2) that combine promoter class and distance between the 
PhoP box and the RNA polymerase site (Appendix Fig. S5).  
These patterns may correspond to different kinetic behaviors 
within a network motif [9].  For example, the ugtL and pagC 
promoters share the orientation of the PhoP box but differ in 
the distance of the PhoP box to the RNA polymerase binding 
site (Fig. S4A-B).  This may account for the different dynamic 
behavior of these promoters when tested in a wild-type strain 
harboring plasmids with promoter fusions to the promoterless 
gfp gene (Fig. S4C).  In addition, some PhoP-regulated 
promoters (e.g. the hemL and phoP promoters of E. coli) 
contain several putative RNA polymerase binding sites 
located at different positions and belonging to different 
classes, suggesting that such promoters may be regulated by 
additional signals and/or transcription factors [2]. 
Performance.  The RNA polymerase site feature was 
evaluated using 721 RNA polymerase sites from RegulonDB 
as positive examples and 7210 random sequences as negative 
examples.  We obtained an 82% sensitivity and 95% 
specificity for detecting RNA polymerase sites.  These values 
provide an overall performance measurement (see below) of 
92% corresponding to a false discovery rate <0.001 and a 
correlation coefficient of 82%.  In addition, we selected 34 
examples of RNA polymerase sites reported to be of class  II, 
which all differ from the typical class I promoter by exhibiting 
a degenerate -35 sequence motif [2, 9], and obtained 74% 
sensitivity and 95% specificity. 

D. Binding sites for other transcription factors. 

Certain promoters harbor binding sites for more than one 
transcription factor.  This could be because transcription 
requires the concerted action of such proteins, or because the 
promoter is independently activated by individual 
transcription factors, each responding to a distinct signal. We 
analyzed the intergenic regions of the E. coli and Salmonella 
genomes for the presence of binding sites for 54 transcription 
factors [11].  We then investigated the co-occurrence of 24 
sites with the binding site of the PhoP protein in an effort to 
uncover different types of network motifs involving PhoP-
regulated promoters.  For example, the Salmonella pmrD, ugd 
and yrbL promoters and the E. coli yrbL promoter harbor 
PhoP- and PmrA-binding sites, consistent with the 
experimentally-verified regulation by both the PhoP and 
PmrA proteins that can be described by the bi-fan network 
motif [1, 12] (Fig. 4A).  In addition, the relative position of 
transcription factor binding sites (Appendix Fig. S6D) can 
play a critical role because the PmrA-box in the Salmonella 
pmrD and yrbL promoters is located closer to the PhoP-box 
(~38 bp and ~24 bp, respectively) than in the udg promoter 
(~65 bp), which could account for the different expression 
patterns exhibited by their respective genes (Fig. 4B-C).  By 
analyzing both the binding site quality and the location of 
transcription factor binding sites, we increase the chances of 

identifying co-regulated promoters. By considering the 
presence of binding sites for multiple transcription factors, it 
is possible to generate hypotheses about potential network 
motifs. This notion was experimentally verified [1], validating 
our prediction.   

III. MATERIALS  AND  METHODS  
Our method consists of three phases (Appendix Fig. S1): first, 
encoding the available information into preliminary model-
based features, which includes identifying cis-features from 
DNA sequences and information from available databases; 
performing initial modeling of each individual feature, 
allowing the process of multiple occurrences of a feature and 
using relaxed thresholds and permitting missing values.  A 
model-based feature is generated by the identification of a 
feature in a subset of observations (F) in the dataset, based on 
measuring the degree of match (Q) between an observation 
and a model, or a family of models (M={ }), at some 
degree (

αM
α) defined in a unit-interval scale (i.e., fuzzy values, 

Q(F, )) [13-15].  Second, grouping the results into 
subsets, thus, decomposing the preliminary models into a 
family of models or building blocks by using fuzzy clustering.  
Third, combining the same or different types of features by 
using fuzzy logic expressions and describing new promoters 
using the resulting models.   

αM

A. Dataset  

We initially used the intergenic regions of  E. coli and 
Salmonella operons from -800 to +50 because >5% are larger 
than 800 bp in bacterial genomes (as described in the 
RegulonDB database or generously provided by H. Salgado); 
however, predictions have been performed in whole coding 
and non coding regions (see gps-tools.wustl.edu).  The 
promoter and transcription factor information was taken from 
RegulonDB database.  We compiled from the literature and 
our own lab information (Appendix Table S1) genes whose 
expression (using microarrays) differed statistically between 
wild-type and phoP E. coli strains experiencing inducing 
conditions for the PhoP/PhoQ regulatory system [1], as well 
as a list of genes known/assumed to be PhoP regulated  
(Appendix Table S2).  However, this information did not 
explicitly indicate whether these genes were regulated directly 
or indirectly by the PhoP protein.  The learned features were 
used to make genome-wide predictions in the E. coli and 
Salmonella genomes. 

