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Abstract. In this work, we get focused on the use of statistical tech-
niques for behavior analysis of Artificial Neural Networks in the task of
classification. A study of the non-parametric tests use is presented, using
some well-known models of neural networks. The results show the need
of using non-parametric statistic, because the Artificial Neural Networks
used do not verify the hypothesis required for classical parametric tests.

1 Introduction

Nowadays, statistical validation of published results is an important task [3].
Due the increasing number of real-world applications and frameworks for Ma-
chine Learning (ML), developing and modifying new algorithms is relatively easy.
However, every development made must be exposed in front of existing work.
The question then is, how could we compare and rank them? and much more
important, is our comparison right made? Usually, we can’t demonstrate which
algorithm is better by theoretically, and we only counting on empirical results
to achieve this goal.

In a typical paper of ML, and Artificial Neural Networks (ANNs) by extension,
a new algorithm or improvement has been proposed, and there exists an implicit
hypothesis that such an enhancement yields an improved performance over the
existing algorithm(s). A number of data sets is selected for testing, the algorithms
are run over them and the quality of the resulting models is evaluated by means
of an appropriate measure (commonly, the classification accuracy). The final
step, and the topic we want to show, is the use of statistical tests which really
suits the initial conditions.

In fact, a low proportion of publications uses statistical techniques to compar-
ing the obtained results. However, their presence is growing notoriously, and most
of reviews claim for their use. When we found statistical studies, they are based
on the mean and variance, using parametrical tests (ANOVA, t-test,...)[1,2,4,12].

In this work, we will focus on the use of statistical techniques for the analysis of
ANNs in classifications tasks, studying the use of parametric and non-parametric
statistical tests [8,11]. Indeed, we analyze the required conditions which allow the
use of parametric tests, and we will show results obtained using non-parametric
tests.
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To achieve the proposed goals, we will use some well-known models of ANNs
applied to classification of data sets [6,10]. In addition, we will show the results
in which the need of non-parametric statistical is left patent, since used ANNs
don’t verify the initial hypothesis which allow the use of parametric tests.

The remain of the paper is organized as follows. In Section 2, we describe the
ANN models used in the study. Section 3 explores the needed conditions in order
to correctly apply and analyze the parametric tests decision. A presentation of
the non-parametric tests and their experimental use is given in Section 4. Finally,
in Section 5 we reach our conclusion.

2 Preliminaries: Artificial Neural Networks, Data Sets
and Experimentation Framework

In this section, we will briefly describe the algorithms used and the data set
chosen. We also show the details of the experimentation we have done. We have
used the next models of ANNs:

– Multi-Layer Perceptron (MLP) with Backpropagation[6]: This class of net-
works consists of multiple layers of computational units with directed con-
nections to the neurons of the subsequent layer, in a feed-forward way and
which weights are adjusted with backpropagation. As an activation function
the units of these networks apply a sigmoid function . We have used two
configurations for MLP Backpropagation model: MLP Backpropagation 1x5
has 1 hidden layer with 5 perceptrons. MLP Backpropagation 1x25 has 1
hidden layer with 25 perceptrons.

– Radial Basis Function Network (RBFN)[6]: Radial basis functions have been
applied in the area of neural networks as a replacement for the sigmoidal
function. RBF networks have 2 layers of processing: In the first, input is
mapped onto each RBF in the ’hidden’ layer. The number of neurons is
fixed at 50 neurons.

– RBFN Decremental[10]: In the classical approach (see above), the number
of hidden units is fixed a priori. The authors have proposed an algorithm
that adds hidden units to the network based on the novelty of the new data,
and augments it with a pruning strategy (which removes hidden neurons
with little contribution to the output). The configuration used has 20 initial
neurons, alpha value of 0.3 and percent value of 0.1.

We have selected a set of data sets taken from the UCI repository. Altogether,
we have used 7 data sets to make the study. In Table 1, we summarize the
properties of these data sets.

