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Abstract

It is widely admitted that any experimentation in
Genetic Machine Learning must be accompanied
by a suitable statistical test. When making pairwise
comparisons, a de facto standard is testing that the
expectation of the differences between the empirical
errors of the algorithms being compared is not null.
A t-test is used if the gaussian assumption holds, or
a non parametric test otherwise.

But, when multiple comparisons are needed,
there is not such an agreement in the methodology
that one must follow. In this work we survey the
most relevant bibliography in this area and also out-
line some conclusions on our own, about the power
and Type I error estimations of the best approaches.
Our recommendations will be based on an exten-
sive empirical analysis, where synthetic data (and,
therefore, with known theoretical properties) was
used, so that all possible configurations of the null
hypothesis are accounted.

1 Introduction

There are many papers in Evolutionary Machine
Learning literature showing comparisons between
several algorithms. Often, the authors compare their
own method with the most relevant ones. As stated
in [8], there are different factors that make the use
of a statistical test mandatory in this kind of com-
petition: the error metric employed, the election of
training and test sets and the nature of the algorithm
when this is not deterministic. A typical experimen-
tation in Evolutionary Machine Learning is driven
by questions similar to the following ones:

• Is the proposed algorithm the one with the
least medium error?

– If so, are the differences with the other
algorithms statistically significant? If
they are, the proposed algorithm is the
best among the analyzed.

– If the differences with the best of the
other algorithms are not statistically sig-
nificant, the proposed algorithm has
equivalent error to those algorithms.

• If the proposed algorithm is not the one with
the least medium error,

– Are the differences with the best algo-
rithms statistically significant? If not, the
proposed algorithm is equivalent (in er-
ror) to the best one.

– Otherwise, we can conclude that the pro-
posed algorithm is not the best one.

This sequence of steps involves a composite as-
sert, comprising the simultaneous comparison of an
algorithm with every other one. This leads to some
kind of mean comparison test and a Multiple Com-
parison Procedure (MCP) [11, 13].

1.1 MCP test in evolutionary Machine Learning

In particular, the study here presented addresses
those experiments that consist on solving a prob-
lem (chosen from the usual catalog in the literature
of this area [2]) using an implementation of an al-
gorithm, with the goal of determining which is the
one with the lowest error. In the following, the ex-
perimental design is given by the set of problems
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to solve, the measurements performed, the imple-
mentation details and the context of experiment re-
alization [3]. It is remarked that there is not consen-
sus in the Evolutionary Machine Learning commu-
nity about which are the statistical test and the ex-
perimental designs to use in the papers of this area
[8, 15, 19, 23] and some argue that frequently the
data lacks of one or more of the properties needed
to apply a given test [4, 19]. Even more, when sev-
eral algorithms are compared [16], this implies the
use of specific statistical test [11, 13]. Additionally,
some researchers argue that it is impossible to ex-
tract conclusions about the performance of a given
algorithm from the data sets used normally [12].

Apart from these considerations, it is widely ac-
knowledged that a suitable test must be included in
every experimentation involving more than two al-
gorithms. However, the use of MCP tests in Evo-
lutionary Machine Learning is not so widespread as
it is in other research areas (e.g. analysis of clin-
ical trials.) Nevertheless, in order to make a bib-
liographic study we can make use of the method-
ologies used in these areas [5], because the exper-
iments are similar. Therefore, we have conducted
a review of the most relevant literature in statisti-
cal tests, which we will try to apply to Evolution-
ary Machine Learning experiments. We have payed
special attention to the verification of the parametric
conditions of the data, in order to use the correct test
in each situation, as proposed in [19, 20] or, alterna-
tively, employ a bootstrap technique to empirically
obtain the distribution of the statistics [21, 22].

