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Cooperative Evolutionary Learning of Linguistic
Fuzzy Rules and Parametric Aggregation
Connectors for Mamdani Fuzzy Systems
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Abstract—There are two tasks in the design of linguistic fuzzy
models for a concrete application: The derivation of the linguistic
rule base and the setup of the inference system and the defuzzifica-
tion method. Traditionally, the derivation of the linguistic rule base
has been considered the most important task, but the use of the ap-
propriate aggregation connectors in the inference system and the
defuzzification interface can improve the fuzzy system behavior. In
this paper, we take in consideration this idea, we propose an evo-
lutionary learning method to learn a linguistic rule base and the
parametric aggregation connectors of the inference and defuzzifi-
cation in a single step. The aim of this methodology is to make pos-
sible a high level of positive synergy between the linguistic rule base
and the aggregation connectors, improving the accuracy of the lin-
guistic Mamdani fuzzy systems. Our proposal has shown good re-
sults solving three different applications. We introduce a statistical
analysis of results for validating the model behavior on the appli-
cations used in the experimental study. We must remark that we
present an experimental study with a double intention: a) to com-
pare the behavior of the new approach in comparison with those
ones that first learn the rule base and then adapt the connectors,
and b) to analyze the rule bases obtained with fixed aggregation
connectors and with the adaptive ones for showing the changes on
the consequent rules, changes on labels that produce a better be-
havior of the linguistic model than the classic ones.

Index Terms—Adaptive defuzzification, adaptive inference,
fuzzy rule-based systems, genetic fuzzy systems, linguistic rule
base, parametric aggregation connectors, parametric t-norms.

I. INTRODUCTION

FUZZY modeling, i.e., system modeling with fuzzy rule-
based systems (FRBSs) may be considered as an approach

used to model a system making use of a descriptive language
based on fuzzy logic with fuzzy predicates. Mamdani linguistic
fuzzy models use a kind of fuzzy rules composed of linguistic
variables [46] that take values in a term set with a real-world
meaning, in order to describe the behavior of the system being
modeled [40].
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Interpretability and accuracy are contradictory requirements.
While interpretability is the capability to express the behavior
of the real system in an understandable way, accuracy is the ca-
pability to represent faithfully the real system. In practice, de-
pending on the application details, one of the two properties nor-
mally prevails over the other. The higher interpretability with
lower accuracy or lower interpretability with higher accuracy.
Thus, designers try to find a tradeoff between the two edges,
producing an increasing interest [5], [6], recently using evolu-
tionary multi-objective optimization techniques [26], [43].

There are two tasks in the design of a linguistic fuzzy model
for a concrete application: The derivation of the linguistic
rule base (RB) and the setup of the inference system and
the defuzzification method. Nowadays, in the framework of
the trade-off between interpretability and accuracy in fuzzy
modeling, the configuration of the inference system and the
defuzzification method can reach a major importance. It is
possible to choose appropriate connectors, providing the major
cooperation with the linguistic RB to get more accuracy, main-
taining interpretability.

We know that it is possible to use parametric aggregation op-
erators in the design of the inference system and the defuzzifica-
tion method, trying to get the most appropriate parameters con-
figuration in any application. The tuning of these components
can be considered to get more accurate fuzzy models. We can
find different studies in the literature considering this problem.
Recent approaches are described in the following.

• In [44], authors look for better performance than traditional
minimum or product t-norms for the antecedent connec-
tions, and develop a study on the use of parametric con-
nectors, suggesting the use of adaptive t-norms for the an-
tecedent connection.

• In [9] we can find a study on the use of adaptive defuzzifi-
cation methods.

• In [38], a generic flexible neuro-fuzzy system [36], [37]
based on a quasi-triangular norm and a quasi-implication
is showed. These operators allow the system to select be-
tween a Mamdani Approximate Reasoning (inference with
a t-norm and aggregation with a t-conorm) or Formal Log-
ical Reasoning (inference with a S-implication and aggre-
gation with a t-norm) [16] depending on a parameter to be
learnt together with the parameters of input–output mem-
bership functions.

• In [1] we find a study on the use of parametric t-norms in
the inference process that is also analyzed with the tuning
of the membership functions.
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• In [13], a proposal of a genetic algorithm that simultane-
ously determines how the inference will be applied within
each rule together with the tuning of the membership
functions is showed in the framework of fuzzy classifiers
systems.

Following these ideas on the advantage of the use of para-
metric connectors, we propose an evolutionary learning model
for getting a rules base and parametric aggregation connectors
for Mamdani linguistic fuzzy systems in order to achieve a pos-
itive synergy between the RB and the aggregation connectors
used by the model.

Why do that? Usually, the existing models present a postpro-
cessing study on the learning/tuning of parameters with a previ-
ously established RB. We want to analyze the advantages of the
use of parametric aggregation connectors for learning the RB,
evaluating the differences between the RB obtained via a fixed
set of connectives and the RB obtained with our proposal, and
showing the positive synergy reached between both parts of the
model. The concept of “cooperative evolutionary learning” is
used for representing this idea, the cooperation of both compo-
nents, RB and parametric aggregation connectors via a positive
synergy between both fuzzy system components. As far as we
know, this is the first proposal for learning a linguistic RB base
and the aggregation connectives for getting a maximum accu-
racy of the linguistic fuzzy model without tuning of the mem-
bership function parameters.

Genetic algorithms (GAs) are search algorithms based on
natural genetics that provide robust search capabilities in com-
plex spaces, and thereby offer a valid approach to problems re-
quiring efficient and effective search processes. GAs based on
real-number representation, like the ones used in this work, usu-
ally called real-coded GAs, seem to be adequate when tackling
optimization problems of parameters with variables in contin-
uous domains ([14], [15], [21], [31]) due to their ability to avoid
becoming trapped at a local optimum, which is of special in-
terest in real-world optimization problems. The use of GAs to
design Fuzzy Systems (FSs) allows us to introduce the learning
and adaptation capabilities. The result of this hybridization is a
Genetic Fuzzy System which is basically a FS augmented by a
learning process based on a GA [8], [10].