B. Binding site submotifs and orientation 

(1) We built an initial model for the PhoP binding site by 
learning a position weight matrix  (E-value < 10E-12) based 
on the upstream sequences of genes corresponding to the 
training set of the E. coli and Salmonella genomes (Appendix 
Table S1).  (2) We searched the intergenic regions of the 
genes in both orientations, using low thresholds 
corresponding to two standard deviations below the mean 
score obtained with the initial model [16].  Multiple PhoP 
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binding site candidates were allowed in a given promoter 
operator region.  (3) After transforming nucleotides into 
dummy variables, we grouped sequences matching the PhoP 
position weight matrix using the fuzzy C-means clustering 
method with the Xie-Beni validity index (see below) to 
estimate the number of clusters [5]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.  Expression of PhoP-regulated promoters that differ in the orientation 
of the PhoP-binding site.  (a) PhoP regulates a set of promoters including 
those of the Salmonella yobG, slyB, pagK and pagC genes using a single-
input network motif.  (b) We established that when Salmonella experiences 
low Mg2+, the PhoP protein binds to both the archetypal directly oriented 
yobG and slyB promoters as well as the oppositely oriented pagK and pagC 
promoters using chromatin immunoprecipitation (ChIP) in vivo. (c) 
Transcriptional activity of wild-type Salmonella harboring plasmids with a 
transcriptional fusion between a promoterless gfp gene and the Salmonella 
yobG (red color) or slyB (green color) promoters reveals a much earlier an 
higher levels of activity than the isogenic strains with fusions to the pagK 
(blue color) and pagC (cyan color) promoters.  Promoter activity was 
determined as described in the legend to Fig. 2.  Thus, the orientation of the 
binding site for a transcriptional regulator contributes to the kinetic behavior 
as well as the maximum expression levels achieved by the promoters. 

(4)  We built models for these clusters using position weight 
matrices (E-value < 10E-22) and searched the E. coli and 
Salmonella genomes to characterize each gene according to its 
similarity to each model as a fuzzy partition (Appendix Fig. 
S2 and S2).   

C. RNA polymerase sites 
 (1) We gathered sigma 70 class I and class II promoters [11] 
from the RegulonDB database.  Then, we built models of the 
RNA polymerase site using a neuro-fuzzy method (see HPAM 
in gps-tools.wustl.edu [17]), and used the resulting models to 
perform genome-wide descriptions of the intergenic regions 
of the E. coli and Salmonella genomes with a false discovery 

rate <0.001 (see Promoter search in gps-tools.wustl.edu).  (2) 
We used an intelligent parser to differentiate class I and class 
II promoters that evaluate the quality of the -35 motif [9], 
based on fuzzy logic and genetic algorithms techniques (see 
MOSS in gps-tools.wustl.edu [18]).  (3)  To characterize the 
distance relationship between transcription factors binding 
sites and RNA polymerase binding sites, we built models of 
such distances from the examples reported in the RegulonDB 
database.  (3.1) We modeled activated and repressed 
promoters (see below Activated or repressed feature).  (3.2) 
We re-built histograms for each group of distances (i.e. 
activated and repressed), distinguishing three overlapping 
distributions for each of them (Appendix Fig. S5).  (3.3) We 
built models for distances by fitting their distributions into 
models based on fuzzy membership functions, which were 
termed close, medium and remote distances for each set of 
activated and repressed genes.  Finally, to characterize the 
distance relationship between the PhoP box and putative RNA 
polymerase binding site, we connected (2) and (3) by using 
fuzzy logic-based operations (see below).  
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This process allowed us to retrieve the most 
representative RNA polymerase binding site candidates for 
each promoter region relative to the PhoP binding site (e.g., 
best class II RNA polymerase site, which is located close to 
the PhoP box in an activated promoter), which were arrayed 
and constituted the value of the RNA polymerase site feature 
in Appendix Fig. S2.   

D. Binding sites for other transcription factors  

We developed models for different transcription factor 
binding sites from the RegulonDB database as follows: (1) 
We built position weight matrices for each transcription factor 
using the Consensus/Patser program, choosing the best final 
matrix for motif lengths between 14-30 bps if the 
corresponding length had not been previously specified (see 
“Consensus matrices” in gps-tools.wustl.edu).  We accounted 
for the motif symmetry (e.g., asymmetric, direct, inverted 
[11]) if available (see “Search known transcription factor 
motifs” in gps-tools.wustl.edu).  (2) We searched the 
intergenic regions of the E. coli and Salmonella genomes with 
these models, using the overall performance measure (see 
below) and additional 772 promoters from the RegulonDB 
database [11] to establish a threshold (average E-value < 10E-
10) for each matrix [19]  (see “Threshold consensus” in gps-
tools.wustl.edu). (3) We accounted for the distances between 
distinct transcription factor binding sites occurring in the same 
promoter region (e.g., the distance between the CRP and FIS 
sites in the proP promoter) in promoters reported in 
RegulonDB database and built a histogram with the obtained 
results (Appendix Fig. S6D).  (4) We fitted the histogram 
using a fuzzy membership function (see below) and used this 
model as a fuzzy cluster to characterize the distances between 
a putative PhoP box and another putative transcription factor 
binding site detected in the same region.  (5) Finally, we 
connected (2) and (4) by using fuzzy logic-based operations 
as described above to characterize PhoP regulated candidates 
promoters.   
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Fig. 4.  Expression of PhoP-regulated promoters that use the bi-fan network 
motif.  (a)  The Salmonella pmrD, and ugd promoters harbor experimentally 
verified PhoP- and PmrA-binding sites that can be described by the bi-fan 
network motif.  (b) The distance between the PhoP and PmrA boxes in the 
Salmonella pmrD and ugd promoters are different (~38 bp and ~65 bp, 
respectively).  (c) Transcriptional activity of wild-type Salmonella harboring 
plasmids with a transcriptional fusion between a promoterless gfp gene and 
the Salmonella pmrD and ugd promoters.  Promoter activity was determined 
as described in the legend to Fig. 2.  The two promoters confer different 
expression and kinetic patterns.   