With this data, two kinds of validations have been carried out. In 10-fold
cross validation each data set have been partitioned in ten folds, and iteratively
9 of those are taken to train the ANN, so the last fold is taken for testing the
learning of the network. With Hold out partition at 50% the considered data set
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Table 1. Data Sets used for experimentation

Data set # Instances # Attributes # Classes
breast 682 10 2

cleveland 303 13 5
crx 689 16 2

glass 214 9 7
iris 150 4 3

pima 768 8 2
wisconsin 699 10 2

is divided into two parts with same number of instances. The network uses one
part to train, and the complementary for test. For each type, we have repeated
the experiments 5 times for 10fcv, and 25 times for hold out partitions. In this
way, 50 runs and their respective validations have been carried out, and the tests
results are summarized in Table 2.

Table 2. Results for ANNs used

Using 10-fold cross validation
Method MLP Backprop.-1x25 MLP Backprop.-1x5 RBFN Decremental RBFN
Dataset Mean St. Desv. Mean St. Desv. Mean St. Desv. Mean St. Desv.
Breast 0.96 0.01 0.96 0.01 0.83 0.06 0.86 0.04
Cleveland 0.51 0.07 0.49 0.10 0.35 0.09 0.35 0.10
Crx 0.85 0.05 0.82 0.09 0.45 0.02 0.45 0.02
Glass 0.50 0.10 0.46 0.14 0.29 0.12 0.37 0.13
Iris 0.74 0.10 0.75 0.13 0.90 0.09 0.86 0.09
Pima 0.74 0.05 0.70 0.09 0.68 0.05 0.62 0.12
Wisconsin 0.97 0.02 0.96 0.05 0.84 0.09 0.86 0.07

Using validation by hold out partition
Method MLP Backprop.-1x25 MLP Backprop.-1x5 RBFN Decremental RBFN
Dataset Mean St. Desv. Mean St. Desv. Mean St. Desv. Mean St. Desv.
Breast 0.97 0.01 0.97 0.01 0.82 0.07 0.83 0.05
Cleveland 0.53 0.04 0.48 0.08 0.33 0.08 0.37 0.11
Crx 0.84 0.05 0.82 0.08 0.47 0.05 0.47 0.03
Glass 0.48 0.05 0.49 0.08 0.29 0.08 0.33 0.09
Iris 0.78 0.06 0.79 0.07 0.89 0.07 0.84 0.06
Pima 0.71 0.02 0.69 0.06 0.65 0.05 0.62 0.10
Wisconsin 0.97 0.01 0.97 0.00 0.84 0.09 0.86 0.07

3 Study on the Basic Conditions for Parametric Tests
Using Artificial Neural Networks

In this section we will analyze the needed conditions which allow parametric test
usage, and their fulfillment referred to the data sets and algorithms used.

In [8], the distinction between parametric tests and non-parametric tests is
based upon measure level used over analyzed data. In such way, a parametric test
use data in a real values contained in an interval. Although we dispose of that
kind of values, a parametric test cannot be always used. It is possible that some
initial suppositions are not fulfilled, resulting in loss of accuracy and credibility.
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Therefore, in meanings of using parametric test, the fulfillment of these initial
conditions is required[8,11]:

– Independency: Two events are independent if the occurrence of the first does
not affect to the probability of the occurrence of the second.

– Normality: A observation is normal when its behavior follows a normal dis-
tribution with mean μ and variance σ. We can apply a normality test over
the sample to verify whether if this condition is accomplished. We will use
the Kolmogorov-Smirnov test. It compares the observed data accumulated
distribution versus expected accumulated distribution from a Gaussian dis-
tribution, obtaining a p value based on the lack of similarity between them.

– Heteroscedasticity: This property indicates that a violation of the equality
of variances exists. Levene’s test is used to verify if k samples show this
homogeneity. When sampled data does not verify normality condition, it is
safer using Levene’s test than Bartlett’s one[11], which it is another test to
check the same property.

As Demšar points out in [3], independency is not truly verified in 10-fold
cross validation (since a portion of data set could be used either for training
and testing in different partitions). Hold out partition can be safely taken as
independent, since training and test partitions does not overlap.