We use a GA as a tool to evolve the linguistic RB and the
connector parameters, learning them with the aim of getting the
maximum cooperation. We evaluate this cooperation via the ac-
curacy of the model, using the accuracy measurement as the
fitness function of the GA. The three components that are the
base of our learning proposal are coded as a single chromosome,
defining a specific GA to evolve this structure:

• The linguistic RB learning that is based on the COR
methodology [4]. It is an ad hoc data-driven approach
that does not select the rules looking for the best indi-
vidual performance as usually do most of the data-driven
techniques. It finds a set of cooperative rules searching
for the consequents with the best global performance.
This methodology manages a set of consequent label sets
(one per rule), considering the linguistic RB learning as a
combinatorial optimization problem.

• The parameterized connector of the inference system that
is the conjunction operator of the antecedents, using a para-
metric t-norm.

• The parameterized expression of the defuzzification
method that uses a weighted average aggregation operator
as described in [9] or the parametric SLIDE defuzzifica-
tion method [45].

Why use GAs? We must point out that, on the one hand, we
code the linguistic RB via an integer coding representation and
on the other hand, we code the connector parameters via real
coding. GAs allow us to evolve this complex structure with dif-
ferent kind of variables defining the adequate operators, and as
we have mentioned before, they present the ability to avoid be-
coming trapped at a local optimum.

We analyze the cooperation between the different compo-
nents developing an experimental study with three different
applications where we compare the accuracy results. To do
so, we provide a statistical analysis using some statistical tests
(ANOVA, Levene and Tamhane [2]) with the aim to show the
significance in the accuracy improvements obtained with the
proposed model.

In order to do that, the paper is organized as follows.
Section II introduces the parametric aggregation connectors,
the adaptive conjunction operators and the adaptive defuzzi-
fication methods. Section III is devoted to describing the
evolutionary learning proposal. Section IV studies the behavior
of the evolutionary fuzzy models with the three considered
applications. Finally, Section V presents some concluding
remarks. The Appendix is devoted to shortly describing the
statistical tests used for our study and to showing the extended
results of the statistical study.

II. PARAMETRIC AGGREGATION CONNECTORS IN

FUZZY MODELING

In this section, we introduce the notation used in the paper for
FRBSs, and we show the parametric aggregation operators used
in our learning proposal. In the first subsection we justify the use
of the Dubois parametric t-norm as conjunction operator, and in
the second we present the two adaptive defuzzification methods
used in our study: one uses a weighted average aggregation op-
erator and the other one is based on SLIDE.

A. Adaptive Conjunction

Linguistic FRBSs for system modeling use IF - THEN rules
of the following form:

If is and and is then is

with to , and with to and being the input and
output variables respectively, and with to and being
the involved antecedents and consequent labels, respectively.

The expression of the Compositional Rule of Inference in
fuzzy models with singleton fuzzification is the following one:

where is the membership function of the inferred conse-
quent, I is the rule connective, is the conjunction op-
erator, are the values of the matching degree of each
input with the membership functions of the rule antecedents,
and is the consequent of the rule.
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Fig. 1. Ranges covered by connectives operators.

Therefore, the inference system performs the two following
tasks.

1) First, it computes , that is the
matching degree of each rule, . The conjunction operator

is usually modeled with a t-norm.
2) Second, it infers using the rule connective I , the

matching degree and the consequent of the rule. Rule
connectives can be classified into different families, being
implication functions [41] and t-norms [20] the most well
known. T-norms are the most used in practical fuzzy
modeling.

Hence, the inference system uses two components: the con-
junction , and the rule connective .

The aforementioned two components, conjunction and rule
connective are suitable to be parameterized in order to adapt
the IS. Our previous studies in [1], [22] show that the model
based on the adaptive conjunction operator is a more valuable
option than the one based on the adaptive rule connective, in the
framework of improving the accuracy of linguistic FSs. Conse-
quently, we have selected the use of the adaptive conjunction in
this study, in order to parameterize the IS.

In [44], looking for better performance than traditional min-
imum or product t-norms for the antecedents connections, au-
thors develop a study on the use of parametric connectors that
are extended from t-norms and t-conorms in order to cover the
range between them, including compensatory and and S-OWA
operators and many others. Fig. 1 shows the ranges covered by
parametric t-norms, parametric t-conorms, compensatory and,
and S-OWA operators.

In our previous studies, we obtained good performance with
t-norms, and we will use them in this study. Table I exempli-
fies three classical parametric T-norms [32] that can be used to
model the adaptive conjunction operator . The parameter
for the adaptive conjunction will be , therefore the adaptive
component is .

Table II shows the relation between the five classical t-norms
and the values of the parameter of the adaptive t-norms.

The use of adaptive conjunction connectives in Table I, allows
to adapt the influence of the matching degree in a non linear
way. The effect of the parameter in the adaptive conjunction is
sometimes equivalent to one of the well-known mechanisms to
modify the linguistic meaning of the rule structure, the use of
linguistic modifiers [30]. The goal of linguistic rule modifiers
is also to improve the accuracy of the model, slightly relaxing
the rule structure by changing the meaning of the involved la-
bels. The parameter plays a similar role by changing the shape of
the membership function associated with the linguistic label an-
tecedents of the rule, as shown in Fig. 2, where is the matching

TABLE I
ADAPTIVE T-NORMS

TABLE II
RELATION BETWEEN CLASSICAL AND PARAMETRIZED

T-NORMS DEPENDING ON THE A PARAMETER

Fig. 2. Graphical representation of the antecedent linguistic modification pro-
duced by different values of Dombi t-norm.

for the trapezoidal fuzzy set when the input value is and
are the values computed for and respectively.
We must point out that the effect of the adaptive t-norm playing
the role of conjunction operator does not modify the shape of
the inferred fuzzy set.

Two models of Adaptive Inference System can be considered
depending on the amount of parameters they use: a single pa-
rameter to tune globally the behavior of the connector, or indi-
vidual parameters for every rule, , having a local tuning mech-
anism of the behavior of the inference system for every rule.