1.2 Summary

The exposition is organized in three parts. In Sec-
tion 2, the taxonomy of the most relevant MCP’s
is done. In Section 3, the application of this kind
of test to Evolutionary Machine Learning experi-
ments is explained. Finally, in Section 4 an empir-
ical study of a selection of this tests is done, using
multifold cross validation experimental setup in a
synthetic problem with known solution. Some con-
clusions about the power and Type I error estima-
tions follow this point. The experiments follow the
technique proposed in [9] where all configurations
of truth (or Null Hypothesis) are tested. This is im-
portant because of the behavior of a test may depend
on how many of the algorithms tested actually have

equivalent or different mean test error.

2 Multiple Comparisons Procedures, bib-
liographic survey.

There are some books devoted to this topic [11, 13]
even in conjunction with resampling [22]. In these
books can be found most of the MCP’s commented
here. There are also some review articles as [6,
7, 17, 18] focused in MCP’s. In the Evolutionary
Machine Learning area, the most remarkable cite is
[14] and outside of this area but with application (it
belongs to area of clinical trials) is [5].

The researcher willing to compare his own
method with the most relevant in the state of the
art, can employ a series of simultaneous Hypothe-
sis Testing, if r is the number of algorithms:

H0i : μ1 = μi

H1i : μ1 �= μi

i ∈ 2..r

where the algorithm with index equal to 1 is com-
pared with the following r − 1 algorithms.

The important thing is that the researcher wishes
to assess (with a low probability of making a mis-
take) something like "algorithm 1 has different
mean error than algorithm 2, but it is equivalent
to 3, ...etc", that is, an affirmation composed of si-
multaneous individual assertions about the result of
each test. In this situation, when simultaneous hy-
pothesis testing is done, the multiplicative effect of
Type I error appears: if Type I error (reject null
hypothesis when it is true, in our case, find dif-
ferences when there are not such) probability is
α, the probability of no mistake in the n tests are
(1 − α)n, then the probability of at least one mis-
take is αt = 1− (1−α)n. This effect, well known
in Statistics [11, 13] it’s usually ignored in Evo-
lutionary Machine Learning literature [19]. There
are two classic alternatives to overcame this effect,
originally proposed by Fisher, the so called "two-
step methods", the "one-step methods" along with a
more recent third class called "multi-step methods"
[11] or "sequential methods".

Alternatively, the methods can be classified in-
volving the nature of the testing being performed,
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Figure 1: Graphic representation of statistical test se-
quence to be applied depending on the parametric condi-
tions satisfied.

all with all, all with the best, all against a
control,...[13].

2.1 Two-step methods.

Two-step methods try to protect the MCP against
Type I error performing first an F test (analysis
of variance or the non-parametric counterpart). In
this first stage, the null hypothesis is that there are
no statistically significant differences in the results.
The alternative hypothesis is that at least there are
two algorithms that have different mean error. If
there are r experiments in total:

H0 : μ1 = μ2 = ... = μr

H1 : μi �= μj for some i, j ∈ 1..r

It is necessary to verify the parametric conditions
of the data in order to decide which is the sequence
of test to be applied, as shown in Figure 1. In this
work, independence between samples is assumed.

If the null hypothesis is rejected (there are sta-
tistically significant differences), then the proposed
algorithm is compared with the others, using the
same confidence level as in the previous test. For
each rejected hypothesis, it is assumed that a differ-
ence has been found. If the null hypothesis is not re-
jected, then no additional test is performed and the
conclusion is that there are no differences between
the algorithms being compared. Fisher LSD (Least
Significant Difference) test belongs to this kind of
procedure [4].

It is important that the protection against Type
I error occurs only under the null hypothesis, that
is, if there are no differences at all, the probability
to erroneously reject the null hypothesis equals the

significance level of the first test. But if there are
some differences, the probability of erroneously re-
ject at least one true null hypothesis will exceed that
level. Note that this means to find differences that
doesn’t exist. This is called to protect the test in the
weak sense [11, 13].