We have applied the Kolmogorov-Smirnov test of normality with error prob-
ability p = 0.05 (we have used SPSS) for both 10fcv and hold out partitions.
Table 3 shows the results, where the symbol ‘*’ points out that normality is not
verified. The value in parenthesis is the p value of confidence needed to reject
hypothesis of normality.

Table 3. Results for Kolmogorov-Smirnov test

10-fold cross validation
Breast cleveland crx glass iris pima wisconsin

MLP backpropagation-1x25 * (.00) * (.02) * (.04) (.20) * (.00) * (.00) * (.00)
MLP backpropagation-1x5 * (.00) (.20) * (.00) (.20) * (.00) * (.00) * (.00)
RBFN Decremental * (.00) (.05) * (.00) (.08) * (.00) (.20) * (.00)
RBFN * (.00) * (.04) * (.00) (.20) * (.00) * (.00) * (.00)

Hold out partition
Breast cleveland crx glass iris pima wisconsin

MLP backpropagation-1x25 (.06) (.20) * (.00) (.05) * (.01) (.20) * (.00)
MLP backpropagation-1x5 * (.00) * (.00) * (.00) * (.00) (.20) * (.00) (.20)
RBFN Decremental * (.02) (.20) * (.00) (.20) * (.00) (.14) * (.00)
RBFN * (.01) * (.01) * (.00) * (.01) * (.00) * (.00) * (.01)

Referred to heteroscedasticity study, Table 4 shows results of Levene test
for 10-fcv and hold out partitions, where the symbol ’*’ points out the vari-
ances of the distributions of the algorithms for a given data set which are not
homogeneous.
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Table 4. Results for Levene’s test

Breast cleveland crx glass iris pima Wisconsin
Levene 10-fcv * (.00) (.15) * (.00) (.10) (.16) * (.00) * (.00)

Levene Hold-out * (.00) * (.00) (.13) * (.01) (.26) * (.00) * (.00)

Finally, we can confirm that no conditions needed for parametric tests are
verified:

1. Independency: As we have mentioned before, the use of 10-fold cross valida-
tion does not ensure independency of the results for each partition. However,
hold out partition does, and [3] shows the most suitable partitions to avoid
high Type I error rates.

2. Normality: The most of the Kolmogorov-Smirnov tests have shown that nor-
mality is not a common property of the experiments. For this reason, we
cannot assume the presence of normality in our experiments.

3. Heteroscedasticity: In a very similar way than normality, heteroscedasticity
is not a property we can expect finding in our experiments, due the low
proportion of cases which fulfills the test.

An alternative of these are the non-parametric tests [3]. The majority of them
are based on the ranking of the algorithms and the data sets used for evaluation.

4 On the Use of Rank-Based Non-parametric Tests: A
Short Experimental Study

In this section, we briefly introduce non-parametric tests used and we present
an experimental study using the four algorithms.

A non-parametric test is such that uses nominal data, ordinal data or ranked
data. However, this does not mean that other data types cannot be used. It could
be interesting to transform real data from an interval into ranked data by means
of their order, so non-parametric tests can be applied on data which is typically
used by parametric tests (when conditions for parametric tests application are
not verified). Usually, a non-parametric test is less restrictive than parametric
one, but less robust than a parametric test applied over data which verifies all
needed conditions.

Next, we show the basis of each non-parametric tests used in this study:

– Friedman test [8], which is a non-parametric test equivalent of the repeated-
measures ANOVA. Under the null-hypothesis, it states that all the algorithms
are equivalent, so a rejection of this hypothesis implies the existence of dif-
ferences among the performance of all the algorithms studied. After this, a
post-hoc test could be used in order to find whether the control or proposed
algorithm presents statistical differences with regards to the remain of meth-
ods into the comparison. One of them is the Bonferroni-Dunn test.
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Friedman test way of working is described as follows: It ranks the algo-
rithms for each data set separately, the best performing algorithm getting
the rank of 1, the second best rank 2, and so on. In case of ties average ranks
are assigned.

Let rj
i be the rank of the j-th of k algorithms on the i-th of N data sets.