• The single parameter model lets us to adapt the behavior
of the conjunction operator globally between the classical
t-norms. However, the benefits of this model will not yield
remarkable improvements in accuracy. The reason is the
low importance in choice of the conjunction operator in
the design of linguistic fuzzy systems [11] with a similar
behavior with the use of different t-norms considering the
same operator for all rules.
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• On the contrary, the model that uses individual parameters
for each rule, has got a mechanism to alter the behavior
of the inference system for every rule. This model shows
the highest accuracy in [1] because of its high degree of
freedom.

Therefore, in this study, we learn the conjunctive connector
for every rule separately.

Taking into account the studies in [1], [22], we have selected
the Dubois t-norm with a separate connector for every rule.
It showed the highest accuracy in the studies performed be-
fore, compared with Frank and Dombi t-norms and it is more
efficiently computed. The use of an adaptive t-norm for the
antecedent connection reminds the suggestion of [44] in order
to look for better performance than traditional minimum or
product t-norms.

Dubois t-norm is between minimum and algebraic product,
when and it achieves like a minimum or product re-
spectively. When , it continues performing like min-
imum excepting when every match with antecedents are below

, that takes values between minimum and product, being sim-
ilar to a concentration effect. Thus, Dubois t-norm connects with
minimum in those cases when the matches with antecedents are
more significant, while the rest are connected with a value be-
tween minimum and product.

B. Adaptive Defuzzification Methods

The most used technique in practice, due to its fine perfor-
mance, efficiency and easier implementation, is to apply the de-
fuzzification function to every rule inferred fuzzy set (getting a
characteristic value) and to compute then by a weighted average
operator. This way of working is named Mode B [11] or FITA
(First Infer, Then Aggregate) [3]. Its formula is

where is the matching degree between the input variables and
the rule antecedent fuzzy sets, and represents a characteristic
value of the fuzzy set inferred from rule , the Maximum Value
or the Gravity Center (GC).

The general formula that generates some parametric defuzzi-
fication methods is

where is a functional of the matching degree [1].
The functional term can be defined with a single parameter, ,

or with a set of parameters , corresponding to one parameter
for each rule , to N, in the RB. Moreover, the func-
tional term could be defined as a product or as a power among
other possible functions. Combining both functional operators
and the aforementioned single or several parameters, the func-
tional term could take any of these four forms

However, it doesn’t make sense to consider the form
as the effect of is cancelled in the final expression.

Thus, combining the three aforementioned possibilities with the
two characteristic values, Maximum Value or GC, six different
defuzzification methods may be obtained (expressions can be
seen in [9]). Some of them have been used by several authors,
like the functional term in [35], or Accurate
Center of Gravity with and GC [29].

The role of the individual parameter is interpreted as a mod-
ulation of the matching influence, which can be improved or at-
tenuated. We should note that this modulation is only linear for
the product case.

The interpretation is quite different when one parameter
for each rule is used. Instead of a global modulation of the
matching influence, the local action of each rule defuzzified
with a product or a power functional is changed. The difference
between the meanings of each of these functional terms is
discussed as follows.

The product functional term with a different parameter for
each rule has the effect of weighted rules [7], [35]. The value
associated with rule gets the meaning of how significant or
important that rule is for the inference process. An improved
accuracy is the system modeling goal when using this kind of
rule. The following is an example of a set of weighted rules,
where the weights are :

If is and and is then is with

If is and and is then is with

If is and and is then is with

The rule weight adaptation process will produce a rule subset
with better cooperation among the rules composing it [9]. This
fact has shown to be of special interest when the rule set has
been generated using a quick data-driven fuzzy rule generation
method. These methods usually look for the best individual rule
performance, and generate a linguistic RB with a low coop-
eration degree. Using the product functional and a parameter
learning process will be equivalent to look for a subset of rules
with the best global cooperation.

Overall, the influence of rule weights on the interpretability
of fuzzy systems is usually discussed. Some authors consider
they can be equivalently replaced by modifications in the mem-
bership functions in order to avoid negative effects on the in-
terpretability [33], while other authors claim the importance of
weights as a certainty grade and its importance in some prob-
lems [24], [27].

As regards the power functional case, the effect on defuzzi-
fication is equivalent to one of the well known mechanisms to
modify the linguistic meaning of the rule structure, the use of
linguistic modifiers [30]. The defuzzifier parameter plays the
role of a linguistic modifier changing the shape of the member-
ship function associated with the linguistic label antecedents of
the rule, as shown in Fig. 3, where is the matching for the
trapezoidal fuzzy set when the input value is e. We must point
out that this effect does not modify the shape of the inferred
fuzzy set because the matching is only modified by defuzzifica-
tion effects.
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Fig. 3. Graphical representation of the effect produced by the power based lin-
guistic modifier on the defuzzification process.

• When the fuzzy set is modified by power values greater
than one, the membership function is concentrated. The
modified matching will be in Fig. 3. Examples of these
kind of linguistic modifiers are absolutely, very, much
more, more and plus [23]

• On the contrary, when the fuzzy set is modified with values
below one, the membership function is expanded or di-
lated. Observing Fig. 3, the modified matching will now
be . Sometimes, these linguistic modifiers are named as
minus, more or less and slightly [23].
In this work, we have selected the two following parametric
defuzzification methods:

• One obtained with the functional product with one param-
eter for each fule (that is weighting rule) and GC. The re-
sulting expression is a well known weighted average aggre-
gation operator. It has been selected due to its good results
shown in [9]).

where GC is computed with
, (so called standard WCOA, for

.
• The second adaptive defuzzification method is the well

known SLIDE [45], which formula is

The parameters for this defuzzification method, and , are
defined in the following intervals: and . We
adapted this defuzzification method to Mode B—FITA.

According to Nauck and Kruse [33], the addition of pa-
rameters in fuzzy systems can deteriorate its interpretability.
Even though, in the trade-off between interpretability and
accuracy where this work is positioned, the sacrifice of a part
of the system interpretability in order to get more accuracy is
accepted. The objective is to get the best accuracy with the
lowest loss of interpretability.