2.2 One-step methods.

One-step methods account for multiplicity of the
Type I error and adjust the significance level of each
individual test (or the corresponding p-values) with
the aim that the MCP Type I error does not exceed
the desired value. If the significance level of the
MCP is αt, then for each individual test the level
can be fixed at α = 1 − (1 − αt)

1/n (being n the
number of comparisons), known as Dunn-Sidák ad-
justment. If (1 − α)n is approximated by 1 − nα
then α = αt/n, known as Bonferroni adjustment.
This adjustments guard the MCP against Type I er-
ror in strong sense, that is, in all possible configura-
tions of true and false null hypothesis [11, 13].

2.3 Sequential methods.

The power of a statistical test (one minus Type II
error probability, failing to reject a null hypothe-
sis when it is false) decreases as α decreases too.
Because of this, one-step methods tend to be con-
servative [11, 13]. Sequential methods try to over-
came this problem by sequentially adjust the level
of the individual test. The idea behind this is as
follows, the p-values are ordered (from greater to
smaller or vice versa, depends on the method), then
the Bonferroni or Dunn-Sidák adjustment is applied
and a new MCP is constructed, possibly extract-
ing one of the individual test. Because the new
MCP has less hypothesis, the effect of p-value ad-
justment is smaller. To this class of test belong
Holm method, Simes-Hochberg method or Hommel
method. These tests protect against Type I error in
the strong sense and their power does not decrease
as much as one step method does.

Finally, in Evolutionary Machine Learning ex-
periments, not only it is important to control the
Type I error probability, it is important to control
the number of true null hypothesis incorrectly re-
jected, controlling the False Discovery Rate (FDR).
In some works after the seminal work [1], tech-
niques to control the number of incorrectly rejected
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hypothesis are proposed [11, 13].

3 MCP’s in Evolutionary Machine Learn-
ing experiments.

In the context of this work, it must be explained
how MCP’s are employed to answer the questions
pointed in section 1.
We need to obtain a sample of mean error from
each algorithm tested, solving a known problem.
Given the size of standard datasets (e.g. [2]) this im-
plies the use of cross-validation or resampling ex-
perimental designs. In this work we consider only
cross-validation, in order to minimize the overlap-
ping of train sets between samples [8, 19].
The researcher must decide then how to protect the
MCP against Type I error. This leads to perform a
previous F type test or a p-value adjustment.

If the researcher performs a previous F test, then
it is necessary to carefully test if the parametric con-
ditions of a given test are fulfilled. In Figure 1 are
shown the corresponding F test to each set of para-
metric conditions, lack of independence is not con-
sidered here. If the null hypothesis of the F test is
rejected, then there are statistically significant dif-
ferences in the mean samples. In this case, a test
of means comparison is performed between the al-
gorithm proposed and each of the competitors. The
significance level of these tests is the same as the F
test. Here it is again necessary to verify the para-
metric conditions of the test applied, as stated in
[20]. In Figure 2 it is shown the sequence of test
to be applied for each set of parametric conditions.
The result of the mean comparison tests performed
is a set of p-values, which size is the number of al-
gorithms being compared minus one. If the corre-
sponding p-value of a given comparison is less than
the significance level chosen, then it is assumed that
a statistical significant difference exist between the
corresponding algorithms. In this point, the answers
to the questions pointed in Section 1 can be found:

• If the proposed algorithm has the least mean
error:

– If the null hypothesis of the F test is re-
jected and also the null hypothesis of the
test (means comparison between this al-
gorithm and the best of the others,) then
the proposed algorithm is the best.

No Yes

No

Test F

Same means?

Equal variances?

t different variances t equal variances

Normally
distributed?
Shapiro Wilk

Same medians?

Wilcoxon

Yes

Same means?

Figure 2: Graph of statistical tests used in combination
with k-fold cross validation experimental design.

– If the null hypothesis of the F test is
rejected and not the null hypothesis of
the test, then the proposed algorithm is
equivalent to the best.

– If the null hypothesis of the F test is not
rejected, all the algorithms are equiva-
lent.