The Friedman test compares the average ranks of algorithms, Rj = 1
N

∑
i rj

i .
Under the null-hypothesis, which states that all the algorithms are equivalent
and so their ranks Rj should be equal, the Friedman statistic:

χ2
F =

12N

k(k + 1)

[∑
jR2

j − k(k + 1)2

4

]

(1)

is distributed according to χ2
F with k − 1 degrees of freedom, when N and k

are big enough (as a rule of a thumb, N > 10 and k > 5).
– Iman and Davenport test [5], which is a non-parametric test, derived from

the Friedman test, less conservative than the Friedman statistic:

FF =
(N − 1)χ2

F

N(K − 1) − χ2
F

(2)

which is distributed according to the F-distribution with k − 1 and (k −
1)(N − 1) degrees of freedom. Statistical tables for critical values can be
found at [8,11].

– Bonferroni-Dunn is a post-hoc test that can be used after Friedman or Iman-
Davenport tests when they reject the null hypothesis. It is similar to the
Tukey test for ANOVA. This method assumes that the performance of two
classifiers is significantly different if the corresponding average ranks differ
by at least the critical difference:

CD = qα/

√
k(k + 1)

6N
(3)

qα value is the critical value Q′ for a multiple non-parametrical comparison
with a control (see Table B.16 in [11]).

4.1 Experimental Study: Results and Analysis

In Table 5 we show the result of applying the tests of Friedman and Iman-
Davenport, which search for differences in the results. In bold appears the greater
value of the compared ones, and if it is the statistical then the null hypothesis is
rejected. In our case, both Friedman and Iman-Davenport tests indicate the ex-
istence of significant differences between results of 10fcv and hold out validation.
Due to these results, a posteriori statistical analysis is needed. In Figures 1 and
2 we show the application of Bonferroni-Dunn test. These graphics represent a
bar chart, which height is proportional to the mean rank obtained from each
algorithm. If we sum to the lower of those (the best algorithm) the Critical Dif-
ference value (CD value), we obtain a horizontal line (denoted as ”Threshold”),
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Table 5. Results for Friedman and Iman-Davenport tests

Method Friedman Value Value of χ2 Iman-Davenport Value FF Value
10fcv 9.686 7.815 5.136 3.160

Hold out 8.657 7.815 8.657 3.160

Fig. 1. Bonferroni-Dunn for 10fcv Fig. 2. Bonferroni-Dunn for hold out

and those bars that exceeds this line are algorithms with significantly worse
results than the control algorithm (associated with the lowest bar).

As we can see, in Figures 1 and 2, results for 10 fold-cross validation are not
the same for both ANN models used: behavior of RBFN based ANNs is different
from MLP with Backpropagation-1x25 (the equivalence of means hypothesis
is rejected), and MLP with backpropagation-1x5 cannot be distinguished with
p = 0.05. In the same way, for hold-out, both tests do not find differences between
the algorithms with p = 0.05.

A further analysis of all results allows us to conclude:

– Observing Figures 1 and 2, the RBFN networks show a behaviour very differ-
ent from MLP backpropagation. Bonferroni-Dunn test considers the results
enough away from themselves in order to detect significant differences among
them.

– The greatest differences are found when using a 10 fold cross validation.
Using hold out partition and p = 0.05 we cannot assume the existence of
differences.

– The worst algorithm, RBFN Decremental, is the last in Bofferoni-Dunn as
we could expect.

– However, MLP backpropagation-1x25 always computes as the best,
Bonferroni-Dunn test does not consider that there exist differences with
MLP backpropagation-1x5 in any case, with p = 0.05.

5 Conclusions

The present work studies the use of statistical techniques for analysis of ANNs in
classification problems, and a further analysis of parametric and non-parametric
tests.
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The need of using non-parametric tests is pretty clear when analyzing ANNs
for classification, since initial conditions required for safe results from parametric
tests are not met.

On the use of non-parametric tests, we have shown that Friedman, Iman-
Davenport and Bonferroni-Dunn are a good set of tools for testing algorithms.

Indeed, there exist more powerful tests than Bonferroni-Dunn test, i.e. Holm,
Hommel and Hochberg test. We can find an example of use of them in [7]. Regard-
ing to the comparison by pairs, the Wilcoxon test may be a good election [9].
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