III. COOPERATIVE EVOLUTIONARY LEARNING OF FUZZY

RULES AND PARAMETRIC AGGREGATION CONNECTORS

In this section, we describe the evolutionary model proposed
to learn the linguistic RB and the parametric aggregation con-
nectors at the same time with the aim of obtaining fuzzy models
with cooperation between fuzzy rules and fuzzy connectors. As
we have mentioned, we use an ad hoc data-driven method called
COR. The evolutionary algorithm used in the cooperative model
is a well known GA that is called CHC [17].

In the following three subsections we first introduce the lin-
guistic RB learning, we present the cooperative evolutionary
learning model, and finally we describe CHC algorithm.

A. Rule Base Learning

As we have mentioned, COR, cooperative rules [4], is an
ad hoc data-driven methodology that gets particularly accurate
sets of rules because it does not select the rules looking for the
best individual performance as usually do most of data-driven
techniques. COR methodology finds a set of cooperative rules
searching the consequents with the best global performance.
This methodology manages a set of consequent label sets (one
per rule), designing the linguistic RB learning as a combinato-
rial optimization problem.

We also decided to use the well known data-driven method
proposed by Wang and Mendel (WM-method) in [42] because
of its simplicity, clarity and quickness. Furthermore, it is used
by COR method to generate the antecedent parts of the rules.
The WM-method is a learning method we use to compare the
cooperative evolutionary proposal with the learning of the con-
nectors parameter for a learning method. Any other reference
method might be considered as well. The algorithms descrip-
tions are given below.

WM Method: The WM algorithm is an ad hoc data-driven
linguistic rule learning method. It considers a previous defini-
tion of the linguistic term sets composed of the input and output
primary fuzzy partitions that may be obtained from expert in-
formation (if it is available) or by a normalization process.

The generation of the linguistic rules is guided by covering
criteria of the data in the example set (hence the name data-
driven). The learning mechanism is specifically developed for
this purpose, and consist of giving an importance degree to each
linguistic RB on its covering and at last selecting the rule with
the highest importance degree for each group, that is, for each
antecedents combination.

A description of the WM rule generation process is shown in
the following steps:

1) Consider a fuzzy partition of the variable spaces.
2) Generate a candidate linguistic rule set—This set will be

formed by the rule best covering each example container
in the input-output data set.
The structure of each rule, , is obtained by taking a spe-
cific example, , and setting each of the rule variables to
the linguistic label associated with the fuzzy set best cov-
ering every example component, ), with

and .
3) Give an importance degree to each rule—Let

is and and is THEN Y is be the
linguistic rule generated from the example .
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The importance degree associated with it will be obtained
by computing the covering value of the rule over the cor-
responding example as follows:

4) Obtain a final linguistic RB from the candidate linguistic
rule set—Group the candidate linguistic rules according
to their antecedents and select the rule with the highest
importance degree in each group.

COR Method: An ad hoc data-driven method usually looks
for the fuzzy rules with the best individual performance (e.g.,
the aforementioned [42]) and therefore the global interaction
among the rules of the linguistic RB is not considered.

With the aim of addressing these drawbacks keeping the in-
teresting advantages of ad hoc data-driven methods, the COR
methodology was proposed in [4]. It is based on a combinatorial
search of cooperative rules performed on the set of candidate
rules to find the best cooperating rule set. Instead of selecting the
consequent with the highest performance in each subspace as
usual, the COR methodology considers the possibility of using
another consequent, different from the best one, when it allows
the FRBS to be more accurate thanks to having a RB with best
cooperation. For this purpose, COR performs a combinatorial
search among the candidate rules looking for the set of conse-
quents which globally achieves the best accuracy.

COR consists of two stages
1) Search space construction—It obtains a set of candidate

consequents for each rule.
2) Selection of the most cooperative fuzzy rule set—It per-

forms a combinatorial search among these sets looking
for the combination of consequents with the best global
accuracy.

In order to perform this combinatorial search, an explicit enu-
meration or an approximate search technique can be considered.

1) The explicit enumeration accomplishes a full search
through the set of possible combinations. Although this
technique ensures that the optimal solution is obtained,
it may take a long time, or simply be unapproachable
in terms of run time, when there is a great number of
combinations. Therefore, this technique is only used in
confined spaces.

2) On the other hand, when the use of an explicit enumeration
is not possible, an approximate search technique is needed.
Any search technique can be used. However, since one of
the main advantages of ad hoc data-driven methods is their
ability to find good fuzzy models quickly, the search tech-
nique should be both effective and quick.

A description of the COR-based rule generation process is
shown in the following steps.

Inputs:
• An input-output data set—

, with
being the data set size, and

being the number of input (output) variables—rep-
resenting the behavior of the problem being solved.

• A fuzzy partition of the variable spaces. In our case, uni-
formly distributed fuzzy sets are regarded. Let be the
set of linguistic terms of the th input variable, with

, and be the set of linguistic terms of
the th output variable, with , with

being the number of labels of the th ( th) input
(output) variable.

Algorithm:
1) Search space construction:

1.1 Define the fuzzy input subspaces containing
positive examples: To do so, we should define the
positive example set (E for each fuzzy input
subspace , with

being a label, , and
being the number of fuzzy input

subspaces. In this paper, we use the following:

with being the membership function associated
with the label .
Among all the possible fuzzy input subspaces, con-
sider only those containing at least one positive ex-
ample. To do so, the set of subspaces with positive ex-
amples is defined as .
1.2. Generate the set of candidate rules in each sub-
space with positive examples: First, the candidate con-
sequent set associated with each subspace containing
at least an example, , is defined. In this paper,
we use the following:

Then, the candidate rule set for each subspace is de-
fined as is and and

is THEN is and and is
such that .
To allow COR to reduce the initial number of
fuzzy rules, the special element (which means
“don’t care”) is added to each candidate rule set, i.e.,

. If it is selected, no rules are
used in the corresponding fuzzy input subspace.

2) Selection of the most cooperative fuzzy rule set—This
stage is performed by running a combinatorial search
algorithm to look for the combination

with the best accuracy. Since the tackled
search space is usually large, approximate search tech-
niques should be used.