• If the proposed algorithm has not the least
mean error:

– If the null hypothesis of the F test is re-
jected and also the null hypothesis of the
test, then the proposed algorithm is not
the best.

– If the null hypothesis of the F test is
rejected and not the null hypothesis of
the test, then the proposed algorithm is
equivalent to the best.

– If the null hypothesis of the F test is not
rejected, all the algorithms are equiva-
lent.

If the researcher does not perform the previous F
test and performs p-value adjustment, he must pick
one of the methods commented. After the applica-
tion of the chosen method, a set of p-values is ob-
tained, and each null hypothesis of the mean com-
parison test can be rejected or not, with a significa-
tion level that is different than the desired α level of
the MCP and guarantees that the type I error of the
MCP is under that value.
Finally, if the aim of the researcher is to control the
number of true null hypothesis incorrectly rejected,
he must pick one of the methods that control the
FDR.
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In these two later situations, the questions stated be-
fore can be also answered, the procedure is similar
to the two-step method, without the previous F test.

4 Empirical analysis.

We are not aware of works where there is a guide
describing the systematic use of MCP’s for com-
paring Evolutionary Machine Learning algorithms.
The most remarkable cite advocating the use of
these tests is [14], but it is not focused in the topics
of this work. In particular, we want to analyze the
dependence between the type I error and the power
vs. the the number of partitions, for different signi-
fication levels. The results of the experiments will
clarify if there are differences that make us to prefer
classical MCP’s or those that adjust the p-values.

4.1 Experiments

The objective of the empirical analysis is, as men-
tioned before, determining the best test for its use
in Evolutionary Machine Learning experiments. In
particular, we will estimate the power and Type I er-
ror of some of the tests commented before, in a typ-
ical Evolutionary Machine Learning test problem.

In the experimentation described in this section
we have compared 10 algorithms, using two of the
tests commented before, each one belonging to one
of the families of MCP’s. Each test was repeated
100 times for each one of the conditions to be com-
pared. In each repetition it is examined if the test
correctly distinguishes all the algorithms with dif-
ferent mean error. The fraction of times that this
happens is an estimation of the power of the test.
Also, in each repetition is examined if the test in-
correctly rejects some of the true null hypothesis,
i.e. it finds inexistent differences. The fraction of
times that this happens is an estimation of Type I
error probability.
In order to test all possible situations that could
happen in a experiment, all possible configurations
of truth are tested, following [9]. This means that
for i ∈ 1 . . . 9 better algorithms, are generated
j ∈ 1 . . . ...9−i algorithms equivalent to the control
(the proposed algorithm) and k = 9−i−j worse al-
gorithms. The total number of truth configurations
for N algorithms being compared is N N+1

2
.

The problem used in the empirical analysis, defined

in [10], consists on a sample of size 500 of a popu-
lation where there are two classes with equal prob-
ability, following a bidimensional normal distribu-
tion. The means are (0, 0) and (2, 0). The covari-
ance matrices are I and 4I , respectively.
The optimal classifier for this problem is quadratic,
but we need to obtain a family of classifiers with
increasing error, from the better ones to the control
and equivalents and to the worse. This is achieved
by corrupting the labels of the test partition with
increasing probability after training with the corre-
sponding partition untouched.
The test to be compared are:

• Holm method [11, 13].

• F test followed by the tests proposed in [20].

Each test is performed at 0.01, 0.05, 0.1 and with
10, 30, 50, 100 partitions.

4.2 Results

The numerical results of power estimation of the
compared tests are shown in table 1, where the
mean of the results of the 100 repetitions of each
combination of significance level and number
of partitions is shown for the whole set of truth
configurations with 10 algorithms being compared
(55 configurations in total). As can be seen, the
power estimation of both tests are similar, but the
power of the modified LSD test is always higher.
In Figure 3 the same data is shown as boxplots, this
aids the reader to compare the mean and dispersion
of the data or the presence of outliers. As can be
seen, Holm’s method exhibits higher dispersion
of power estimation. Modified LSD shows less
dispersion but outliers appear on right column (0.1
significance level). The medians of both tests are
comparable.