E. Fuzzy logic expressions  

Propositional calculus logic expressions can be extended by 
incorporating predicates having fuzzy variables, which are 
manipulated using various theorems/axioms and methods.  
This approach, which has been widely used in several fields 
including decision-making, artificial intelligence and 
electrical engineering for many years, was applied to model 
related features that describe different regulatory objects.  
Thus, given a dataset , the feature that 
characterizes it can be best described as a set 

, where {

( )
{ }nnn xddMINxddMIN

FFMINFFXFANDXF
/),(,...,/),(

),()(

2112111

212121 ==∩=  

Fuzzy logic-based operations, such as T-norms/conorms, 
include operators like MINIMUM, PRODUCT, or 
MAXIMUM, which are used as basic logic operators, such as 
AND or  OR, or their set equivalents INTERSECTION or 
UNION [5].  We used in this work the Minimum and 
Maximum as T- and Tconorms, respectively.  

F. Fuzzy membership functions  
They can be viewed as approximation of data distributions, 
where the degree of matching in the [0,1] scale is calculated 
using triangular functions. These functions were learned from 
the projection of the histograms onto the variable domains 
(Fig.  S4) by simple regression and minimum squared 
methods [20].   

{ }xxX ,...,=

( ) { }xdxdXF /,...,/= }

n1

nn11111 { }1,0,..., 111 ∈ndd
0,1]

 in 
classical set theory and [  in fuzzy set theory.  These fuzzy 
values represent the degree of matching between an 
observation of the dataset and a fuzzy set.  The degree of 
matching is defined in the unit interval and can be obtained 
from evaluating the membership function of the 
corresponding fuzzy set (see below).  Then, given 

G. Performance Measurement  

We use a correlation coefficient implementation to establish 
best local thresholds for transcription factor binding site 
motifs.  That is, from a range of possible thresholds applied 
over a particular motif, we choose the one that maximizes this  
coefficient defined as: 

 
)()()()(

)()(
FPTNFNTPFNTNFPTP

FNFPTNTPCC
+×+×+×+

×−×
= , 

where specificity = TN/(TN + FP) and sensitivity = TP/(TP + 
FN); P= positive, N=negative, T = true and F=false [19].  
We constrained the sensitivity of the selected threshold to be 
above the 60%.  The false positive rate for binding site 
analysis was calculated by detecting binding sites from other 
transcription factors different from the one being evaluated 
(RegulonDB database).   

IV. CONCLUSIONS  

We demonstrated that a transcription factor can mediate 
differential expression of genes that are described even by the 
same network motif.  This is because of the functional 
significance of variability in sequence, location and topology 
that exists among promoters that are co-regulated by a given 
transcription factor.  We developed a flexible computational 
framework to encode and to combine these promoter features, 
which allows matching of cis-observations to multiple models 
for a given promoter feature.  This enables the description of 
regulatory elements from different angles and the generation 
of composite models that can be used to explain the different 
kinetic behavior of co-regulated genes. 

Finally, unlike regulators such as the LacI and MelR [1] 
proteins of E. coli that govern expression of single promoters, 
many transcriptional regulators control multiple promoters 
that express products required in different amounts or for 
different extents of time.  This is clearly the case for the 
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regulatory protein PhoP, which controls transcription of a 
large numbers of genes, that can be described by a variety of 
network motifs (Fig. 1).  Our finding argues that 
understanding a cell’s behavior in terms of differential 
expression of genes controlled by a transcription factor 
requires a detailed analysis of a promoter’s regulatory 
features.  As a single nucleotide difference in the binding site 
for a transcription factor can dictate the requirement for co-
activator proteins [21], we feel that by considering multiple 
models (as opposed to the relying on consensuses) it will be 
possible to uncover subtle differences between regulatory 
targets and to capture the salient properties of co-regulated 
promoters. 

APPENDIX 
Additional text, methods, tables and figures are available 
online at gps-tools2.wustl.edu/IEEE-FUZZY07/Appendix_ 
IEEE. pdf. 
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