An index measuring the global quality of the encoded
rule set is considered to evaluate the quality of each solution. In
order to obtain solutions with a high interpretability, the original
function is modified to penalize excessive number of rules:

with being a parameter defined by the designer to
regulate the importance of the number of rules, being
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Fig. 4. Coding scheme for the evolutionary algorithm with N rules and weighted based defuzzification method.

Fig. 5. Coding scheme for the evolutionary algorithm with N rules and SLIDE defuzzification method.

the number of rules used in the evaluated solution (i.e.,
such that ), and being the initial

linguistic RB considered by the search algorithm.

B. Proposal: Cooperative Evolutionary Learning Model

With the aim of improving the accuracy of the fuzzy model,
we propose a cooperative fuzzy model based on the cooperation
between the linguistic RB and the fuzzy connectors.

The evolutionary model was based on the CHC Genetic
Algorithm [17] whose chromosome has got a threefold coding
scheme as represented in Fig. 4,
where encodes the consequents of COR methodology,

the parameters of the conjunction connective, and
the parameters of the defuzzification.

Fig. 4 shows the chromosome where belongs to COR
methodology. This part has got N genes, each one representing
a candidate label of the consequent rules, being the possibilities
between and represented in the implementation with
integer values.

The proposed algorithm performs an approximate search
among the candidate rules with the main aim of selecting the set
of consequents with the best cooperation and simultaneously
learning the rest of the chromosome.

The connective parameters are coded in the right side of the
chromosome of Fig. 4. They are composed of two parts:

• Conjunction part, with N parameters (genes) for
each rule of the linguistic RB. Each gene can take any

value in the interval [0, 1], that is, among minimum and
algebraic product.

• Defuzzification part, with two possibilities:
• : when using defuzzification method based on

weighting rules, with N parameters for each rule of
the linguistic RB. Each gene can take any value in the in-
terval [0, 10]. This interval has been selected according
with the study developed in [9]. It allows attenuation as
well as enhancement of the matching degree.

• : when using SLIDE defuzzification method
(see Fig. 5), with two parameters and for the whole
expression. The gene that represents or can take any
value in the interval [0, 1].

C. Questions Related to the Evolutionary CHC Algorithm

The evolutionary algorithm used is the CHC [17]. It is con-
sidered as an evolutionary model with a good trade-off between
diversity and convergence in high-dimensional search spaces in
different applications.

During each generation, the CHC algorithm [17] uses a parent
population of size M to generate an intermediate population
of M individuals, which are randomly paired and used to gen-
erate two M’ potential offspring (the value of M’ depends on
the crossover operator selected). Then, a survival competition is
held, where the best M chromosomes from the parent and off-
spring populations are selected to form the next generation.
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Fig. 6. Example of initial state for the chromosome whose has got the WM-method linguistic RB, the adaptive connector set to minimum t-norm, and the de-
fuzzification set to WCOA.

Fig. 7. Example of adapted chromosome after the evolutionary process.

No mutation is applied during the recombination phase. In-
stead, when the population converges or the search stops making
progress (i.e., the difference threshold has dropped to zero and
none of the new generated offspring are better than any member
of the parent population), the population is reinitialized. The
restarted population completely consists of random individuals
except for one of them which must be the best individual found
so far [18].

Although CHC was conceived for binary-coded problems,
there are real-coded versions, like the one we use in this work
to tune the parameters of the fuzzy operators. In these cases,
the BLX- crossover is used in order to recombine
the parent’s genes. It produces two descendents for each pair
of parents, thus, the offspring generated by this crossover op-
erator is of the same size than the initial population. The Ham-
ming distance is computed by translating the real-coded genes
into strings and by taking into account whether each character
is different or not. Only those string pairs which differ from
each other by some number of bits (mating threshold) are mated.
The initial threshold is set to where L is the length of the
string. When no offspring is inserted into the new population,
the threshold is reduced by 1.

The population size was 50, randomly initialized with the ex-
ception of a single chromosome with the following setup:

• Linguistic RB part, , with the N rules obtained by
the WM-method.

• Connectors part:
• Conjunction, , with the N genes initiated to 0, in

order to make Dubois t-norm equivalent to Minimum
t-norm initially.

• Defuzzification, depending on the defuzzifier
considered:
• , with the N genes initiated to 1, with

the objective to make it act like the model without
weights, equivalent to the well known WCOA de-
fuzzification method.

• , with the 2 genes initiated to 0,
equivalent to WCOA defuzzification method.

Fig. 6 illustrates the initial values mentioned with weighted
defuzzification method, while Fig. 7 shows the best fitness chro-
mosome of the population, after the evolutionary process. It
shows changes in the consequents of some rules, their associ-
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Fig. 8. Genetic representation and crossover scheme for the weighted defuzzification type model.

Fig. 9. Genetic representation and crossover scheme for SLIDE defuzzification type model.

ated weights are different and the matching degree of every rule
has been modified too.

The problem representation and crossover operators selected
are the following, depending on the chromosome part:

• Linguistic RB part, : It is an integer-valued
vector. A standard two-point crossover has been used. It is
graphically illustrated on the left zones of Figs. 8 and 9.

• Connectives part and or ): It is a
real-valued vector graphically illustrated on the middle and
right zones of Figs. 8 and 9.

Two different thresholds have been used: one for the real-
valued vector, and another one for the integer-valued. Both are
initially set to , where L is the length of the vector in the in-
teger valued, or the string in the real-valued. When no offspring
is inserted into the new population, the threshold is reduced by
1, independently.

The fitness function used was the classical Mean Square
Error, MSE for a fuzzy model

where denotes the fuzzy model whose inference system
uses the Dubois t-norm as conjunction operator, rule connective
Minimum t-norm, and defuzzification method (with
for method and for ). This measure uses a set
of system evaluation data formed by P pairs of numerical data

, with being the values of the
input variables, and with being the corresponding values of
the associated output variables.

IV. EXPERIMENTAL STUDY

We analyze the cooperation among the different elements de-
veloping an experimental study with three different applications
where we compare the accuracy results. To do so, we provide a
statistical analysis using some statistical tests (ANOVA, Levene

and Tamhane [2]) with the aim of showing the significance in the
accuracy improvements obtained with the proposed model.