The numerical results of Type I error estimation
of the compared tests are shown in table 2. In this
table the mean of the results of the 100 repetitions of
each combination of significance level and number
of partitions is shown to for the whole set of truth
configurations. In this case, Holm’s method beats
modified LSD. This fact is an experimental evi-
dence of the theoretical analysis found in [11, 13],
where the use of LSD alike tests was discouraged,
since they do not protect the test in strong sense,
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Folds S. Level
0.01 0.05 0.10

10 0.477 0.569 0.643 0.746 0.725 0.821
30 0.554 0.623 0.682 0.761 0.742 0.832
50 0.575 0.642 0.690 0.768 0.749 0.831
100 0.565 0.629 0.684 0.764 0.750 0.836

Table 1: Means of power estimations. Each cell
shows Holm (left) and modified LSD (right).

Folds S. Level
0.01 0.05 0.10

10 0.001 0.008 0.011 0.038 0.024 0.080
30 0.001 0.007 0.012 0.038 0.026 0.079
50 0.001 0.006 0.010 0.039 0.023 0.078
100 0.002 0.005 0.009 0.037 0.023 0.075

Table 2: Means of Type I error estimations. Each
cell shows Holm (left) and modified LSD (right).

as we commented earlier in this paper. Note that if
there is no effective protection against Type I error,
the researcher can’t make assertions about the mean
error of the algorithms being compared. Moreover,
there is a high probability of mistake when the re-
searcher claims to find differences between any two
algorithms.

In table 3, the number of occasions (from all the
possible truth configurations with 10 algorithms,
that is, 55 configurations) in that the estimated Type
I error (from 100 repetitions) exceeds MCP signifi-
cation level. It is clear that this is much more fre-
quent for LSD alike test than in Holm test. Obvi-
ously, if the number of repetitions were infinite, the
estimation of Type I error would equal the signif-
icance level in the case of Holm test, thus all the
values belonging to that column in table 3 would be
equal to zero. In a real experimentation, there is no
knowledge about the true configuration of the hy-
pothesis (which ones are really true and which ones
are false), and the researcher has no information on
the behavior of the modified LSD test regarding the
significance level of the whole MCP.

Folds S. Level
0.01 0.05 0.10

10 1 9 1 18 1 19
30 1 9 5 17 4 15
50 0 8 1 15 1 17
100 2 4 2 13 2 14

Table 3: Number of times, from all truth configura-
tions with 10 algorithms, in that the estimated Type
I error exceeds the signification level. Holm test
(left), modified LSD (right).

5 Conclusions and future work.

As exposed in section 1, there is no consensus in
which experimental designs and which statistical
tests should be applied in Evolutionary Machine
Learning experiments. In this work we follow [20],
where the parametric conditions must be observed
in order to apply the correct statistical test in each
situation.

Additionally, when many algorithms are being
compared simultaneously, and statements involving
all the algorithms are to be made, a MCP is needed
[19]. According to our experiments, if a researcher
in Evolutionary Machine Learning wants to protect
the MCP against Type I error, the classic approach
consisting in a previous F test must be abandoned
and a one-step or sequential procedure [11, 13]
must be employed. If the researcher wishes to
control the number of erroneously rejected indi-
vidual null hypothesis (i.e. false differences), the
procedures proposed in [1] must be employed.

Lastly, it is remarked that this survey of the statis-
tical tests suitable to Evolutionary Machine Learn-
ing experiments is not complete. At least, the pro-
cedures that control the FDR must be analyzed. Fi-
nally, given the results found in [21], the develop-
ment of a MCP that relies in individual bootstrap
tests seems to be convenient.
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Figure 3: Boxplots of power estimations. Each subpicture shows Holm (left) and modified LSD (right). At the left of each
plot is indicated the number of folds and the significance level.
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