The following four subsections introduce the problems depic-
tion, describe the experimental methodology, show the results
and analysis, and exemplify the analysis of the resulting RBs
respectively.

A. Description of the Problems

Two electrical distribution problems described in [12] and
a classical application of a rice taste evaluation problem [25],
[34], have been selected to analyze the performance of the co-
operative model in fuzzy modeling. The first application, is
the estimation of the low voltage network real length in rural vil-
lages, the second application, , is the estimation of the elec-
trical medium voltage network maintenance cost in a town, and
the third application, rice taste data.

Application: The data set has two inputs and a single
output from 495 villages. The input variables are the number of
clients in the consigned population which domain is [1, 320] and
the radius of that population in the sample which domain is [60,
1673]. The output variable is the estimation of the real length in
a particular village that takes values in the interval [80, 7675].
The input and output variable domains have been partitioned
with seven labels , (with

for the two antecedents, and for the consequent), as
shown in Fig. 10, with the following meaning:

ES is extremely small,
VS is very small,
S is small, M is medium,
L is large,
VL is very large, and
EL is extremely large.

Three kinds of linguistic RBs have been obtained: they are
composed of 20 to 24 linguistic rules depending on the parti-
tion, obtained with the Wang and Mendel method [42], with the
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Fig. 10. Fuzzy partition considered for the input and output variables of E .

Fig. 11. Fuzzy partition considered for the input and output variables of E .

COR method [4], and with the presented cooperative model. All
of them have been obtained from data training sets of 80% of the
original available data, that is, 396 villages taken randomly. We
have considered 5-fold cross validation, therefore we get 5 lin-
guistic RBs associated with the 5 training sets. The evaluation
of the different fuzzy models composed have been carried out
with the remaining 20% of the initial data set, that is, with data
from 99 villages.

Application: The second electrical distribution problem,
, has got a data set of 1059 cities with four input variables and

a single output. The input variables are the sum of the lengths
of all streets in the town, which domain is [0.5,11], the total
area of the town, which domain is [0.15,8.55], the area that is
occupied by buildings, which domain is [1.64, 142.5], and the
energy supply to the town which domain is [1, 165]. The output
variable is the maintenance costs of medium voltage line which
domain is [0, 8546.03]. The fuzzy partition used for inputs and
output has 5 labels , (with to 4 for the
antecedents, and for the consequent), (see Fig. 11), where:

VS is very small,
L is large,
S is small,
VL is very large, and
M is middle.

We have three kinds of linguistic RBs composed of 65
linguistic rules achieved with the Wang and Mendel method
[42], COR method [4] and the presented cooperative model
They have also been obtained from training data sets of 80% of
the original available data, that is, 847 cities taken randomly.
Evaluation of the fuzzy models has been carried out with the
remaining 20% of the initial data set, that is, with data from
212 cities. In the same way, we have considered a 5-fold cross
validation.

The Rice Taste Evaluation Problem: Subjective qualification
of food taste is a very important but difficult problem. In the case
of the rice taste qualification, it is usually put into effect using a
subjective evaluation called the sensory test. In this test, a group

of experts, usually composed of 24 individuals, evaluate the rice
according to a set of characteristics associated with it. These
factors are flavor, appearance, taste, stickiness, and toughness
[25].

Because of the large quantity of relevant variables, the
problem of rice taste analysis becomes very complex, thus
requiring the design of a model representing the existing non-
linear relationships. We used the data set presented in [25], [34].
This set is composed of 105 data arrays collecting subjective
evaluations of the six variables in question (the five mentioned
and the overall evaluation of the rice kind), made up by experts
on the number of kinds of rice grown in Japan (for example,
Sasanishiki, Akita-Komachi, etc.).

The six variables are normalized, thus taking values in the real
interval. Because of the small number of examples used, there
is a high risk of biasing the learning process. Thus, we have ran-
domly obtained several partitions of the mentioned set (71% for
training and 29% for test). In this way, 10 partitions of training
and test sets with 75 and 30 pieces, respectively, are considered.
This is the same experimental procedure developed by the au-
thors in the paper where the example data set is presented [25],
[34].

Two labels are considered for every linguistic variable
domain.

B. Comparison Methodology

We built several fuzzy models combining the WM-method
linguistic RB with the parameterized connectors and, on the
other hand, we used the cooperative model proposed in com-
bination with different parameterized connectors, in order to
compare their accuracy solving the three different fuzzy model
applications.

The whole set of fuzzy models are illustrated in Table III.
First, we added the two initial non parameterized operators
adaptive models based on WM-method and COR linguistic
RBs. Next, we have the evolutionary connectives models, which
are based on the linguistic RB learned with WM-method, and
later altering their parameterized connectors using several
combinations. Finally, the evolutionary cooperative models
proposed, which learn the linguistic RB and the connectors at
the same time, also using several combinations. Note that the
evolutionary cooperative models are not marked in Table III
as COR linguistic RB, because they are not using a COR
previously learned linguistic RB.

We achieved 30 trials for every evolutionary process, running
them with six different seeds for the random number generator
and five different data sets, five-fold cross-validation approach
for the two electrical problems and , and with three dif-
ferent seeds and 10 different data sets for rice taste evaluation
problem.

In order to compare the different fuzzy models obtained, we
consider an usual fuzzy model performance measure, the MSE
whose expression has been aforesaid. The considered real MSE
was computed as the arithmetic mean of the 30 results.

The evolutionary models have been run for different amount
of evaluations depending on the particular fuzzy model to be
learned. Table IV shows these values.
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TABLE III
FUZZY MODELS BUILT FOR THE EXPERIMENTAL STUDY

TABLE IV
EVALUATIONS PERFORMED BY THE EVOLUTIONARY CHC MODEL

TABLE V
MSE FOR THE FUZZY MODEL OF ELECTRICAL APPLICATION E .

MEAN # RULES: 22

C. Results and Analysis

We have organized this section in three subsections: First de-
voted to MSE, second to the statistical analysis performed, and
third to study an example of the obtained solutions.

1) General Results and Analysis: The MSE is shown in
Tables V, VI and VII for application and rice taste
evaluation problem respectively. Tables show in two columns
the values for training and test.

We can point out some conclusions analyzing them:

TABLE VI
MSE FOR THE FUZZY MODEL OF ELECTRICAL APPLICATION E .

MEAN # RULES: 65

TABLE VII
MSE FOR THE FUZZY MODEL OF RICE TASTE EVALUATION PROBLEM.

MEAN # RULES: 15

a) Parameterized connectives:
• The parameterized connectives show that they are a

good tool in order to improve the accuracy of the FS,
as it was also showed in [1], [9].

• The results obtained with parameterized conjunction
and defuzzification together improve the accuracy
gained with the parameterized conjunction or defuzzi-
fication alone. Thus, parameters in the conjunction and
defuzzification cooperate and get better precision.

• In two applications ( and rice), the evolutionary
learning of the inference and defuzzification together
obtain higher accuracy than COR method without
adaptive connectors. Therefore, evolutionary con-
nectors are a good tool for linguistic fuzzy model
designers.

b) Cooperative evolutionary learning model:
• Noticeably, cooperative models show the best results of

the practical study.
• Cooperation between fuzzy rules, and connectors is

clearly noticeable when comparing the MSE obtained
by COR method and the one obtained with complete
cooperative methods.

c) Globally:
• The best results are shown by the one with more

degrees of freedom: the cooperative model with
parametric t-norm with the weighted defuzzification
method.
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TABLE VIII
ANOVA SUMMARY TABLE, FOR PROBLEM E

TABLE IX
ANOVA SUMMARY TABLE, FOR PROBLEM E

TABLE X
ANOVA SUMMARY TABLE, FOR RICE TASTE EVALUATION PROBLEM

TABLE XI
SUMMARY TABLE FROM TAMHANE TEST, FOR E PROBLEM

2) Statistical Study: To compare the results provided by the
different models, we develop a statistical analysis. First, we
compute some tables of descriptive statistics (see Tables XVII,
XIX and XXI in Appendix), where the mean values, standard
deviation, and so on are showed. Later we use the ANOVA
analysis of one factor [2] for each model to be used for that
purpose; the factor being the models used on the test data sets.
See Tables VIII, IX and X, for and rice taste evaluation
problem respectively. Given that significant differences were
found for all models with respect to the mean result values as-
sociated with the different models analyzed, we performed a
Tamhane means rank test [2] (see the Statistical Study Devel-
oped in Appendix), with a confidence coefficient of 95% due
to the case of hypothesis of equality of variances of the results

TABLE XII
SUMMARY TABLE FROM TAMHANE TEST, FOR E PROBLEM

TABLE XIII
SUMMARY TABLE FROM TAMHANE TEST, FOR RICE TASTE PROBLEM

was rejected in all of the analysis performed for each method
(Levene test, see Tables XVIII, XX and XXII in Appendix).

With the aim of summarizing the results of Tamhane tests for
multiple comparisons, we built Tables XI, XII and XIII, they
show a summary of Tamhane test for every application. Sign

means that the selected row (fuzzy model) improves the
selected column (fuzzy model), while sign means the con-
trary. Sign means they are similar. Tables must be read be-
ginning with the file and after the column, i.e., the model -
COR (row 8) improves the model COR (column 2) in Table XI.

Considering these tables, we can point out that:
• The whole cooperative model proposed with adaptive con-

junction together with adaptive defuzzification presents the
best results, in particular, when adaptive defuzzification is
based on weights we find the best results.

• The MSE improvements may depend on the application,
because applications and rice show better improve-
ments than .
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TABLE XIV
CHROMOSOME INITIALIZED WITH THE WM-METHOD RB,

PARAMETERIZEDT-NORM AS MINIMUM AND PARAMETERIZED

DEFUZZIFICATIONAS GC WEIGHTED BY THE MATCHING. MSE =

202698:35;MSE = 210365:15; FOR APPLICATION E

D. Analysis of the Rule Bases: A Study on the Application
With Methods C- -COR, COR and WM

Now we analyze an example of a complete chromosome for
application . We have represented the chromosome initialized
with the WM-method linguistic RB, the Dubois t-norm as the
minimum and the defuzzification method as the GC
weighted by the matching with weights , in Table XIV.

Table XV shows the best adapted chromosome after the evo-
lutionary process, that is, for every rule, first the consequent,
below the parameter of the t-norm, and in the lower the param-
eter of defuzzification.

For example, observing Table XIV we can see the rule

If is and is then is

with and

while viewing Table XV, we can see the result of learning
process experimented by the same rule

If is and is then is

with and

so the consequent has changed and the values of aggregation
and defuzzification method have been tuned.

Table XVI has been added to compare the consequents ob-
tained with COR and the ones obtained with C- -COR in
Table XV. The three tables have been obtained using the same
data set.

Analyzing them we can point out the following.

TABLE XV
BEST ADAPTED CHROMOSOME AFTER THE EVOLUTIONARY PROCESS.

MSE = 138891:40;MSE = 174889:92;

FOR APPLICATION E USING C-D -COR

TABLE XVI
RB OBTAINED WITH THE COR METHOD. MSE =

181910:54;MSE = 179266:96, FOR APPLICATION E

• Comparing Tables XIV and XV, the initial linguistic RB,
obtained with WM-method, has got the consequents with
the highest performance in each subspace. Whereas the
adapted linguistic RB, built with C- -COR, has got five
different consequents, that is, it uses different consequents
from the best one when they allow, together with the pa-
rameters, the linguistic fuzzy model to be more accurate.

• Comparing the linguistic RB obtained with COR-method
in Table XVI, with the linguistic RB obtained with C-
-COR in Table XV, three differences can be observed,
that corroborate the cooperation between the connectors
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TABLE XVII
DESCRIPTIVE STATISTICS, FOR APPLICATION E

and the linguistic RB. The consequents have been selected
taking into account the best global accuracy together with
the adaptive operators.

We have also analyzed this question on the problem and
we find five different consequents between COR and WM, and
we also find six different consequents between C- -COR and
COR, with the following errors:

• Studying the parameters of the t-norm (the upper ones in
figures), the higher values of mean that these rules are
connected with product mainly: there are six rules with

, and two more rules with values near to 1. Although,
the lower values mean they are using minimum predomi-
nantly, there are four rules connecting with minimum. In-
termediate values of (twelve rules) mean they use min-
imum when any of the antecedents have got a match over

, and a connective between product and minimum in
other cases. Thus, each rule works with its own particular
connective.

• Some rules seem to be highly penalized with very low
weights . On the other hand, their consequents
have not been changed by the evolutionary cooperative
mechanism. Hence, we think perhaps this rules have a low
importance or may not be necessary. The version of COR
methodology uses the antecedent parts of the rules gener-
ated by WM-method.

V. CONCLUDING REMARKS

In this work we have proposed an evolutionary learning
model where the linguistic RB and the aggregation connector
parameters are learnt together. This fact allows them to coop-
erate, they are not the best choice locally, but they are a good
choice to work together.

TABLE XVIII
LEVENE TEST OF HOMOGENEITY OF VARIANCE, FOR APPLICATION E

This methodology improves accuracy in comparison with the
linguistic RB learning process. Its accuracy has been shown in
practice with three different applications, performing a statis-
tical study.

In the framework of the tradeoff between precision and in-
terpretability of linguistic FSs, the positive synergy between
the different components is a helpful tool. We obtain the lin-
guistic RB with specific conjunction operators and defuzzifica-
tion parameters per rule, and as we have mentioned before, even
though parameters sacrifice a part of the system interpretability,
the overall objective is to get the best accuracy with the lowest
loss of interpretability.

Finally, we would like to point out future studies for high
dimensional problems. The following two recent contributions
[28], [19] deal with the scaling up of two genetic learning algo-
rithms for high dimensional classification problems. The present
proposal has been analyzed with three applications that use 2,
4 and 6 input variables respectively. As future work we are in-
terested in the analysis of the behavior of the cooperative evo-
lutionary learning proposal with high dimensional problems,
where it might be necessary to include a feature selection com-
ponent into the evolutionary learning approach.

APPENDIX

STATISTICAL STUDY. DESCRIPTION AND RESULTS

The statistical analysis developed begins with the computa-
tion of some descriptive statistics, collected in Tables XVII, XIX
and XXI. Below, we describe the columns of these tables.
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TABLE XIX
DESCRIPTIVE STATISTICS, FOR APPLICATION E

TABLE XX
LEVENE TEST OF HOMOGENEITY OF VARIANCE, FOR APPLICATION E

It begins with N which is the number of subjects sampled
assigned to each algorithm. The Mean is the sum of all scores
divided by the number of scores, that is, the arithmetic average.
The Standard Deviation informs about how far the scores are
from the mean on average, so it shows the degree of obser-
vations tending to cluster near the center of the distribution.
The Standard Error is an estimation of the Standard Deviation
of the Mean if repeated samples of the same size were taken
from the same population. It can be calculated by dividing a
sample’s standard deviation by the square root of the number
in the sample. It is used in calculating the 95% of confidence
interval for the simple mean. The 95% confidence interval for
Mean have been obtained from the sample mean, standard de-
viation, and sample size. This confidence interval means that
if we were to repeatedly perform the study and computed the
confidence intervals for each simple drawn, on average, 95 out
of each 100 confidence intervals would contain the true pop-
ulation mean. It combines measures of both central tendency
(mean) and variation (standard error) to provide information
about where we should expect the population mean to fall. Fi-
nally, the Minimun and Maximun are the lowest and highest
values of all scores.

ANOVA (analysis of variance) test is performed in order to
determine whether there are differences in the means between
groups or across different conditions. It is used to determine if
the means are far enough apart to be considered “significantly”
different.

The basic logic of significance testing is that we will assume
that the population groups have the same mean (null hypoth-
esis), then determine the probability of obtaining a sample with
group mean differences as large (or larger) as what we find
in our data. To make this assessment the amount of variation
among the group means (between-group variation) is compared
to the amount of variation among the observations within each
group (within-group variation). Assuming that in the population
the group means are equal (null hypothesis), the only source of
variation among the sample means would be the fact that the
groups are composed of different individual observations. Thus,
the ratio of the two sources of variation (between-group/within-
group) should be about one when there are no population dif-
ferences. When the distribution of the individual observations
within each group follows the normal curve, the statistical distri-
bution of this ratio is known (F distribution) and we can make a
probability statement about the consistency of our data with the
null hypothesis. The final result is the probability of obtaining
sample differences as large (or larger) as what we found, if there
were no population differences. If this probability is sufficiently
small (usually less than 0.05, i.e., less than 5 chances in 100),
we conclude the population groups differ.

The Levene test shows the assumption of homogeneity of
variance. It indicates that the variances do not differ across
groups. First, the test will assume that the population groups
have the same variance (null hypothesis). The df1 y df2 column
contains information about the degrees of freedom. The F
column contains information about Levene statistic to decide
if it is far enough from one to say that the group variances are
not equal. The significance (Sig.) column indicates that under
the null hypothesis of no group differences. If this probability
is sufficiently small (usually less than 0.05, i.e., less than 5
chances in 100) we conclude the population groups differ.

The purpose of post hoc testing is to determine exactly which
groups differ from each other in terms of mean differences. This
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TABLE XXI
DESCRIPTIVE STATISTICS, RICE TASTE EVALUATION PROBLEM

TABLE XXII
LEVENE TEST OF HOMOGENEITY OF VARIANCE,

FOR RICE TASTE EVALUATION PROBLEM

is usually done after the original ANOVA test indicates that all
groups are not identical. The Tamhane test determines the Mul-
tiple Comparisons between algorithms for each one with others.
This test uses the Welch procedure for determining degrees of
freedom for the square error of the contrast. It uses Student’s
distribution, and the Sidak procedure to find the alpha level. It is
appropriated when variances are unequal or when variances and
group sizes are unequal. Due to the great space occupied by the
Tamhane results tables for multiple comparisons for each appli-
cation, we decided to put in this work the summary Tables XI,
XII and XIII.
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